消元——解二元一次方程组的解法(1)
- 格式:doc
- 大小:79.00 KB
- 文档页数:2
数学篇解题指南将含有两个未知数,且含未知数的项的次数都是一次的两个方程联立起来,就构成了二元一次方程组.二元一次方程组的解就是组成这个方程组的两个方程的公共解.解二元一次方程组的基本思路是消元.下面就常用的“消元”方法进行分析说明.一、代入消元法代入消元法就是在解二元一次方程组时,把其中一个方程的某个未知数用含有另一个未知数的代数式表示出来,再代入到另一个方程中,进而达到消元的目的.基本步骤是:第一步,变形.即从二元一次方程组中选取一个系数较简单的方程,然后把它变为用含一个未知数的式子表示另一个未知数的形式;第二步,代入.即将变形后的方程代入到另一方程中消去某个未知数,使方程转化为关于另一个未知数的一元一次方程,解出此方程,进而得到该未知数的值;第三步,回代.把所求得的未知数的值代回到变形后的方程中,得出另一未知数的值,再用大括号把两个未知数的值联立起来;第四步,检验.把所得的两个未知数的值代入另一方程中进行检验,若成立,则是原方程组的解.例1解下列方程组:(1)ìíîx -2y =4①,2x +3y =1②;(2)ìíîïï3(x +y )-2(2x -y )=3,2(x -y )3-x +y4=-112.分析:观察两个方程组的特点,可以看出在方程组(1)中,方程①中x 的系数为1,故可以直接利用代入消元法求解;方程组(2)并非一般形式,先要把它整理成一般形式,再利用代入消元法求解.解:(1)由方程①移项可得x =2y +4,把x =2y +4代入方程②中,可得2(2y +4)+3y =1,解得y =-1,把y =-1代入①中可得x =2,所以有{x =2,y =-1.经检验可知,原方程组的解为{x =2,y =-1.解二元一次方程组常用的“消元”方法19数学篇解题指南(2)通过整理,原方程组可以转化为ìíî5x -11y =-1③,-x +5y =3④,由方程④可知x =5y -3.把x =5y -3代入方程③中,可得5(5y -3)-11y =-1,即14y =14,解得y =1.把y =1代入x =5y -3中,可得x =2,所以有{x =2,y =1.经检验可知,原方程组的解为{x =2,y =1.评注:在解二元一次方程组时,若方程组中某一个未知数的系数是1或-1,或者是可以将某一项作为一个整体,便于代入另一个方程中时,常常借助代入消元法进行求解.二、加减消元法加减消元法即通过将方程组中的两个方程相加或相减消去某个未知数,从而将两个方程转化为关于另一个未知数的一元一次方程,进行求解.在运用加减消元法解二元一次方程组时,要注意仔细观察两个方程中的同一个未知数的系数,若发现系数互为相反数,则利用相加消元法求解;若发现系数相同,则利用相减消元法求解;若两个系数既不相等,也不互为相反数,则需要运用等式性质,把方程两边同乘以适当的数,使未知数的系数相同或互为相反数,再借助加减消元法求解.例2(1)ìíî3x -2y =9①,5x -2y =11②;(2)ìí4x +3y =3①,程中未知数y 的系数相同,这样只需要把两个方程相减,消去未知数y ,得到关于x 的一元一次方程即可解题.(2)观察方程组,很容易看出,两个方程中的未知数x 、y 的系数既不相同,也没有互为相反数,此时需要运用等式性质把同一未知数的系数转化为相同,因此需要将方程①两边同时乘以2,方程②两边同时乘以3,再两式相加,消去未知数y ,得到关于x 的一元一次方程即可解题.解:(1)由方程②-①可得2x =2,解得x =1.把x =1代入①中可得y =-3,所以有{x =1,y =-3.经检验可知,原方程组的解为{x =1,y =-3.(2)方程①×2可得8x +6y =6③;方程②×3可得9x -6y =45④,③+④可得17x =51,解得x =3.把x =3代入方程①中,可得y =-3,所以有{x =3,y =-3.经检验可知,原方程组的解为{x =3,y =-3.评注:在解二元一次方程组时,若两个方程的同一个未知数的系数相同,或系数互为相反数,或者成倍数关系,此时可利用加减消元法去破解.总之,代入消元法和加减消元法都是解二元一次方程组最基本、最常见的消元方法,两者既存在相通点,又具有不同点.同学们在解二元一次方程组时,一定要对方程中的各。
8.2消元——二元一次方程组的解法(1)教学内容本节课主要学习8.2用代入法解二元一次方程组教学目标知识技能会用地用代入法解二元一次方程组,初步体会解二元一次方程组的基本思想。
