金属学原理3答案
- 格式:doc
- 大小:24.00 KB
- 文档页数:2
金属学原理试题题库第一章晶体结构晶带轴在晶胞图上画出下列晶面:密排六方点阵(-12-10),体心立方点阵(112),并计算这些晶面的面密度。
在立方晶胞图上画出具有下列指数的晶面和晶向:(001)和[210],(1-10)和[111];(321)和[-236]一个密排六方(体心立方,面心立方)晶胞中有()个原子,致密度为(),配位数为(),原子的最近距离为()。
(2分)画出NaCl的晶胞(3章),指出它所属的晶系、晶体点阵、空间点阵。
(2+3=5分)04年答:立方晶系,体心立方晶体点阵,简单立方空间点阵。
-- -- -- -- 在六方晶系的晶胞上画出下列晶面和晶向:(1012)、[1120]、[1101],并列出{1012}晶面族中所有晶面的指数。
(5分)4、既不涉及电子转移,也不涉及电子共用的结合键包括(范德华键、氢键);两种元素间电负性差大,有利于形成(离子)键。
第2章纯金属结晶—1、液态金属中的结构起伏(2),非均质形核(2)简述题:2、纯金属结晶粒大小的控制方法及机理3、简述影响纯金属结晶后晶粒大小的因素和细化晶粒的方法。
(10分)4、在晶体生长过程中,平滑界面在宏观上呈(台阶状小平面)特征,微观上呈(晶体学界面或小平面界面)特征。
简述纯金属结晶时液固界面前沿液体中温度分布对生长形态的影响。
5.金属凝固时,形核的驱动力是(液-固两相的自有能差小于零),形核的阻力是(表面能增高)。
6.综述金属结晶过程的热力学条件、动力学条件、能量条件和结构条件。
答:必须同时满足以下四个条件,结晶才能进行。
(1)热力学条件为∆G<0。
只有过冷(热过冷)才能使∆G<0。
因为∆G v=-L m∆T/T m(∆T为过冷度),即金属结晶时,实际开始结晶的温度必须低于理论结晶已度(即∆T>0)。
(2)动力学条件为存在动态过冷。
即液态金属结晶时,液—固界面要不断地向液相中移动,就必须在界面处有一定的过冷,这是在界面处实现从液体到固体的净原子输送所必须的条件。
“金属学原理”思考题第一章金属材料的结构及结构缺陷1.1 根据钢球模型回答下列问题:(1)以点阵常数为单位,计算体心立方、面心立方和密排六方晶体中的原子半径及四面体和八面体间隙的半径。
(2)计算体心立方、面心立方和密排六方晶胞中的原子数、致密度和配位数。
1.2 用密勒指数表示出体心立方、面心立方和密排六方结构中的原子密排面和原子密排方向,并分别计算这些晶面和晶向上的原子密度。
1.3 室温下纯铁的点阵常数为0.286nm,原子量为55.84,求纯铁的密度。
1.4 实验测定:在912℃时γ-Fe的点阵常数为0.3633nm,α-Fe的点阵常数为0.2892nm。
当由γ-Fe转变为α-Fe时,试求其体积膨胀。
1.5 已知铁和铜在室温下的点阵常数分别为0.286nm和0.3607nm,求1cm3铁和铜的原子数。
1.6 实验测出金属镁的密度为1.74g/cm3,求它的晶胞体积。
1.7 设如图所示立方晶体的滑移面ABCD平行于晶体的上下底面,该滑移面上有一正方形位错环,设位错环的各段分别于滑移面各边平行,其柏氏矢量b∥AB。
(1)指出位错环上各段位错线的类型。
(2)欲使位错环沿滑移面向外运动,必须在晶体上施加怎样的应力?并在图中表示出来。
(3)该位错环运动出晶体后,晶体外形如何变化?1.8 设如图所示立方晶体的滑移面ABCD 平行于晶体的上下底面,晶体中有一位错线fed ,de 段在滑移面上并平行于AB ,ef 段垂直于滑移面,位错的柏氏矢量与de 平行而与ef 垂直。
