变频器转差频率的控制原理
- 格式:doc
- 大小:64.50 KB
- 文档页数:1
变频器的工作原理和控制方式近年来,随着电力电子技术、微电子技术及大规模集成电路的发展,生产工艺的改进及功率半导体器件价格的降低,变频调速越来越被工业上所采用。
如何选择性能好的变频其应用到工业控制中,是我们专业技术人员共同追求的目标。
下面结合作者的实际经验谈谈变频器的工作原理和控制方式:1 变频器的工作原理我们知道,交流电动机的同步转速表达式位:n=60 f(1-s)/p (1)式中n———异步电动机的转速;f———异步电动机的频率;s———电动机转差率;p———电动机极对数。
由式(1)可知,转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在0~50Hz的范围内变化时,电动机转速调节范围非常宽。
变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。
2变频器控制方式低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。
其控制方式经历了以下四代。
2.1U/f=C的正弦脉宽调制(SPWM)控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。
但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。
另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。
因此人们又研究出矢量控制变频调速。
2.2电压空间矢量(SVPWM)控制方式它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。
经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。
转差频率控制原理:当稳态气隙磁通恒定时.异步电机的机械特性参数表达式为:()()()220222102222221211)(3⎪⎪⎭⎫ ⎝⎛∆+∆Φ=+=σσωωωx n n r r n n C sx r r s E P T n (2-1)当实际转差额定空载转速相比很小时(0n n <<∆) ,220r x n n <<∆σ ,可以从式中约去,这样式(2-1)可以简化为:()()2022222102n r C r r n n C T smn m n 'Φ=∆Φ≈ωω 其中1602ωπωn np s ∆=∆=(2-2) 从式(2-2)中可得,当转差频率s ω较小且磁通m Φ恒定时,电机的电磁转矩T 与s ω成正比。
这时只要控制转差频率s ω就能控制转矩T ,从而实现对转速的控制。
若要使转差频率s ω较小,只要有提供异步电动机的实际转速反馈即可实现。
若要保持m Φ为恒值,即保持励磁电流m I 恒定,而励磁电流m I 与定子电流1I 有如下关系,()()[]()222221221σσωωωL r L L r f s m ms '+''++'I ==I (2-3) 因此若,1I 按照上述规律变化,则m I 恒定,即m Φ恒定。
转差频率控制策略是:利用测速环节得到转速ωU 与转速给定*ωU 、比较,限制输出频率,使转差率S U ω (即S ω)不太大;控制定子电流1I ,使得励磁电流m I 保持恒定;这时控制s ω实现调速。
系统原理图如图2-l 所示。
图2-l 转差频率控制变频调速系统原理图从图2-1可知.系统由速度调节器、电流调节器、函数发生器、加法器,整流与逆变电路,PWM 控制电路,异步电动机及测量电路等组成,其中异步电动机由SPWM 控制逆变器供电。
转速调节器ASR 的输出是转差频率给定值ωU ,表转矩给定。
函数发生器输入转差频率产生*1i U 。
异步电动机是电力、化工等生产企业最主要的动力设备。
作为高能耗设备,其输出功率不能随负荷按比例变化,大部分只能通过挡板或阀门的开度来调节,而电动机消耗的能量变化不大,从而造成很大的能量损耗。
近年来,随着变频器生产技术的成熟以及变频器应用范围的日益广泛,使用变频器对电动机电源进行技术改造成为各企业节能降耗、提高效率的重要手段。
1 变频调速原理n=60 f(1-s)/p (1)式中n———异步电动机的转速;f———异步电动机的频率;s———电动机转差率;p———电动机极对数。
由式(1)可知,转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在0~50Hz的范围内变化时,电动机转速调节范围非常宽。
变频调速就是通过改变电动机电源频率实现速度调节的。
变频器主要采用交—直—交方式,先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。
变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。