数学思考通过对方程组中未知数特点的观察与分析,明确解二元一次方程组的的基本思路是“消元”,从而促进未知向已知转化,培养观察能力和体会化归思想. 解决问题 通过用代入法解二元一次方程组的训练及选用合理、简捷的方法解方程组培养运算能力。
情感态度通过研究解决问题的方法,培养学生合作交流意识与探究精神。
重难点、关键重点:用代入法解二元一次方程组。
难点:探索如何用代入法将“二元”化为“一元”。
关键:利用代入法解方程组时,灵活运用已学知识。
教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容教学过程一、 问题引入1. 什么叫二元一次方程组,什么叫二元一次方程组的解?由两个一次方程组成并含有两个未知数的方程组叫做二元一次方程组,二元一次方程组里各个方程的公共解叫做这个方程组的解。
2.篮球联赛中,每场比赛都要分出胜、负.每队胜1场均得2分,负1场均得1分.某队在22场比赛中共得40分,那么这个队胜、负场数分别为多少?师:上节课例“篮球联赛”题可设一个未知数(设胜x 场),可以用一元一次方程2x +(22-x)=40来解.如果设两个未知数(设胜x 场,负y 场),可以列方程组⎩⎨⎧=+=+40222y x y x那么一元一次方程与二元一次方程组有什么关系呢?【活动方略】教师出示问题,学生回答,教师引入新问题.【设计意图】通过问题情境,激发学生学习兴趣,引出解二元一次方程组的学习.二、 探索新知【分析】我们发现,二元一次方程组中第一个方程x +y =22可变形为y =22-x ,再将第二个方程2x +y =40中的y 换为(22-x),二元一次方程组就化为一元一次方程.解这个方程,得x =18,再把x =18代入y =22-x ,得y =4,从而得到这个方程组的解.【归纳】二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再设法求另一个未知数.这种将未知数的个数由多化少、逐一解决的想法,叫做消元思想,这种方法叫做代入消元法,简称代入法.【思考】如何用代入法解二元一次方程组?【分析】首先,从方程组中选取一个方程,把其中的某一个未知数用另一个未知数的代数式表示出来.例如,可将⎩⎨⎧②=+①=+.402,22y x y x 中的第一个方程变形为y =22-x ③.接下来就应该将这个代数式代入另一个方程,达到消去一个未知数的目的,得到只含有一个未知数的一元一次方程.例如,将③代入②,得到方程2x +(22-x)=40,再解这个方程,求出一个未知数x =18,最后将x =18代入第一步所得的式子,求出另外一个未知数的值.可以概括为:(课件展示.)(1)求表达式;(2)代入消元;(3)回代求解;(4)写方程组解【范例】例1 用代入法解方程组⎩⎨⎧②=-①=-.1483.3y x y x 师:选择哪个方程呢?为什么?生:我们认为选取①,因为①中未知数x 的系数为1,用含y 的代数式表示x ,比较简便,把①变为x =3+y ③.师:把③代入①可以吗?为什么?生:不可以.因为③与①是同一个方程,应将③代入②,得3(3+y)-8y =14. 师:得到这个方程后,下一步如何解?生:先解出这个方程y =-1,再把y =-1代入③,得x =2.师:能否将y =-1代入①或②?生:可以.师:如何表示方程组的解?生:把两个未知数的解写在一起,就是方程组的解,一般写成⎩⎨⎧by a x ==的形式.师:请同学们完整地解出题目.【活动方略】引导学生比较、分析,归纳二元一次方程组的解法。
消元—解二元一次方程组知识点教案1.代入消元法解二元一次方程组(1)消元思想的概念二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们可以先求出一个未知数,然后再求另一个未知数,这种将未知数的个数由多化少、逐一解决的思想,叫做__________思想.(2)代入消元法把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(3)代人法解二元一次方程组的一般步骤:①变形:从方程组中选一个未知数的系数比较简单的方程,将这个方程中的一个未知数用含有另一个未知数的代数式表示出来.②代入:将变形后的方程代入没变形的方程,得到一个一元一次方程.③解方程:解这个一元一次方程,求出一个未知数的值.④求值:将求得的未知数的值代入变形后的方程,求出另一个未知数的值,从而得到方程组的解.2.加减消元法解二元一次方程组(1)加减消元法当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称__________.