(1)欲使de 段位错线在ABCD 滑移面上运动,应对晶体施加怎样的应力?(2)在上述应力作用下de 段位错线如何运动?晶体外形如何变化?(3)同样的应力对ef 段位错线有何影响?1.9 在如图所示面心立方晶体的(111)滑移面上有两条弯折的位错线OS 和O ˊS ˊ,其中O ˊS ˊ位错的台阶垂直于(111),它们的柏氏矢量方向和位错线方向如图中箭头所示。
第一章1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6]等晶向今有一晶面在X 、Y 、Z 坐标轴上的截距分别是5个原子间距,2个 原子间距和3个原子间距,求该晶面的晶面参数。
解:设X 方向的截距为5a, Y 方向的截距为2a ,则Z 方向截距为3c=3X2a/3=2a ,取截距的倒数,分别为1/5a ,1/2a, 1/2a化为最小简单整数分别为2,5,5故该晶面的晶面指数为(2 5 5)晶面的晶面间距,并指出面间距最大的晶面 解:(1 0 0)面间距为a/2, (1 1 0)面间距为"2a/2, (1 1 1)面间距 为"3a/31•作图表示出立方晶系3•某晶体的原子位于正方晶格的节点上,其晶格常数4体心立方晶格的晶格常数为 a ,试求出(1 0 0)、( 1 1 0)、( 1 1 1)三个晶面晶面中面间距最大的晶面为(1 1 0)7•证明理想密排六方晶胞中的轴比c/a=1.633证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,成正四面体,如图所示贝卩OD=c/2,AB=BC=CA=CD=a因厶ABC是等边三角形,所以有OC=2/3CE由于(BC)2=(CE)2+(BE)243 2 43 43CE-—0C-- X —则’'有(CD)2=(OC)2+(1/2c)2,即卩I(CD)'-(—功十(一亡)=(占)3 2因此c/a=V8/3=1.6338•试证明面心立方晶格的八面体间隙半径为r=0.414R 解:面心立方八面体间隙半径r二a/2-v2a/4=0.146a面心立方原子半径R二辺a/4,则a=4R/\2,代入上式有R=0.146X4R/ V2=0.414R9.a )设有一刚球模型,球的直径不变,当由面心立方晶格转变为体心立方晶格时,试计算其体积膨胀。
b)经X射线测定,在912C时丫-Fe的晶格常数为0.3633nm, a -Fe的晶格常数为0.2892nm,当由丫-Fe转化为a -Fe时,求其体积膨胀,并与a)比较,说明其差别的原因。
2008年物理冶金原理期末考试试题一(15分)简答题1液态金属的特点答:1 液体中原子间具有较强的结合力,具有与固态相近似的结构,原子的排列比较紧密。
但是不象固体那样规则。
但在相邻原子中心距不能小于原子直径。
任何空隙不能大到可以在插入一个原子的约束下。
系统能量起伏,液态金属中存在一定数目大小不等随机取向的短程有序原子2简述固态相变的特点答:①由于相变阻力大,相变的过冷度一般很大②固态相变都非自发形核③晶体缺陷对固态相变形核、生长及固态相变组织和性能具有决定性影响④新相与母相间往往存在严格的晶体学取向过程⑤相变历程复杂,往往晶粒溶质偏析—过渡相析出—稳定相析出等一系列历程。
3简述刃形位错、螺形位错的特点答:位错的基本特征:刃形位错有一个额外的半原子面;刃形位错可理解为晶体中已滑移区和未滑移区的边界线;滑移面必定是同时包含有位错线和滑移矢量的平面,滑移面唯一,在其他面上不能滑移;位错周围的点阵发生弹性畸变,既有切应变又有正应变;在位错线周围的过渡区每个原子具有较大的平均能量;位错线与滑移方向垂直即柏氏矢量与位错线垂直;刃形位错的形状可以是直线或者曲线。
