地铁动车组制动装置资料
- 格式:ppt
- 大小:1.53 MB
- 文档页数:21
CRH3型动车组制动装置概述CRH3型动车组制动装置是中国铁路总公司开发的一种先进的列车制动系统。
它采用了电力制动和气力制动相结合的方式,能够提供高效可靠的制动性能,确保列车在运行过程中的安全性和稳定性。
主要组成部分CRH3型动车组制动装置主要由以下几个部分组成:1.压缩空气系统:负责提供气源,保证气力制动的正常运行。
2.制动控制系统:通过控制电路和信号传输,实现对制动装置的控制和调节。
3.制动装置:包括电动制动、气动制动和机械制动等多种制动方式,通过控制阀门和制动盘实现制动效果。
4.制动盘和制动垫:负责实现列车的制动效果,通过制动盘和制动垫之间的摩擦力来阻止列车运动。
5.制动辅助系统:包括制动风缸、制动阀门、制动线路等,用于实现制动装置的辅助功能。
工作原理CRH3型动车组制动装置的工作原理如下:1.电动制动:通过电机将电能转化为机械能,实现列车的减速和停车。
当司机控制台发出制动指令后,电路将电能传输到电机上,使其产生转动,通过传动装置转动制动盘实现列车的制动。
2.气动制动:利用压缩空气来产生制动力,通过气缸和制动盘之间的摩擦力来阻止列车运动。
司机控制台发出制动指令后,电路会控制制动阀门的开启,使压缩空气进入制动风缸,推动制动盘实现列车的制动。
3.机械制动:通过机械装置实现列车的制动效果。
当电动制动和气动制动无法满足需求时,机械制动会起到补充作用。
司机通过操纵手动制动杆或脚踏板来调节机械制动装置,通过制动盘和制动垫之间的摩擦力来实现列车的制动。
优势和特点CRH3型动车组制动装置具有以下几个优势和特点:1.高效性能:采用了电力制动和气力制动相结合的方式,能够提供更为高效的制动效果,大大缩短列车的制动距离。
2.稳定性和安全性:制动装置的控制系统具有高度的稳定性,能够快速响应司机的指令,保证列车在运行过程中的安全性和稳定性。
3.多功能性:CRH3型动车组制动装置还具有多种辅助功能,如防滑、防抱死、自检等,能够提供更全面的制动保护。
轨道内部刹车结构
轨道内部的刹车结构主要由紧急制动安全环路线、制动控制装置和制动执行机构组成。
紧急制动安全环路线是一种控制电路,用于监控列车的紧急制动状态。
当紧急制动安全环路线的某一处瞬间失电时,列车会产生紧急制动指令。
制动控制装置是制动指令的执行和控制机构,由电气控制部分和气动控制部分组成。
在气动控制部分中,有一个紧急制动电磁阀,通常处于得电状态,将中继阀的紧急制动预先控制压力口与空重车调整阀输出口的气路通道切断,并将中继阀的紧急制动预先控制压力排向外界。
制动执行机构则包括盘形制动和磁轨制动等类型。
盘形制动是在车轴上或在车轮辐板侧面装上制动盘,用制动夹钳使合成材料制成的两个闸片紧压制动盘侧面,通过摩擦产生制动力。
磁轨制动则是在转向架的两个侧架下面,在同侧的两个车轮之间,各安置一个制动用的电磁铁,制动时将它放下并利用电磁吸力紧压钢轨,通过电磁铁上的磨耗板与钢轨之间的滑动摩擦产生制动力。
在紧急情况下,列车会触发紧急制动指令,通过制动控制装置和制动执行机构的工作,使列车迅速停止运行。
列车制动装置简介现代轨道车辆列车制动装置简介摘要:制动系统是列车的一个重要组成部分,它直接影响列车运行的安全性。
本文重点介绍了各种制动装置的原理、结构及其在动车组上的应用情况。
关键词:制动装置电动制动电气制动再生制动动车组引言:随着铁路现代化运输的发展,列车的运行速度和牵引重量不断提高,我们除了要加大牵引力外还务必要提高机车、车辆的制动性能。
支撑着所有铁道车辆安全运行的基本要素就是制动装置,“安全制动停车”是铁道车辆必须具备的功能。