(2)用加减法解二元一次方程组的一般步骤:①变形:先观察系数特点,将同一个未知数的系数化为相等的数或相反数.②加减:用加减法消去系数互为相反数或系数相等的同一未知数,把二元一次方程组转化为一元一次方程.③解方程:解一元一次方程,求出一个未知数的值.④求值:将求得的未知数的值代入原方程组中任意一个方程,求出另一个未知数的值,从而得到方程组的解.3.整体消元法解二元一次方程组根据方程组中各系数特点,可将方程组中的一个方程或方程的一部分看成一个整体,代入到另一个方程中,从而达到消去其中一个未知数的目的,求得方程组的解.K 知识参考答案:1.消元 2.加减法一、代入法解二元一次方程组①用代入法消元时,由方程组里的一个方程得出的关系式须代入到另一个方程中去,如果代入原方程,就不可能求出原方程组的解了.②方程组中各项系数不全是整数时,应先化简,即应用等式的性质,化分数系数为整数系数.③当求出一个未知数后,把它代入变形后的方程y =ax +b (或x =ay +b ),求出另一个未知数的值比较简单.④要想检验所求得的一对数值是否为原方程组的解,可以将这对数值代入原方程组的每个方程中,若各方程均成立,则这对数值就是原方程组的解,否则说明解题有误.【例1】用代入法解方程组124y x x y =-⎧⎨-=⎩时,代入正确的是 A .x -2-x =4B .x -2-2x =4C .x -2+2x =4D .x -2+x =4 【答案】C【解析】124y x x y =-⎧⎨-=⎩①②,把①代入②得:x -2(1-x )=4,整理得:x -2+2x =4.故选C . 二、加减法解二元一次方程组1.当两个方程中某一个未知数的系数互为相反数时,可将两个方程相加消元;当两个方程中某一个未知数的系数相等时,可将两个方程相减消元.2.当方程组中相同未知数的系数的绝对值既不相等,也没有倍数关系时,则消去系数绝对值较小的未知数较简单,确定要消去这个未知数后,先要找出两方程中该未知数系数的最小公倍数,再把这两个方程中准备消去的未知数的系数化成绝对值相等的数.【例2】用加减法解方程组231328x yx y+=⎧⎨-=⎩时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果:①691648x yx y+=⎧⎨-=⎩;②461968x yx y+=⎧⎨-=⎩;③6936416x yx y+=⎧⎨-+=-⎩;④4629624x yx y+=⎧⎨-=⎩.其中变形正确的是A.①②B.③④C.①③D.②④【答案】B【解析】如果将x的系数化成相反数,则方程组可变形为:6936416x yx y+=⎧⎨-+=-⎩,如果将y的系数化成相反数,则方程组可变形为4629624x yx y+=⎧⎨-=⎩,故选B.。
消元法解二元一次方程组的概念、步骤与方法湖南李琳高明生一、概念步骤与方法:1.由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.2.用代入消元法解二元一次方程组的步骤:(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.注意:⑴运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0”的形式,求不出未知数的值.⑵当方程组中有一个方程的一个未知数的系数是1或-1时,用代入法较简便.3.两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
用加减消元法解二元一次方程组的基本思路仍然是“消元”.4.用加减法解二元一次方程组的一般步骤:第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,•可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,•可以直接把两个方程的两边相减,消去这个未知数.第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,•合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,•常数项在方程的右边的形式,再作如上加减消元的考虑.注意:⑴当两个方程中同一未知数的系数的绝对值相等或成整数倍时,用加减法较简便.⑵如果所给(列)方程组较复杂,不易观察,就先变形(去分母、去括号、移项、合并等),再判断用哪种方法消元好.5.列方程组解简单的实际问题.解实际问题的关键在于理解题意,找出数量之间的相等关系,这里的相等关系应是两个或三个,正确的列出一个(或几个)方程,再组成方程组.6.