运动特点:1.滑移在平行于滑移面的平面上施加垂直于位错线的切应力。
2.攀移,垂直于滑移面的运动。
螺位错的基本特征:螺形位错无额外的半原子面,原子错排呈轴对称的;螺形位错线与伯氏矢量平行因此螺形位错的形状一定是直线,而且位错线的移动方向与晶体的滑移方向垂直;纯螺形位错滑移面不是唯一的;螺形位错周围的点阵也发生弹性畸变,但是只有平行于位错线的切应变而无正应变,因此不会引起体积膨胀或收缩;螺形位错周围的点阵畸变随离位错线距离的增加而急剧下降;位错线与滑移线方向平行即柏氏矢量与位错线平行。
运动特点:1.在含有位错线的任何密排面上都可能进行滑移,易发生交滑移。
2.不发生攀移。
4加工硬化及其产生机理答:加工硬化:塑性变形时,随变形量增加,金属的抗变形能力不断提高,其强度硬度上升,塑性、韧性下降,这种现象称为加工硬化。
金属学原理复习资料第一章金属的晶体结构1、什么是金属学?答:研究金属与合金的成分、组织、性能以及三者之间的关系及其变化规律的学科。
2、金属与非金属的本质区别是?答:金属是具有正的电阻温度系数的物质,其电阻随温度的升高而增加;非金属是具有负的电阻温度系数的物质。
3、为什么原子总是自发的趋于紧密排列?答:最密排列时结构最稳定,能量最低。
4、晶体的特性有哪些?答: (1)具有一定的熔点(2)具有固定外形(3)具有各向异性5、常见3种典型晶体结构。
原子数原子半径配位数致密度滑移面滑移方向滑移面系数Bcc280.68{110}<111>12 Fcc4120.74{111}<110>12Hcp6120.74{0001}36、什么是多晶性转变或同素异构转变?答:当外部条件(温度、压强)改变时,金属内部由一种晶体结构转变成另一种晶体结构的转变。
7、纯铁的同素异构转变:δ-Fe —(1394℃) →?-Fe —(912℃) →ɑ-Fe8、常见晶体缺陷有哪些?答:(1)点缺陷:空位、间隙原子、置换原子。
(2)线缺陷:刃型位错、螺旋位错。
(3)面缺陷:晶体表面、内界面(晶界、亚晶界、孪晶界、堆垛层错、相界)。
9、什么是柏氏矢量?答:用来表示位错的性质,和表示位错的晶格畸变的大小和方向,从而使人们研究位错时摆脱位错区域原子具体排列细节的约束的一个矢量。
10、什么是堆垛层错?答:晶面堆垛顺序发生局部差错而产生的一种晶体面缺陷。
11、相界有哪几类?答:共格界面、半共格界面、非共格界面。
12、什么是共格界面?答:指界面上的原子同时位于两相晶格的结点上,为两种晶格所共有。
13、刃型位错的柏氏矢量与其位错线相垂直,这是刃型位错的一个重要特征。
14、螺型位错的柏氏矢量与其位错线相平行,这是螺型位错的重要特征。
15、不含位错的晶须,不易塑性变形,因而强度很高;而工业纯铁中含有位错,易于塑性变形,所以强度很低。
《材料结构》习题:固体中原子及分子的运动1. 已知Zn在Cu中扩散时D0=2.1×10-5m2/s,Q=171×103J/mol。
试求815℃时Zn在Cu中的扩散系数。
2. 已知C在γ铁中扩散时D0=2.0×10-5m2/s,Q=140×103J/mol; γ铁中Fe自扩散时D0=1.8×10-5m2/s,Q=270×103J/mol。
试分别求出927℃时奥氏体铁中Fe的自扩散系数和碳的扩散系数。
若已知1%Cr可使碳在奥氏体铁中的扩散激活能增加为Q=143×103J/mol,试求其扩散系数的变化和对比分析以上计算结果。
3. 若将铁棒置于一端渗碳的介质中,其表面碳浓度达到相应温度下奥氏体的平衡浓度C S。
试求(1)结合铁-碳相图,试分别示意绘出930℃和800℃经不同保温时间(t1<t2<t3)碳浓度沿试棒纵向的分布曲线;(2)若渗碳温度低于727℃,试分析能否达到渗碳目的。