制动装置的性能不仅是保障行车安全的必要手段,同时也是提高列车速度和铁路通过能力的重要因素。
一、制动的概论人为地使列车减速,停车或防止停留的车辆移动所采取的措施,称为制动。
在铁路机车、车辆上,产生制动的方法比较多,目前我国主要采用以压缩空气为动力,利用基础制动装置上的闸瓦紧压转动着的车轮踏面,使其相互间产生摩擦力,将机车、车辆动能转变为热能逸散,从而使列车减速或停车的方法。
二、制动装置的组成、分类及比较(一)制动装置组成制动装置一般可分为两大组成部分:(1)“制动机”――产生制动原动力并进行操纵和控制的部分。
(2)“基础制动装置”――传送制动原动力并产生制动力的部分。
(二)制动装置分类 1.按动能的转移方式分(1)踏面制动踏面制动,又称闸瓦制动,是自有铁路以来使用最广泛的一种制动方式。
它用铸铁或其他材料制成的瓦状制动块(闸瓦)紧压滚动着的车轮踏面,通过闸瓦与车轮踏面的机械摩擦将列车的动能转变为热能,消散于大气,并产生制动力。
现在的货车采用的是单闸瓦的踏面摩擦制动,而普通客车采用的是双闸瓦的踏面摩擦制动。
(2)盘形制动盘形制动是在车轴或轮辐板侧面安装的制动盘,一般为铸铁圆盘,制动时用制动夹钳使合成材料制成的两个闸片紧压制动盘侧面,通过摩擦产生制动力,将动车组动能转变成热能消散于大气。
(3)电阻制动电阻制动是在制动时将原来驱动轮对的牵引电机转变为发电机,由轮对带动发电,并将电流通过专门设置的电阻器,采用通风散热将热量消散于大气,从而使动轮产生制动作用。
动车组制动系统的组成与功能一、刹车盘和刹车鞋:刹车盘是动车组制动系统的核心部件之一,位于车轮内侧的轮盖上。
在制动时,通过刹车盘与车轮的摩擦产生制动力,减小车轮转动的力矩,从而实现制动效果。
刹车盘一般采用合金刚铁制成,具有较高的热传导性能和耐磨性。
刹车鞋则是刹车盘提供制动力的关键部件,由摩擦片和压紧机构组成。
摩擦片与刹车盘接触,通过摩擦产生制动力。
二、气压控制装置:气压控制装置是动车组制动系统中的重要组成部分,负责控制刹车盘和刹车鞋的运行。
气压控制装置包括压缩空气供应系统、主气管、分枝管、缸组和排气装置等。
压缩空气供应系统通过空气压缩机将外界空气压缩后供应给系统中的气动元件,主气管将压缩空气传送到各个刹车缸组,分枝管将主气管分支到各个车厢。
缸组是气压控制装置中最主要的部件,由缸体、柱塞和弹簧等组成,通过气压的控制使刹车盘和刹车鞋实现制动和松开。
三、防滞制动系统:防滞制动系统是保证列车在紧急制动时不发生轮轨阻滞的重要系统。
它可以通过调整刹车盘与车轮的接触力,使列车在刹车时保持最大的牵引力。
防滞制动系统中的主要部件包括AAR控制器、电动刹车阀和轮轨力传感器。
AAR控制器根据轮轨的实时情况对电动刹车阀的开启程度进行调整,使刹车力得到最佳的控制。
轮轨力传感器通过检测轮轨之间的相对滑动速度来反馈给AAR控制器。
四、辅助刹车系统:辅助刹车系统包括电气制动和机械制动两部分。
电气制动是通过电子系统对电动机进行控制,将电能转化为制动力的过程。
机械制动是指通过手动操作机械装置,使刹车盘与车轮摩擦产生制动力。
辅助刹车系统主要用于降低列车速度和协助主制动系统制动。
1.制动功能:动车组制动系统可以根据列车运行状态和运营需求实现不同级别的制动。
通过控制刹车盘和刹车鞋,有效减速列车,并实现平稳停车。
2.安全保护功能:制动系统可以保护列车免受超速、滑轮轨、限流等异常情况的影响,保障列车和乘客的安全。
3.能量回收功能:动车组制动系统利用列车制动过程中释放出来的能量,通过电能回收装置将其转化为电能,再次供应给列车,以提高能源利用率。