列二元一次方程组解应用题的一般步骤:⑴设出题中的两个未知数;⑵找出题中的两个等量关系;⑶根据等量关系列出需要的代数式,进而列出两个方程,并组成方程组;⑷解这个方程组,求出未知数的值.⑸检验所得结果的正确性及合理性并写出答案.注意:对于可解的应用题,一般来说,有几个未知数,就应找出几个等量关系,从而列出几个方程.即未知数的个数应与方程组中方程的个数相等. 二、化归思想 所谓转化思想一般是指将新问题向旧问题转化、复杂问题向简单问题转化、未知问题向已知问题转化等等.在解二元一次方程中主要体现在运用“加减”和“代入”等消元的方法,把新问题“二元”或“三元”通过消去一个未知数转化为旧问题“一元”,化“未知”为“已知”,化“复杂”为“简单”,从而实现问题的解决,它也是解二元一次方程最基本的思想.三、典型例题解析:类型一:基本概念:例1、(2005年盐城大纲)若一个二元一次方程的一个解为则21x y =⎧⎨=-⎩,,这个方程可以是________.(只要写出一个)分析:本题是一道开放型问题,考查方程的概念,满足题意的答案不惟一,解此类题目时,可以先设出系数在代入算出另一边的值。
“消元──二元一次方程组的解法”(第1课时)教学设计一、内容和内容解析内容解析本课是在认识二元一次方程组的基本概念之后,进一步研究其解法.本课教学的核心是“消元”,在围绕“消元”展开的解法教学中,要关注化归思想的渗透以及方程解法的程序化问题.1.化归的基本思想是化未知为已知,化复杂为简单,化陌生为熟悉,化困难为容易.化归思想广泛的适用于数学问题的解决过程,就初中学段而言,这一思想在解方程的过程中体现得尤为明显.在初中学段,学生依次认识一元一次方程、二元(或多元)一次方程组、分式方程、一元二次方程,这是一个由简单到复杂的过程,也是一个应用化归思想逐步解决更复杂问题的过程.其中通过对一元一次方程解法的学习,学生认识到解一元一次方程的核心思想就是将其向着“x=a”的形式去转化,转化的手段有“去分母、去括号、移项、合并同类项、系数化为1”等.后续对于二元一次方程组、分式方程和一元二次方程的学习,又使学生认识到解方程的关键是将其通过“消元、整式化、降次”等手段向着一元一次方程去转化,这是解所有方程的通性通法.就本课而言,二元方程组的解法教学承载着多元一次方程组的解法渗透,具有代表性,通过本课的学习,学生对化归思想的领悟及对“消元”方法的掌握程度决定着这种渗透的效果.化归是重要的数学思想,思想的形成不能通过教师的灌输和学生的模仿来实现,而需要学生在适当的数学情境中去体会,并自我感悟.学生在一元一次方程的解法中初次体验化归思想,意识还比较模糊,而本课的学习是学生对这一思想的再次体验,通过情境的创设、过程的引领及适当的小结归纳,应力图使学生对化归思想具有更清晰的认识,并在之后的学习中初步具备应用化归思想解决问题的意识.2.解方程属于中学数学的基本技能,学生能否快速准确的求出方程的解对后续学习的诸多问题都有很关键的影响.解方程是“自动化的程序性知识”,自动化的程序性知识有以下特征:第一,运作速度快,启用时人几乎毫无意识;第二,有惊人的准确性,几乎总能产生正确的预期行为;第三,人对这类知识一般不能施加有意的影响;第四,人们一般不能对这类知识进行描述.若使学生的解方程达到“自动化”的程度,首先要关注方程解法的程序化,即明确解题程序中的每一个步骤以及在各个步骤中的具体任务,使学生有法可循.其次要安排学生依照已经明确的解题程序进行一定量的练习,在练习中进一步熟悉和掌握解题程序,从而逐步达到自动化的解题水平.强调解法的程序化,有利于提升学习的有效性、积极性,但同时也应关注两个问题:第一,程序化的解题不能是盲目的,在强化解题步骤的同时,要重视让学生理解每一步骤背后的理论依据,使学生“知其然亦知其所以然”,从而提高学生应用程序化解题的自觉性;第二,程序化解题不应成为一种机械的操作,应提倡在相应的思想方法指导下简约而灵活的解决问题,所以对解题程序的制定、描述不应过于具体.综合以上分析,确定本课的教学重点是:化归思想的渗透,消元解二元一次方程组的解题程序.二、目标和目标解析教学目标(1)会用代入消元法解二元一次方程组,初步体会解方程组过程中的程序化思想.(2)经历化归过程,体会化归思想,完善方程求解的认知体系.目标解析(1)会利用代入消元的方法求简单的二元一次方程组的解,明确“变形—代入—求解—回代—结论”的解题步骤,理解每一步骤背后的理论依据,知晓在每一步骤中应注意的问题.