4. 含碳0.2%的低碳钢进行870℃渗碳较930℃渗碳具有晶粒细小的优点,则(1)试计算以上两种温度下碳在γ-Fe中的扩散系数;(2)试计算870℃渗碳需多少时间可达到930℃渗碳10小时的渗层厚度(忽略C在γ-Fe 中的溶解度差异);(3)若渗层厚度测至含碳量0.4%处,计算870℃渗碳10小时后的渗层厚度及其与930℃同样时间渗层厚度的比值。
(表面碳浓度取1.2)FeDγCDγCDγ习题4答案:1.解:根据扩散激活能公式得3-5132017110e x p () 2.110e x p 1.2610m /s8.314(815273)-⎛⎫⨯=-=⨯⨯-=⨯ ⎪⨯+⎝⎭CuZn Q D D RT 2.解:根据扩散激活能公式得3γ-5172027010e x p () 1.810e x p 3.1810m /s 8.314(927273)-⎛⎫⨯=-=⨯⨯-=⨯ ⎪⨯+⎝⎭Fe Q D D RT 3γ-5112014010e x p () 2.010e x p 1.6110m /s 8.314(927273)-⎛⎫⨯=-=⨯⨯-=⨯ ⎪⨯+⎝⎭C Q D D RT 已知1%Cr 可使碳在奥氏体铁中的扩散激活能增加为Q =143×103J/mol , 所以,3γ-51120143.310exp() 2.010exp 1.1610m /s 8.314(927273)-⎛⎫⨯'=-=⨯⨯-=⨯ ⎪⨯+⎝⎭CQ D D RT 由此可见,1%Cr 使碳在奥氏体铁中的扩散系数下降,因为Cr 是形成碳化物的元素,与碳的亲和力较大,具有降低碳原子的活度和阻碍碳原子的扩散的作用。
金属学课后答案第一章1.为什么说钢中的S、P杂质元素在一般情况下总是有害的?答:S、P会导致钢的热脆和冷脆,并且容易在晶界偏聚,导致合金钢的第二类高温回火脆性,高温蠕变时的晶界脆断。
S能形成FeS,其熔点为989℃,钢件在大于1000℃的热加工温度时FeS会熔化,所以易产生热脆;P能形成Fe3P,性质硬而脆,在冷加工时产生应力集中,易产生裂纹而形成冷脆。
2.钢中的碳化物按点阵结构分为哪两大类?各有什么特点?答:简单点阵结构和复杂点阵结构简单点阵结构的特点:硬度较高、熔点较高、稳定性较好;复杂点阵结构的特点:硬度较低、熔点较低、稳定性较差。
3.简述合金钢中碳化物形成规律。
答:①当rC/rM>0.59时,形成复杂点阵结构;当rC/rM<0.59时,形成简单点阵结构;②相似者相溶:完全互溶:原子尺寸、电化学因素均相似;有限溶解:一般K都能溶解其它元素,形成复合碳化物。
③NM/NC比值决定了碳化物类型④碳化物稳定性越好,溶解越难,析出难越,聚集长大也越难;⑤强碳化物形成元素优先与碳结合形成碳化物。
4.合金元素对Fe-C相图的S、E点有什么影响?这种影响意味着什么?答:A形成元素均使S、E点向_____移动,F形成元素使S、E点向_____移动。
S点左移意味着_____减小,E点左移意味着出现_______降低。
(左下方;左上方)(共析碳量;莱氏体的C量)5.试述钢在退火态、淬火态及淬火-回火态下,不同合金元素的分布状况。
答:退火态:非碳化物形成元素绝大多数固溶于基体中,而碳化物形成元素视C和本身量多少而定。
优先形成碳化物,余量溶入基体。
淬火态:合金元素的分布与淬火工艺有关。
溶入A体的因素淬火后存在于M、B中或残余A中,未溶者仍在K中。
回火态:低温回火,置换式合金元素基本上不发生重新分布;>400℃,Me开始重新分布。
非K形成元素仍在基体中,K形成元素逐步进入析出的K中,其程度取决于回火温度和时间。
