二元一次方程的解法(代入消元法)
- 格式:doc
- 大小:169.00 KB
- 文档页数:4
消元——解二元一次方程组(第1课时)——代入消元法一、教学目标:1、能较熟练地用代入消元法解二元一次方程组;2、理解解二元一次方程组时的“消元”思想,和“化未知为已知、化复杂为简单”的化归思想;3、引导学生自由讨论,养成检查的习惯,培养联想旧知识解决新知识的能力。
二、教学重、难点:1、用代入消元法解二元一次方程组的基本步骤;2、解二元一次方程组过程中“二元”转化为“一元”的消元思想。
三、教学方法:讨论法、归纳法四、教学工具:教案、多媒体五、教学过程:1、知识回顾:什么叫二元一次方程?什么叫二元一次方程组?什么叫二元一次方程组的解?2、新课讲解:问题一:有一个矩形草坪,周长是36米,已知长是宽的两倍,求长、宽各多少米?如果用之前一元一次方程的知识,我们可以设宽为x米,而长为2x米,由题目已知可得一元一次方程:2(2x+x)=36按解一元一次方程的步骤,解得x=6,所以草坪的长为12米,宽为6米。
但是,如果用二元一次方程组的知识,我们可以假设长为y米,宽为x米,由题目两个等量关系,我们可以得到一个二元一次方程组:y=2x (1)2(x+y)=36 (2)讨论一:应该怎么解这个二元一次方程组?它跟上面的一元一次方程有什么关系?对比上面的一元一次方程和二元一次方程组,我们发现,如果把二元一次方程组里的方程(1)代入到方程(2)中,我们就得到了一模一样的一元一次方程: 2(2x+x )=36按照一元一次方程的解法,我们解得x=6,再把x=6代入到方程(1)中,得到y=12。
经过检验, 就是原二元一次方程组的解。
这样,我们运用了代入、 消元的方法,就把一个二元一次方程组解出来了。
讨论二:在解上面的二元一次方程组的过程中,非常关键的一步是把方程(1)代入到方程(2)中,把二元一次方程组化归为一元一次方程,从而把复杂的问题化为简单化。
那么这种代入、消元的方法能否适合其它二元一次方程组呢?问题二:一个班级总人数有52人,需要佩戴眼镜的有20人,其中男生x 人,女生y 人,又有3x+2y=52,求x ,y 各为多少?讲解:根据题目的两个等量关系,我们可以得到一个二元一次方程组:首先,我们可以把方程(1)进行移项变换,得到:y=20-x (3)接着,把方程(3)代入到方程(2),得到:3x+2(20-x )=52这样,就把二元一次方程组化归为一元一次方程,解这个一元一次方程,得到x=12。
7.2二元一次方程组的解法(代入消元法)教学设计一、教学内容:初中数学华东师大2011课标版七年级下册第七章第二节二元一次方程组的解法。
二、教学目标1、使学生通过探求二元一次方程组的解法,经历把“二元”转化为“一元”的过程,从而初步体会消元的思想;2、了解把“未知”转化为“已知”,把复杂问题转化为简单问题的化归思想。
三、教学重难点:重点:用代入消元法解二元一次方程组的解题步骤;难点:如何正确消元。
四、教具、学具准备:教具:课件、电脑投影、导学案等;学具:签字笔、草稿纸、课本等。
五、设计理念这一堂课的学习目标是“探索二元一次方程组的解法”,通过学生身边熟悉的事情,建构“问题情境”,使学生感受到问题是“现实的、有意义的、富有挑战性的”,让学生在不自觉中走进自己的“最近发展区”,愉悦地接受教学活动.这是我备课时的设计意图。
六、教学流程(一)创设情境上课一开始,我就把学生学过的、熟悉的问题提出来,引导学生解答,说:“同学们,在生活中,我们时常遇到这样的问题,你能用前面我们学过的知识解决这个问题吗?问题1:小明到商店购买签字笔和作业本,签字笔价格是作业本价格的2倍,小明购买一支笔和一个作业本共花了6元钱,请你算一算签字笔和作业本的价格分别是多少元?学生活动:独立完成问题1的解答教师活动:通过巡视,发现问题的解答有可能会出现两种,一种是列一元一次方程解,另一种是列二元一次方程解,分别让学生将两种解法写在黑板上。
师:“同学们,黑板上两位同学用了不同的方法来解决这个问题,你认为哪一种方法是正确的呢?那我想请一位同学来说一说这两种方法分别是用到了前面我们学过的什么知识?那列出来的这个二元一次方程组和这个一元一次方程有没有什么联系呢,我们又该如何求解呢?这就是今天我们要一起探讨的内容,请同学们翻开书27页,并熟悉本节课的学习目标。
设计意图:当学生看到自己所学的知识与“现实世界”息息相关时,学习通常会更主动。
“与其拉马喝水,不如让它口渴”。
二元一次方程的解法(代入消元法+加减消元法)二元一次方程的解法有哪些1、代入消元法通过代入消去一个未知数,将方程组转化为一个一元一次方程来解,这种解法叫做代入消元法。
求解步骤:1) 从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来;2) 把1)中所得的新方程代入另一个方程,消去一个未知数;3) 解所得到的一元一次方程,求得一个未知数的值4) 把所求得的一个未知数的值代入1)中求得的方程,求出另一个未知数的值,从而确定方程组的解。
2、加减消元法两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加减,就能消去这个未知数,得到一个一元一次方程,这种求解方法叫做加减消元法。