(2)通过二元一次方程组与一元一次方程的对比分析,产生和理解消元思想,体验“化归—消元—代入—恒等变换”等不同层次的数学思想方法,体会解决新问题的化归过程,继而对多元、高次等方程的求解策略产生自然联想.三、教学问题诊断分析(1)学生已经历了一元一次方程的学习过程,对于方程学习的一般过程有了初步的体验,对于解方程过程中的化归思想也具备了初步的认识,但这种认识还不深刻.学生能够意识到它的存在,尚不能主动运用这种思想解决问题,同时对这种思想方法的认识还比较片面.(2)对于求解类的问题,学生更关注的的是问题的结果,以及可以求得结果的解题步骤,而容易忽略解题过程中所蕴含的数学原理,这种态度容易使解题过程变为机械化的操作,使学生形成思维定势,妨碍学生思维的简约性和灵活性.因此,本课的教学难点是:对解方程组过程中的思想方法的理解,包括以消元为核心的化归思想以及解方程组过程中每一步骤背后的数学思想.本课在突破难点方面重点关注两个问题:第一,创设适当的数学情境激发学生的思维,通过问题引领,深化学生的思考;第二,做好阶段性的总结,帮助学生明晰知识结构,完善知识体系,将感性认识上升到理性思考.四、教学支持条件分析根据本节课教材内容的特点,可以借助信息技术工具,更直观形象的呈现问题情境,以利于学生对问题的分析和解决.五、教学过程设计(一)创设情境,引入新知这节课我们学习解方程,我们学过什么方程?大家会解吗?我们先来看一个例子.教师给出方程①,问题1 这是方程吗?是什么方程?它的解是什么?师生活动:教师引领学生回答.教师给出方程②,追问1:方程②和方程①有何区别?我们是如何处理的?教师给出方程③,追问2:方程③和方程②有何区别?我们是如何处理的?……教师给出方程⑥,追问5:方程⑥和方程⑤有何区别?我们是如何处理的?师生活动:教师依次引领学生回答问题.设计意图:引领学生再次体验通过“转化”解方程的过程,使学生形成“确定解题方向—发现关键区别—寻求解决策略”的思维感知.问题2 解一元一次方程的基本思路是什么?每遇到一种新的形式的方程,我们都是如何处理的?师生活动:学生思考回答,教师引领归纳得出:解一元一次方程的基本思路是将其向着“x= a”的形式去转化,每遇到一种新的形式的方程,我们都要通过和已有的解方程体系进行对比,并通过转化将之纳入到已有的解方程体系中来.设计意图:通过问题引领,将学生在问题1中的感知明确化,归纳得出解方程的一般思路,为本课新知提供先行组织者.问题3 你会解方程组吗?师生活动:教师提出问题,板书标题,学生思考.(二)分析探究,认识新知问题3 你会解方程组吗?师生活动:教师提问,学生思考.追问 1 这个方程组与之前我们研究的方程有什么区别?你能将它转化为我们熟悉的方程吗?师生活动:教师启发学生思考,得出结论:本题与之前所解的方程区别在于有两个未知数,欲将其转化为一元一次方程解决,关键在于如何消掉一个未知数,即消元.追问2 这一方程组是之前的篮球比赛问题中列出的,这一问题我们也可以列一元一次方程解决,通过两种方法的对比,对你解二元一次方程组有何启发?情境回顾:篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队为争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数应分别为多少?师生活动:教师引领学生对比两种方法,发现在方法2中隐含的消元过程,并将之迁移到二元一次方程组的解法中.追问3 现在你会解方程组了吗?解:由①,得y = 22- x.③把③代入②,得2x+(22- x)= 40.(教师提问:为什么可以代入,代入①行不行?)解这个方程,得x = 18.把x = 18代入③,得y = 4.(教师提问:代入①或②行不行?好不好?)所以原方程组的解为设计意图:通过问题3明确本课的探究主题,并通过后续追问引领学生在自身已有经验的基础上归纳得出代入消元的方法.在解题过程中的提问意在使学生明确每一步变形背后的数学原理.问题4 对于方程组能得到关于y的一元一次方程吗?解:由①,得x = 22- y.③把③代入②,得2(22- y)+ y = 40.(教师再次强调:代入①可以不可以?)解这个方程,得y = 4.把y = 4代入③,得x = 18.(教师再次强调:代入①或②可以不可以?)所以原方程组的解为设计意图:通过两种解法的对比,使学生体会利用代入消元法解二元一次方程组过程中,方法的多样性,进一步认识代入消元的本质,并再次关注解题过程中应注意的问题.问题 5 这种解二元一次方程组的方法,我们称之为代入消元法.在利用代入消元法解二元一次方程组的过程中,主要有哪些步骤?其中的关键步骤是什么?师生活动:教师提出问题,学生思考并回答,师生共同归纳解法的主要步骤有:变形—代入—求解—回代—结论.