2-1第2章 晶体结构习 题 题 解1.计算面心立方、体心立方结构的(100)、(110)、(111)等晶面的面密度,计算密排六方结构的(0001)、(0110)晶面的面密度。
(面密度定义为原子数/单位面积)解:体心立方、面心立方和密排六方结构的晶胞分别如下图(a)、(b)和(c)。
设立方结构的晶胞棱长为a 。
对于体心立方结构,在一个晶胞中的(001)面的面积是a 2,在这个面积上有1个原子,所以其面密度为1/a 2;在一个晶胞中的(110)面的面积是2a 2,在这个面 积上有2个原子,所以其面密度为2/a 2;在一个晶胞中的(111)面的面积是3a 2/2,在这个面积上有两个原子,所以其面密度为3/2a 2。
对于面心立方结构,在一个晶胞中的(001)面的面积是a 2,在这个面积上有2个原子,所以其面密度为2/a 2;在一个晶胞中的(110)面的面积是2a 2,在这个面积上有2个原子,所以其面密度为2/a 2;在一个晶胞中的(111)面的面积是3a 2/2,在这个面积上有1.5个原子,所以其面密度为3/a 2。
对于密排六方结构,设晶胞的轴长为a 和c ,在一个晶胞中的(0001)面的面积是3a 2/2,在这个面积上有1个原子,所以其面密度为23/3a 2;在一个晶胞中的(0110)面的面积是a 2c ,在这个面积上有次个原子,所以其面密度为1/a 2c 。
2. 钛具有hcp 结构,在20°C 时单胞体积为0.106nm 3,c /a =1.59,求a 和c 。
求在基面上的原子半径。
解:因为密排六方单胞的体积是a 2c sin60°=0.106nm 3,而c /a =1.59,把它代入体积的式子,得1.59a 3sin60°=0.106nm 3,故a =(0.106/1.59sin60°)1/3nm=0.4254nm ;c=1.59a=1.59×0.4254nm =0.6764nm 。
一、简答题(每题3分,共15分)1、请说明什么是全位错和不全位错,并请写出FCC、BCC和HCP晶体中的最短单位位错的柏氏矢量。
答:全位错:柏氏矢量等于点阵矢量的整数倍;不全位错:柏氏矢量不等于点阵矢量的整数倍。
Fcc:><1102a; bcc:><1112a; hcp:><02113a2、已知原子半径与晶体结构有关,请问当配位数降低时,原子半径如何变化?为什么?答:半径收缩。
若半径不变,则当配位数降低时,会引起晶体体积增大。
为了减小体积变化,原子半径将收缩。
3、均匀形核与非均匀形核具有相同的临界晶核半径,非均匀形核的临界形核功也等于三分之一表面能,为什么非均匀形核比均匀形核容易?答:因为非均匀形核时,用杂质或型腔充当了一部分晶核。
也就是说,需要调动的原子数少。
4、原子的热运动如何影响扩散?答:热运动增强将使原子的跃迁距离、跃迁几率和跃迁频率均增大,即增大扩散系数。
5、如何区分金属的热变形和冷变形?答:变形温度与再结晶温度的高低关系。
高于再结晶温度的为热变形,反之为冷变形。
二、 综合分析题(共40分)如附图所示,请分析:(24分)1) 两水平线的反应类型,并写出反应式;2) 分析Ab 、bg′、g′d′、d′、 d′h′、 h′e、eB 七个区域室温下的组织组成物( j 点成分小于g 点成分);3) 分析I 、II 合金的平衡冷却过程,并注明主要的相变反应;4) 写出合金I 平衡冷却到室温后相组成物相对含量的表达式及合金II 平衡冷却到室温后组织组成物相对含量的表达式。