动车组制动系统概述总结动车组制动系统是一种用于列车制动的重要系统,它包括列车制动设备、制动液和制动控制系统。
其主要作用是控制列车在行驶过程中的速度和停车,确保列车运行的安全和平稳。
制动系统的设计和运行需要考虑列车的重量、速度、路况和安全要求,以及对乘客的舒适性和列车材料的保护。
动车组制动系统通常由空气制动和电力制动两部分组成。
空气制动是基本的制动系统,它由空气制动器、制动阀和制动缸组成。
当司机操作制动系统时,制动信号通过管道传递给列车各个车厢的制动器,使制动气缸内的活塞移动,使制动鞋与车轮接触并产生制动力。
电力制动则是通过利用电机将动车组的动能转化为电能,或者通过电阻将动车组的动能转化为热能达到制动作用的系统。
电力制动不仅增加了列车制动能力,还能够降低制动磨损和噪音,提高了动车组的运行效率和经济性。
动车组制动系统还涉及到制动防滑系统和紧急制动系统。
制动防滑系统通过监测车轮的转速和制动力的施加,调节制动器的力度,以防止车轮锁死和滑行。
紧急制动系统是在列车遇到紧急情况时用来迅速停车的系统,它能使列车在最短的时间内安全停车,避免事故的发生。
在动车组制动系统的运行中,制动控制系统起着关键的作用。
制动控制系统由中央控制器、传感器和执行器组成,可以实现对制动系统的精确控制和监测。
中央控制器根据列车的运行状态和司机的指令,通过传感器监测制动器的状态和动车组的速度,再通过执行器调节制动器的力度和时间,从而实现列车的平稳制动和停车。
制动控制系统还能够实现列车的自动停车和停车距离的控制,提高了列车的运行效率和安全性。
总的来说,动车组制动系统是动车组列车运行中不可或缺的重要部分,它直接关系到列车的运行安全和乘客的乘坐舒适度。
随着科技的发展和社会的进步,动车组制动系统也在不断地更新和完善,以适应列车的不断变化的运行需求和提高列车的运行效率和安全性。
地铁车辆制动装置的结构1. 引言地铁车辆是城市运输系统中的一种重要交通工具,其安全性和可靠性对于保障乘客出行的安全至关重要。
在地铁运行过程中,制动装置起着至关重要的作用,能够减缓和停止车辆的运动,保证乘客的安全以及列车的正常运行。
本文将介绍地铁车辆制动装置的结构,包括主要组成部分和工作原理。
2. 主要组成部分地铁车辆制动装置由以下几个主要组成部分组成:2.1 制动盘制动盘是地铁车辆制动装置的核心部件之一,通常安装在车轮上。
制动盘通过与刹车片摩擦产生阻力,因此起到减速和停止车辆的作用。
制动盘通常由高强度钢构成,具有良好的耐磨性和热稳定性。
2.2 刹车片刹车片是制动装置中负责与制动盘摩擦的部件,通过与制动盘的接触摩擦来停止车辆运动。
刹车片通常由摩擦材料制成,如复合材料或金属材料。
刹车片具有良好的耐磨性和摩擦性能,在制动时能够及时产生足够的摩擦力。
2.3 刹车器刹车器是地铁车辆制动装置的关键部件之一,用于将刹车片施加到制动盘上,产生摩擦力。
刹车器通常由液压或气压系统控制,通过调节刹车压力来控制制动力的大小和车辆的制动效果。
2.4 制动软管制动软管是刹车器与车辆其他部件之间的连接部件,用于传递液压或气压信号。
制动软管通常由橡胶材料制成,具有良好的弹性和耐磨性。
2.5 控制系统控制系统是地铁车辆制动装置的核心部件,用于监测车辆行驶状态和控制制动装置的工作。
控制系统通常由传感器、控制器和执行器等组成,能够实时监测车辆的制动状态并根据需要进行调整。
3. 工作原理地铁车辆制动装置的工作原理是通过施加摩擦力来减缓和停止车辆的运动。
以下是地铁车辆制动装置的工作原理简要步骤:1.当列车需要制动时,驾驶员踏下制动踏板,触发制动系统。