其中“代入”的步骤最为关键.设计意图:阶段性的总结,将解法中的步骤以命名的方法使其形成操作流程,有利于学生在此基础上通过练习将之落实,并逐步趋于自动化的水平.(三)巩固提高,应用新知练习运用代入消元法解下列方程组:(1)(2)(3)师生活动:教师给出练习,学生独立完成.选学生板演,师生共同评价.设计意图:通过难度由浅入深的练习,使学生进一步熟悉解题步骤,体会解法的多样性,并自觉形成寻求最佳解题途径的习惯.(四)归纳反思,深化新知问题6 教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:(1)这节课我们研究的主要内容是什么?(用代入消元法解二元一次方程组)(2)代入消元法解方程组的基本步骤是什么?有什么需要注意的问题?变形:将其中一个方程的某个未知数用含有另一个未知数的式子表示;代入:将变形后的式子代入另一个方程,消去一个未知数,化二元一次方程组为一元一次方程;求解:求出一元一次方程的解;回代:将其代入到变形后的方程,求出另一个未知数;结论:写出方程组的解.(以上总结结合知识框图)(3)你觉得解法中的关键步骤是什么?体现了什么思想?(解法中的关键步骤是代入,体现了转化的思想)师生活动:学生思考并回答问题,教师引领概括、归纳,揭示蕴涵的数学思想方法.设计意图:以问题引领,帮助学生形成知识结构、揭示知识的内在联系,总结规律,使学生的感性认识上升到理性思考.(注:可编辑下载,若有不当之处,请指正,谢谢!)。
二元一次方程组解法(一)--代入法(基础)知识讲解【学习目标】1. 理解消元的思想;2. 会用代入法解二元一次方程组.【要点梳理】要点一、消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程.要点二、代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.要点诠释:(1)代入消元法的关键是先把系数较简单的方程变形为:用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的.(2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解; ②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便;③若方程组中所有方程里的未知数的系数都不是1或-1,选系数绝对值较小的方程变形比较简便.【典型例题】类型一、用代入法解二元一次方程组1.用代入法解方程组:5341x y x y =+⎧⎨+=⎩. 【思路点拨】直接将上面的式子代入下面的式子,化简整理即可.【答案与解析】解:5341x y x y =+⎧⎨+=⎩①② 将①代入②得:3(5)41y y ++=③去括号,移项,合并,系数化1得:2y =- ④把④代入①得:3x =∴ 原方程组的解为:32x y =⎧⎨=-⎩【总结升华】当方程组中出现一个未知量代替另一个未知量的方程时,一般用直接代入法解方程组.举一反三:【变式】若方程y =1-x 的解也是方程3x +2y =5的解,则x =____,y =____.【答案】3,﹣ 2.2. 用代入法解二元一次方程组:524050x y x y --=⎧⎨+-=⎩①②【思路点拨】观察两个方程的系数特点,可以发现方程②中x 的系数为1,所以把方程②中的x 用y 来表示,再代入①中即可.【答案与解析】解:由②得x =5-y ③将③代入①得5(5-y )-2y -4=0,解得:y =3,把y =3代入③,得x =5-y =5-3=2所以原方程组的解为23x y =⎧⎨=⎩. 【总结升华】代入法是解二元一次方程组的一种重要方法,也是同学们最先学习到的解二元一次方程组的方法,用代入法解二元一次方程组的步骤可概括为:一“变”、二“消”、三“解”、四“代”、五“写”.举一反三:【高清课堂:二元一次方程组的解法 369939 例3】【变式1】与方程组2020x y x y +-=⎧⎨+=⎩有完全相同的解的是( ) A .x+y -2=0B .x+2y=0C .(x+y -2)(x+2y)=0D .22(2)0x y x y +-++=【答案】D【变式2】若∣x-2y +1∣+(x +y -5)2=0,则 x= , y= .【答案】3,2类型二、由解确定方程组中的相关量3. 方程组43235x y k x y -=⎧⎨+=⎩的解x y 与的值相等,则k 的值是 .【思路点拨】将x y =代入上式,可得,x y 的值,再代入下面的方程可得k 值.