解:1) 水平线kj 为包晶反应:n k j L αδ→+水平线gh 为共晶反应:h g d L βα+→2) Ab : αbg′: α+βIIt/℃ k n j g i d h A b c 1 g ' c 2 d ' h ' e B δ α βI IIg′d: α+(α+β)共+βII d ': (α+β)共 d′h′: β+(α+β)共+αII h′e: β+αII eB : β 3) 合金I 合金II4) 合金I 相组成: %100 %10011⨯=⨯=be bcw be ec w βα; 合金II 组织组成: II II w gd id w be g b gd id w gd igw βαββαβαβα-⨯-=⨯'⨯⨯=⨯=+%100 %100 %100II II )(析出量=共晶前析出量;析出比例=共晶前析出量;初初初共 L L→α α→βII L→α+β L L→δ L→αα L+δ→α α→βII。
金属学与热处理课后答案第一章金属键?并用其解释金属的特性答:金属键就是金属阳离子和自由电子之间的强烈的相互作用,可以决定金属的很多物理性质。
金属的延展性就是由于在金属被锻造的时候,只是引起了金属阳离子的重新排布,而由于自由电子可以在整块金属内自由流动,金属键并未被破坏。
再如由于自由电子的存在使金属很容易吸收光子而发生跃迁,发出特定波长的光波,因而金属往往有特定的金属光泽。
金属中的自由电子沿着电场定向运动,导电性;自由电子的运动及正离子的震动,使之具有导热性;温度升高,正离子或原子本身振动的幅度加大,阻碍电子的通过,使电阻升高,具有正的电阻温度系数用双原子模型说明金属中原子为什么会呈现周期性规则排列,并趋于紧密排列答:当大量金属原子结合成固体时,为使体系能量最低,以保持其稳定,原子间必须保持一定的平衡距离,因此固态金属中的原子趋于周期性规则排列。
原子周围最近邻的原子数越多,原子间的结合能越低(因为结合能是负值),把某个原子从平衡位置拿走,克服周围原子对它的作用力所需做的功越大,因此固态金属中的原子总是自发地趋于紧密排列。
3.填表:晶格类型原子数原子半径配位数致密度间隙类型间隙半径间隙数目举例原子堆垛方式体心立方2a438 68% 八面体 a 18 α—Fe ABABAB四面体 a 24面心立方4a4212 74% 八面体 a 13 γ—Fe ABCABC四面体 a 8密排六方6a2112 74% 八面体 a 6 Mg ABABAB四面体8a 194什么是晶体结构?什么是晶格?什么是晶胞?答:晶体结构:指晶体中原子(离子,原子,分子集团)的具体的排列情况,也就是指晶体中这些质点在三维空间内有规律的周期性重复排列;晶格:将阵点用一系列平行的直线连接起来构成的空间格架。
晶胞:构成点阵的最基本单元。
5、作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向6立方晶系的{1 1 1}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。
金属学原理思考题金属学原理思考题第一章金属材料的结构和结构缺陷1.1根据钢球模型回答以下问题:(1)以晶格常数为单位计算体心立方、面心立方和密排六方晶体中四面体和八面体间隙的原子半径和半径(2)计算体心立方、面心立方和密排六方晶胞中的原子序数、密度和配位数1.2 miller指数用于表示体心立方、面心立方和密六边形结构中的原子密集面和原子密集方向,并分别计算了这些晶面和晶体方向的原子密度。
1.3纯铁在室温下的晶格常数为0.286纳米,原子量为55.84。
获得纯铁的密度。
1.4实验测定:在912℃时,γ-Fe的晶格常数为0.3633纳米,α-Fe的晶格常数为0.2892纳米当从γ-Fe转变为α-Fe时,试着找出它的体积膨胀1.5已知室温下铁和铜的晶格常数分别为0.286纳米和0.3607纳米。
计算了1cm3铁和铜的原子序数。