2.制动系统接收到信号后,开始施加刹车片到制动盘上的摩擦力。
3.摩擦力通过刹车器和液压或气压系统传递到刹车片上,产生摩擦力。
4.刹车片与制动盘间的摩擦力使车辆减速直至停止。
4. 结论地铁车辆制动装置的结构包括制动盘、刹车片、刹车器、制动软管和控制系统等主要组成部分。
CRH1型动车组制动系统部件概述一、CRHl型动车组制动控制板的基本功能及作用原理1.制动控制板的基本功能,适用于列车其他制动控制板变量。
2.常用制动功能,由每个制动控制板提供了载重补偿的制动压力,作用在两个转向架上,动车有四个制动缸,拖车有六个制动缸。
3.常用制动部件名称及作用功能(1)A1-调压阀,未激活时将整个压力传输到紧急制动阀(E)上。
激活时中断到(E)的供风和A2联合工作,根据车上要求的制动力设定相应压力。
(2)A2-调压阀,未激活时不缓解任何压力。
激活时缓解来自紧急阀(E)的任何压力和A1联合工作,根据车上要求的制动力设定相应压力。
(3)C阀至制动卡钳的压力输出(通过防滑线路)。
(4)D-KR6中继阀,作为继动器工作。
采用来自(A)的供风压力,并以更大容量将输入上的预控压力传送至输出(C)。
(5)E紧急制动阀,在安全环路失电(牵引)时,将来自(R)的气压传输给限压阀(F)。
(6)F限压阀,根据车重限制到中继阀(D)的控制压力。
(7)G压力传感器,将控制压力信号发送至制动计算机。
(8)H压力传感器,将输入压力信号(主风缸管路)发送至制动计算机。
(9)K压力传感器,将载重压力信号发送至制动计算机。
(10)M试验装置,用于人工测量来自主风缸管路的输入压力时。
(11)N试验装置,用于人工测量预控压力时。
(12)0试验装置,用于人工测量KR6(D)的控制压力时。
(13)P试验装置,用于人工测量载重压力时。
(14)R来自主风缸管路的输入压力。
(15)S限制堵,过滤来自重量测量线路输入压力中的主要变化。
(16)T来自重量测量线路的输入压力。
(17)u试验装置,用于人工测量KR6阀(D)的输出压力时。
(18)AA由主风缸管路供风。
(19)BB制动控制板。
(20)CC制动计算机。
(21)DD风缸。
(22)EE测量来自空气气弹簧平均阀的输入,FF防滑阀。
(23)GG试验装置,制动盘。
(24)HH压力变换器,制动盘。
CRH2G型动车组制动系统介绍1 引言CRH2G型动车组是基于既有CRH2型动车组的成熟技术平台,针对高寒地区动车组的运行现状,从风沙、高寒、高温、防紫外线辐射和高海拔五个方面进行了适应性改进,研制的高寒抗风沙动车组,满足国内高寒地区高速动车组的运行需求。
CRH2G型动车组制动系统是车辆系统的重要组成部分,本文将从制动系统的组成、原理及功能方面进行介绍。
2 系统组成及原理CRH2G型动车组制动系统为微机控制的直通式电空制动系统,采用复合制动方式,即再生制动并用电气指令式空气制动。
列车制动时,再生制动优先,当再生制动力不足时,由空气制动进行补足。
CRH2G型动车组的制动系统主要由制动控制系统、基础制动装置及空气供给系统三大部分组成,系统组成如图1所示。
制动控制系统主要由制动指令传输装置、制动控制装置、停放制动控制装置、救援转?Q装置、BP救援装置、防滑阀、撒砂装置等组成。
通过制动指令传输装置接收制动指令,计算并分配制动力,向基础制动装置输送压力空气。
基础制动装置是空气制动系统的执行部分,在制动控制系统的控制下产生闸片压向制动盘面所需的制动缸压力。
CRH2G型动车组基础制动装置采用紧凑式气动夹钳、粉末冶金闸片及铸钢制动盘。
根据统型要求,在1、4、5、8车每轴配置1个带停放功能的制动夹钳。