【答案】1【解析】解:43235x y k x y -=⎧⎨+=⎩①② 将x y =代入②得1x y ==,再代入①得1k =.【总结升华】一般地,先将k 看作常数,解关于x ,y 的二元一次方程组再令x=m 或y=m ,得到关于m 的方程,解方程即可.【高清课堂:二元一次方程组的解法 369939 例8(4)】举一反三:【变式】若方程组231(1)(1)4x y k x k y +=⎧⎨-++=⎩的解x 与y 相等,求k.【答案】将x y =代入上式得15x y ==,再代入下式得10k =. 4. 若方程组ax+by=11(5-a)x-2by+14=0⎧⎨⎩的解为14x y =⎧⎨=⎩,试求a b 、的值. 【答案与解析】解:将14x y =⎧⎨=⎩代入得a+4b=11(5-a)-2b 4+14=0⎧⎨⨯⎩,即a+4b=11a+8b=19⎧⎨⎩, 解得a=3b=2⎧⎨⎩. 【总结升华】将已知解代入原方程组得关于a b 、的方程组,再解关于a b 、方程组得a b 、的值.二元一次方程组解法(一)--代入法(基础)巩固练习【巩固练习】一、选择题1.用代入消元法解方程组323211x y x y -=⎧⎨+=⎩①②代入消元法正确的是( ).A .由①②得y =3x+2,代入②,得3x =11-2(3x+2)B .由②得1123y x -=,代入①,得11231123y y -=- C .由①得23y x -=,代入②,得2-y =11-2y D .由②得3x =11-2y ,代入①,得11-2y -y =22.用代入法解方程组34225x y x y +=⎧⎨-=⎩①②使得代入后化简比较容易的变形是( ). A .由①得243y x -= B .由①得234x y -= C .由②得52y x += D .由②得y =2x -53.对于方程3x -2y -1=0,用含y 的代数式表示x ,应是( ).A .1(31)2y x =-B .312x y +=C .1(21)3x y =-D .213y x += 4.已知x+3y =0,则3232y x y x +-的值为( ).A.13B.13-C.3 D.-35.一副三角板按如图摆放,∠1的度数比∠2的度数大50°,若设,,则可得到方程组为( ) .A. B. C. D.6.已知21xy=⎧⎨=⎩是二元一次方程组71ax byax by+=⎧⎨-=⎩的解.则a-b的值为().A.-1 B.1 C.2 D.3 二、填空题7.解方程组523,61,x yx y+=⎧⎨-=⎩①②若用代入法解,最好是对方程________变形,用含_______的代数式表示________.8.如果-x+3y=5,那么7+x-3y=________.9.方程组525x yx y=+⎧⎨-=⎩的解满足方程x+y-a=0,那么a的值是________.10.若方程3x-13y=12的解也是x-3y=2的解,则x=________,y=_______.11.小刚解出了方程组332x yx y-=⎧⎨+=⎩▲的解为4xy=⎧⎨=⎩▉,因不小心滴上了两滴墨水,刚好盖住了方程组中的一个数和解中的一个数,则▲=________,▇=________.12.三年前父亲的年龄是儿子年龄的4倍,三年后父亲的年龄是儿子年龄的3倍,则父亲现在的年龄是________岁,儿子现在的年龄是________岁.三、解答题13.用代入法解下列方程组:(1)52233x yx y-=-⎧⎨+=⎩①②(2)233511x yx y+=⎧⎨-=⎩①②14.小明在解方程组时,遇到了困难,你能根据他的解题过程,帮他找出原因吗?并求出原方程组的解.解方程组123761x y x y -=⎧⎨+=⎩①②解:由②,得y =1-6x ③将③代入②,得6x+(1-6x )=1(由于x 消元,无法继续)15.m 为何值时,方程组522312x y m x y m -=⎧⎨+=-⎩的解互为相反数? 【答案与解析】一、选择题1. 【答案】D ;2. 【答案】D ;3. 【答案】D ;【解析】移项,得321x y =+,系数化1得213y x +=. 4. 【答案】B ;【解析】由x+3y =0得3y =﹣x ,代入32213223y x x x y x x x +-+==----. 5. 【答案】D ;6. 【答案】A ;【解析】将21x y =⎧⎨=⎩代入71ax by ax by +=⎧⎨-=⎩得2721a b a b +=⎧⎨-=⎩,解得23a b =⎧⎨=⎩. 二、填空题7. 【答案】②; x , y ;8. 【答案】2;【解析】由-x+3y =5得x -3y =﹣5,代入7+x -3y=7+(﹣5)=2.9. 