求解步骤:1) 方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,就用适当的整数乘方程两边,使相乘后一个未知数的系数与另一方程中该未知数的系数互为相反数或相等;2) 把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3) 解这个一元一次方程;4) 将求出的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,从而得到方程组的解。
二元一次方程的定义是什么二元一次方程的定义为:如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。
二元一次方程组,则一般有一个解,有时没有解,有时有无数个解。
如一次函数中的平行。
二元一次方程的一般形式:ax+by+c=0其中a、b 不为零。
这就是二元一次方程的定义。
二元一次方程求根公式:ax^2+bx+c=0。
含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。
所有二元一次方程都可化为ax+by+c=0(a、b≠0)的一般式与ax+by=c(a、b≠0)的标准式,否则不为二元一次方程。
二元一次方程的实际应用二元一次方程组实际应用题中行程问题的种类较多,比如相遇问题、追及问题、流水行船问题、顺风逆风问题、火车过桥问题等,解这类问题抓住路程、时间、速度三者之间的关系:路程=速度×时间。
二元一次方程的解法二元一次方程的解:使二元一次方程左、右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。
1.消元解法“消元”是解二元一次方程组的基本思路。
所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元多次方程再解出未知数。
这种将方程组中的未知数个数由多化少,逐一解决的解法,叫做消元解法。
代入消元法(1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解.。
这种解方程组的方法叫做代入消元法,简称代入法。
(2)代入法解二元一次方程组的步骤①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验(代入原方程组中进行检验,方程是否满足左边=右边)。
2.加减消元法(1)概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.(2)加减法解二元一次方程组的步骤①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。
二元一次方程的解法在数学中,二元一次方程是由两个未知数的一次方程组成的方程。
解二元一次方程需要使用代数的基本原理和运算法则。
本文将介绍解二元一次方程的几种常见方法,包括代入法、消元法和等式相减法。
1. 代入法代入法是解二元一次方程最常用的方法之一。
它的基本思想是将一个方程的一个未知数表示成另一个方程的未知数的表达式,然后代入到另一个方程中求解。
假设有如下二元一次方程组:方程1:ax + by = c方程2:dx + ey = f首先,将方程1或方程2中的一个未知数表示成另一个方程的未知数的表达式,例如假设将方程1中的x表示成方程2的未知数y的表达式,得到:x = (f - ey) / d将上式代入方程1中,得到:a * ((f - ey) / d) + by = c通过整理化简,可以得到一个只含有一个未知数的一次方程:(af - aey) / d + by = c将上式整理为标准形式,得到:(by + aey) / d = (cd - af) / d进一步整理,得到:(1 + ae/d) * y = (cd - af) / d最后,求解这个一次方程,即可得到y的值。
将y的值代入方程1或方程2中,即可求得x的值。
2. 消元法消元法是解二元一次方程的另一种常用方法。
它的基本思想是通过适当的变换,使得方程组中的一个未知数的系数相等或互为相反数,从而消去这个未知数,然后得到只含有一个未知数的方程,进而求解。
依然以方程1和方程2为例,我们可以通过变换,使得方程1和方程2的y的系数相等或互为相反数。
具体步骤如下:将方程1乘以e,将方程2乘以b,得到新的方程组:方程1:aex + bey = ce方程2:bdx + bey = bf然后,将方程2减去方程1,得到:(bdx - aex) + (bey - bey) = bf - ce化简上式,得到一个只含有一个未知数的方程:(bd - ae) * x = bf - ce最后,求解这个一次方程,即可得到x的值。
二元一次方程的解法
1.用一个未知数表示另一个未知数 (1)24x y ,所以________x ; (2)345x
y
,所以________x
,________y
; (3) 5x-2y=10,所以x = ,________y .