1.6金属镁的密度为1.74克/厘米,并计算其单位电池体积。
1.7将图中所示立方晶体的滑动面ABCD设置为平行于晶体的上下底面,滑动面有一个方形位错环,将位错环的每一段分别设置为平行于滑动面的每一侧,并设置其白石矢量b∑AB(1)表示位错环各段上位错线的类型(2)为了使位错环沿着滑动面向外移动,必须在晶体上施加什么样的应力?如图所示(3)位错环移出晶体后晶体形状如何变化?31.8如图所示,将立方晶体的滑动面ABCD设置为平行于晶体的上下底面,晶体有位错线馈入,de段在滑动面上并平行于AB,ef段垂直于滑动面,位错的柏柏尔矢量B平行于de并垂直于ef(1)为了移动ABCD滑动面上的de段位错线,应该对晶体施加什么样的应力?(2)在上述应力下,de段位错如何运动?水晶的形状是如何变化的?(3)相同的应力如何影响ef节段的脱位?1.9如图所示,面心立方晶体的(111)滑移面上有两条弯曲位错线OˇSˇ和OˇSˇ,其中OˇSˇ位错的台阶垂直于(111),它们的Baird矢量方向和位错线方向如图中箭头所示。
一、简答题
1. 试从结合键的角度,分析工程材料的分类及其特点。
答:金属材料:主要以金属键为主,大多数金属强度和硬度较高,塑性较好。
陶瓷材料:以共价键和离子键为主,硬、脆,不易变形,熔点高。
高分子材料:分子内部以共价键为主,分子间为分子键和氢键为主。
复合材料:是以上三中基本材料的人工复合物,结合键种类繁多。
性能差异很大。
2. 位错密度有哪几种表征方式?
答:有两种方式:体密度,即单位体积内的位错线长度;面密度,即垂直穿过单位面积的位错线根数。
3. 陶瓷晶体相可分为哪两大类?有何共同特点?
答:氧化物陶瓷和硅酸盐陶瓷。
特点:1. 结合键主要是离子键,含有一定比例的共价键;2. 有确定的成分,可以用准确的分子式表达; 3. 具有典型的非金属性质。
4. 冷轧纯铜板,如果要求保持较高强度,应进行何种热处理?若需要继续冷轧变薄时,又应进行何种热处理?
答:保持较高强度则应进行低温退火,使其只发生回复,去除残余应力;要继续冷变形则应进行高温退火,使其发生再结晶,以软化组织。
5. 扩散激活能的物理意义为何?试比较置换扩散和间隙扩散的激活能的大小。
答:扩散激活能的物理意义是原子跃迁过程中必须克服周围原子对其的阻碍,即必须克服势垒。
相比而言,间隙扩散的激活能较小。
二、综合分析题
1. 试从晶界的结构特征和能量特征分析晶界的特点。
答:晶界结构特征:原子排列比较混乱,含有大量缺陷。
晶界能量特征:原子的能量较晶粒内部高,活动能量强。
晶界特征:
•晶界——畸变——晶界能——向低能量状态转化——晶粒长大、晶界变直——晶界面积减小
•阻碍位错运动——σ b ↑ ——细晶强化
•位错、空位等缺陷多——晶界扩散速度高
•晶界能量高、结构复杂——容易满足固态相变的条件——固态相变首先发生地•化学稳定性差——晶界容易受腐蚀
•微量元素、杂质富集
2. 试分析冷塑性变形对合金组织结构、力学性能、物理化学性能、体系能量的影响。
答:
•组织结构:(1 )形成纤维组织:晶粒沿变形方向被拉长;(2 )形成位错胞;(3 )晶粒转动形成变形织构。
•力学性能:位错密度增大,位错相互缠绕,运动阻力增大,造成加工硬化。
•物理化学性能:其变化复杂,主要对导电,导热,化学活性,化学电位等有影响。
•体系能量:包括两部分:(1 )因冷变形产生大量缺陷引起点阵畸变,使畸变能增大;( 2 )因晶粒间变形不均匀和工件各部分变形不均匀引起的微观内应力和宏观内应力。
这两部分统称为存储能,其中前者为主要的。
冷变形后引起的组织性能变化为合金随后的回复、再结晶作了组织和能量上的准
备。