【答案】-5;【解析】由525x y x y =+⎧⎨-=⎩解得05x y =⎧⎨=-⎩,代入 x+y -a =0,得a =-5.10.【答案】﹣2.5,﹣1.5;【解析】联立方程组3131232x y x y -=⎧⎨-=⎩,解得 2.51.5x y =-⎧⎨=-⎩. 11.【答案】17,9;【解析】将4x =代入33x y -=得9y =,即▇=9,再将4x =,9y =代入2x y +=▲,得▲=17.12.【答案】51,15;【解析】设父亲现在的年龄是x 岁,儿子现在的年龄是y .由题意得:34(3)33(3)x y x y -=-⎧⎨+=+⎩,解得5115x y =⎧⎨=⎩.三、解答题13.【解析】解: (1)由②得x=3-3y③,将③代入①得,5(3-3y)-2y=-2,解得y=1,将y=1代入③得x=0,故1 xy=⎧⎨=⎩.(2)由①得y=3-2x ③,将③代入②得,3x-5(3-2x)=11,解得x=2,将x=2代入③得y=-1,故21 xy=⎧⎨=-⎩.14.【解析】解:无法继续的原因是变形所得的③应该代入①,不可代入②.由②,得y=1-6x ③,将③代入①,得12x-3(1-6x)=7.解得13x=,将13x=代入③,得y=-1.所以原方程组的解为131xy⎧=⎪⎨⎪=-⎩.15.【解析】解:由题意得x=-y,把x=-y代入方程得522312y y my y m--=⎧⎨-+=-⎩,整理得312m yy m=-⎧⎨=-⎩①②.把②代入①,得m=9.所以m为9时,原方程组的解互为相反数.。
课题:消元——解二元一次方程组的解法(1)课型:新授课课时: 1 授课人:班级:授课时间:
【学习目标】会运用代入消元法解二元一次方程组
【重点难点预测】
1、会用代入法解二元一次方程组。
2、灵活运用代入法的技巧.
【知识链接】二元一次方程元的概念。
【学法指导】自主学习、探究、合作交流。
一、自主学习、预习交流(约10分钟)
1、已知232
x y
-=,当x=1时,y= ;当y=2时,x= .
2、将方程5x-6y=12变形:若用含y的式子表示x,则x=______,当y=-2
时,x=_______;若用含x的式子表示y,则y=______,当x=0时,y=________ 。
3、把下列方程改写成用含x的式子表示y的形式。
(1)23
x y
-=(2)310
x y
+-=
解:解:
4、基本概念
1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就
把二元一次方程组转化为我们熟悉的一元一次方程。
我们可以先求出一个未
知数,然后再求另一个未知数。
这种将未知数的个数由多化少、逐一解决的
思想,叫做____________。
2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的式
子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组
的解,这种方法叫做________,简称_____ 。
二、合作探究、展示提升(约20分钟)
1、用代人法解方程组
3,
237.(2)
y x
x y
-= (1)
⎧
⎨
+=
⎩
的解题步骤:先把方程____变形
为,再代入方程____,可以消去未知数_____,求得的值,最后求的值。
2、用代入法解下列方程组,把下面的解题过程补充完整
⑴
25,
28.(2)
y x
x y
-= (1)
⎧
⎨
+=
⎩
⑵
25,(1)
328.(2)
x y
x y
+=
⎧
⎨
+=
⎩
(1)解:由(1),得 (2) 解:由(1),得
y= (3)y= (3)把(3)代入(2),得把(3)代入(2),得
2x+ =8 3x+ =8
教师复备(学生笔记)
解这个方程,得解这个方程,得
x= x=
把x= 代入(3),得把x= 代入(3),得
y= y=
所以这个方程的解是所以这个方程的解是
归纳:用代入法解二元一次方程的一般步骤:
(1)变形(2)代入求解(3)回代求解(4)写解
思考:解二元一次方程组的关键是什么?
三、练习巩固、达标测评(约10分钟)
(1)
23,(1)
328.(2)
y x
x y
=-
⎧
⎨
+=
⎩
(2)
25,(1)
34 2.(2)
x y
x y
-=
⎧
⎨
+=
⎩
(3)
3,
759.(2)
y x
x y
=+ (1)
⎧
⎨
+=
⎩
(4)
⎩
⎨
⎧
=
-
=
+
3
4
5
3
2
y
x
y
x
四、自主反思(知识盘点)(约5分钟)教学反思:。