2.用代入法解二元一次方程组 例1:方程组(1)92x y y
x ……①………② (2) ⎩
⎨⎧-=+=1521
2x y y x
(3)⎩⎨⎧-=+=-.154,653y x y x (4)⎩⎨⎧=-=-.43,532y x y x (5)⎩⎨
⎧=-=+.
72,
852y x y x
练习巩固:解下列方程组:
(1)⎩⎨⎧-==+236y x y x (2)⎩⎨⎧=+-=-10235y x y x (3)⎩
⎨
⎧-=-=-2.32872x y y x
(4)
⎩⎨
⎧-==+.
2,72y x y x (5)
⎩⎨
⎧=-=+.
2,6y x y x (6)
⎩⎨
⎧=+=-4
23,52y x y x
(7) ⎩⎨⎧=+=-.63,72y x y x (8) ⎩⎨⎧=+=-.543,72y x y x (9) ⎩⎨⎧-==+.
1,
623x y y x
(10)⎩⎨⎧=-=+.102,8y x y x (11)⎩⎨⎧=+=+.52,42y x y x (12)⎩
⎨⎧=-=-.1383,32y x y x
将方程组中的一个方程的某个未知数用含有另一个未知数的代数式表示,并代入到另一个方程中,消去一个未知数,得到一元一次方程,最后求得方程组的解,这种解方程组的方法叫做代入消元法,简称代入法. 代入消元法解方程组的步骤是: ①用一个未知数表示另一个未知数;
②把新的方程代入另一个方程,得到一元一次方程(代入消元); ③解一元一次方程,求出一个未知数的值;
④把这个未知数的值代入一方程,求出另一个未知数的值; ⑤检验,并写出方程组的解.
例2、(1)⎩
⎨⎧-=-=+8547
32y x y x (2)541538x y x y -=⎧⎨
+=⎩①②
1.对于方程432=-y x ,用含x 的代数式表示y ,则结果是 ;如果用含y 的代数式表示x ,结果是 ,
2.已知方程25-=-y x ,如果用含x 的代数式表示y ,则结果是 ;如果用含y 的代数式表示x ,结果是 .
3.根据你的喜爱,把下列方程变形为用含一个未知数的代数式表示另一个未知数的形式.
131=-y x )( (2)15105=-y x (3)1267=+y x (4)1035=-y x
4.解下列方程组:
(1)⎩⎨⎧=+=-53422y x y x (2)⎩⎨⎧=+=-823465y x y x (3)⎩⎨⎧=+=-11
232
73y x y x
(4)⎩⎨⎧=-=+02102y x y x (5)⎩⎨⎧=+=+432543y x y x (6)⎩
⎨⎧=+-=-8328
52y x y x
(7)322313x y x y =⎧⎨+=⎩ ① ② (8)⎩⎨⎧-=-=52323y x x y (9)⎩⎨⎧=-=+15
3512
34y x y x
(10)⎩⎨⎧=+=+876765y x y x (11)⎩⎨⎧=-=+,
,546368y x y x (12)⎩⎨⎧=+=-5436
32y x y x
(13)解方程组⎩
⎨
⎧=-=+42512
23y x y x 消元后化为一元一次方程,其中不正确的是( )
(A)4)312(5=--x x (B)12)45(3=-+x x (C)42)324(5=--
y y (D)3·425
24=--y y。