风源系统主要由空气压缩机组、干燥器、总风缸、控制风缸以及贯穿全列的总风管路组成,为制动系统及其它风动装置提供清洁、干燥的压缩空气。
在有受电弓的车辆设置辅助空气压缩机组,在动车组主空气压缩机组不能供风且总风压力不足时,可利用动车组蓄电池启动辅助空气压缩机组为受电弓升降弓装置、真空断路器(VCB)等提供风源。
3 系统功能3.1 常用制动常用制动力分为1~7N,采用电空复合制动模式,进行延迟控制。
延迟时,将M车多余制动力承担T车部分制动力,确保编组制动力。
3.2 紧急制动(EB)紧急制动(EB)采用与常用制动相同的电空复合制动模式,在制动手柄置于快速位时或ATP指令动作时起作用。
CRH2型动车组制动控制装置10.4.1组成CRH2型动车组制动控制装置(图10.9)在动车组上的布置见表10.2。
表10.2制动控制装置在动车组上的布置表制动控制装置主要零部件见表10.3。
表10.3制动控制装置零部件表注:“-”表示没有此设备。
10.4.2气路原理10.4.2.1供风装置作为供风装置,把主空气压缩机(T40。
0B)及干燥器(D20NHA)(详见10.6供风设备)安装在Ml车、T1k车和M1s 车上,其制动控制装置上安装有防止过压力的E1L安全阀保护装置。
带空气压缩机车辆的制动控制装置的气路见图10.10。
从压缩机出来的压力空气,通过软管,经干燥器(在干燥器上配有管道)进行冷却和除湿后,从制动控制装置的MR1管路接口向150L的总风缸供风。
总风缸的压力空气通过3/4截断塞门(MR用)由MR2管路接口连接到总风缸管(MR总风管),并向其他车辆供气。
没有安装压缩机的车辆制动控制装置,则从MR管通过MRl管路接口,由总风缸(150L)经总风管供给空气。
压力调整功能由BCU承担,因此BCU中装有MR压力传感器。
总风管和MR传感器在制动控制装置内进行连接。
总风管(MR管)贯通于整个列车。
在除了带有Tc车系的空气管路开闭装置的车辆以外的各车的两端,设置有1截断塞门(带有侧孔)。
各车之间用空气软管进行连接。
在双号号车上,设置有连接MR管的3/8快速接头和3/8截断塞门。
用于连接外部风源来供风。
10.4.2.2控制装置内部配管在制动控制装置内,总风管的空气通过3/4截断塞门、UMA滤尘器和止回阀,与100L制动供给风缸及20L控制风缸连接。
快速供给风缸的空气用于制动,与FD-1中继阀、常用·快速制动用的EP电磁阀和紧急制动用的B11调压阀相连接。
为关闭空气制动(常用·快速及紧急),在列车上配置了SR塞门,目的是为了能从车辆地板上进行操作。
来自于制动供给风缸压缩空气,经SRl管路接口与车辆地板上的SR塞门进行连接,再经SR2管路接口返回到车下。
CRH动车组驱动装置的刹车与制动性能分析CRH动车组一直以其高速、高效、高质量的特点著称于世,其驱动装置的刹车与制动性能更是其安全运行的重要保证。
本文将对CRH动
车组驱动装置的刹车与制动性能进行深入分析。
CRH动车组的驱动装置在行驶过程中需要通过刹车系统实现减速和停车的功能。
其制动系统主要由制动盘、制动钳、制动块以及刹车系
统控制器等部件组成。
制动盘通过制动钳夹紧制动块,产生摩擦力,
将动车组减速至安全范围内。
CRH动车组的刹车系统具有响应速度快、制动力强等优点,有效提升了动车组的运行安全性。
在实际运行中,CRH动车组的刹车性能得到了广泛认可。
制动时的制动盘温度、刹车距离、制动力平稳性等关键指标均达到或超过国际
标准。
同时,刹车系统的自检功能和自动调整系统能够及时调整制动
系统的性能,确保刹车效果持续稳定。
另外,CRH动车组的制动性能也是其运行安全的重要保障。
制动时的制动盘磨损、制动块磨损、制动力分配等因素都对制动性能产生影响。
CRH动车组通过定期检测和维护,保证了制动系统的正常运行。
此外,CRH动车组还采用了智能制动系统,通过传感器和控制器实时
监测制动系统的工作状态,及时发现并修复问题,确保了制动性能的
稳定性。
综上所述,CRH动车组驱动装置的刹车与制动性能表现优异,为动车组的安全运行提供了重要保证。
同时,动车组在制动系统的设计、
制造、维护等方面也不断进行创新和升级,不断提升制动性能,确保
乘客的出行安全和舒适。
希望本文的分析能够为CRH动车组的制动系统提供一定的参考价值,推动其持续发展和完善。
动车组基础制动装置种类
空气制动是指利用空气压力传动制动力的一种制动方式。
它包
括制动缸、制动鞋或制动盘、制动阀等组成的系统。
当司机操作制
动手柄时,空气制动系统会释放空气压力,使制动鞋或制动盘与车
轮接触,从而产生制动力,实现列车的制动。
电磁制动是利用电磁感应产生的电磁力来实现制动的一种方式。
它包括电磁制动器、电磁盘等组成的系统。
当需要制动时,通过控
制电磁制动器通电,产生电磁力使电磁盘与车轮接触,从而实现列
车的制动。
除了空气制动和电磁制动,还有一些其他类型的基础制动装置,例如液压制动等。
液压制动是利用液压传动制动力的一种方式,通
过控制液压系统释放液压压力,使制动器与车轮接触,实现制动。
总的来说,动车组基础制动装置种类主要包括空气制动、电磁
制动和液压制动等多种类型,每种类型都有其特点和适用场景。
在
实际应用中,根据列车的具体情况和需要,会选择不同类型的基础
制动装置来实现列车的制动功能。
CRH1型动车组制动系统设备功能概述一、CRHl型动车组制动系统紧急制动阀启动控制CRHl型动车组制动系统紧急制动阀在下列情况下确保启动:(1)司机钥匙未插入,司机室已激活。
(2)司机按下紧急停车按钮。
(3)司机通过主控手柄要求进行紧急制动。
(4)在主风缸系统气压低的情况下。
(5)司机的安全装置(DSD)启动其安全继电器。
(6)自动列车控制(ATC)启动其安全继电器。
(7)主车辆控制单元(主VCU)启动其安全继电器。
(8)无蓄电池电压。
(9)列车部分分离。
(10)回送时制动管路气压低。
二、CRHl型动车组制动系统制动时多个系统作用控制关系1.制动时多个系统共同作用控制关系如图9-7所示。
2.安全环路施加摩擦制动时,主列车计算机的程序模块同时也会增加再生制动。
三、CRHl型动车组制动系统常用制动控制及功能1.常用制动是CRHl型动车组列车运行中,正常调速及停车控制的常规制动方式。
2.常用制动采用两种不同的制动系统:再生电动制动系统;电空摩擦制动系统。
3.常用制动施加启动控制方式:司机通过主控手柄;自动速度控制系统;ATP系统;回送车辆控制。
四、CRHl型动车组常用制动作用原理1.主VCU采用制动要求和车重的测量信号进行总制动要求的计算,然后主车辆控制单元将动力制动和摩擦制动之间的制动力进行分配。
2.如果动力制动效果不够,可由摩擦制动补充。
3.电制动可通过变换器再生能量供给接触网,牵引电机也可作为发电机。
4.司机控制手柄控制的B1~B7级制动都属于常用制动。
五、CRHl型动车组再生制动功能1.再生制动过程中,采用牵引电动机作为发电机,这样将再生的电能供给牵引系统。
2.由于该制动类型需要牵引电动机,所以只有动车转向架可进行此类制动。
3.在再生制动过程中,制动控制板在必要时按照TCMS 的要求补偿再生制动缺少的制动效果。
六、CRH1型动车组电空摩擦制动功能1.电空制动是通过将摩擦闸片推向旋转的制动盘,使制动盘放慢旋转来施加制动。