整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。
2 谐波抑制变频器使用的突出问题就是谐波干扰,当变频器工作时,输出电流的谐波电流会对电源造成干扰。
虽然各变频器厂家对变频器谐波的治理均采取了措施且基本达到国家标准要求,但谐波仍然是变频器选型和使用中最需要关注的问题。
变频器的输出电压中含有除基波以外的其他谐波。
较低次谐波通常对电机负载影响较大,引起转矩脉动,而较高的谐波又使变频器输出电缆的漏电流增加,使电机出力不足,故变频器输出的高低次谐波都必须抑制。
由于变频器的整流部分采用二极管不可控桥式整流电路,中间滤波部分采用大电容作为滤波器,所以整流器的输入电流实际上是电容器的充电电流,呈较陡的脉冲波,其谐波分量较大。
为了消除谐波,主要采用以下对策:a.增加变频器供电电源内阻抗通常情况下,电源设备的内阻抗可以起到缓冲变频器直流滤波电容的无功功率的作用。
《变频技术应用》第7章 习题7解答1. 什么是U /f 控制?变频器在变频时为什么还要变压?答:U /f 控制是使变频器的输出在改变频率的同时也改变电压,通常是使U /f 为常数,变频器在变频时还要变压是为了使电动机磁通保持一定,在较宽的调速范围内,电动机的转矩、效率、功率因数不下降。
2.说明恒U /f 控制的原理。
答:E 1为每相定子绕组的反电动势,它是定子绕组切割旋转磁场而产生的,其有效值计算如下:M N N k f E Φ=111144.4由于4.44k N1N 1均为常数,所以定子绕组的反电势E 1可用下式表示:M f E Φ∝11在额定频率时即f 1=f N 时,可以忽略△U ,可得到:U 1 ≈ E 1因此进而得到: U 1 ≈ E 1∝f 1ΦM此时若U 1没有变化,则E 1也可认为基本不变。
如果这时从额定频率f N 向下调节频率,必将使ΦM 增加,即f 1↓→ΦM ↑。
由于额定工作时电动机的磁通已接近饱和,ΦM 增加将会使电动机的铁心出现深度饱和,这将使励磁电流急剧升高,导致定子电流和定子铁心损耗急剧增加,使电动机工作不正常。
可见,在变频调速时单纯调节频率是行不通的。
为了达到下调频率时,磁通ΦM 不变,可以让=11f E 常数 有U 1 ≈ E 1,即可写为:=11f U 常数 因此,在额定频率以下,即f 1<f N 调频时,同时下调加在定子绕组上的电压,即恒U /f 控制。
3.什么是转矩补偿?答:转矩提升是指通过提高U /f 比来补偿f x 下调时引起的T Kx 下降。
即通过提高U x (k u >k f )使得转矩T Kx 提升4.转矩补偿过分会出现什么情况?答:如果变频时的U /f 比选择不当,使得电压补偿过多,即U x 提升过多,E x 在U x 中占的比例会相对减小(E x /U x 减小),其结果是使磁通ΦM 增大,从而达到新的平衡。
即: ↑→↑→Φ↑→↑→↓→↑↑→xx x M x x x U E E I I U E U 01 由于ΦM 的增大会引起电动机铁心饱和,而铁心饱和会导致励磁电流的波形畸变,产生很大的峰值电流。
变频调速电机的设计摘要在这个经济快速发展的社会,随着电力电子技术、计算机技术和自动控制技术的发展,交流调速代替DC调速已经成为现代电气传动的主要发展方向,这使得交流变频调速系统广泛应用于工业电机传动领域。
许多国外企业会在生产中应用变频技术。
此外,由于PLC功能强大、使用方便、可靠性高,常被用作数据采集和设备控制。
工作中发现身边很多设备都应用了变频技术,在接触中感受到了变频技术的重要性。
通过调节电机的速度来达到节能增产的效果,在未来必然更加重要。
变频器和可编程控制器以其优越的调速、启停性能、高效率、高功率因数和显著的节电效果,广泛应用于大中型交流电动机,被公认为最有前途的调速控制。
关键词:电气传动,变频技术,调速目录第一章导言..........................................................一1.1交流变频调速发展历史综述........................................一1.2逆变器的结构和功能........................................一1.3....................................二、逆变器的关键技术。
第二章变频器调速...................................................四2.1变频调速原理.................................................四2.2逆变器的控制模式 (5)2.3变频器调速模式 (6)第三章变频调试技术 (8)3.1变频器的结构和功能预设有.........................................8.3.2操作...................................................变频器9的第四章变频调速电机的设计 (11)4.1硬件设计 (11)4.2软件设计 (14)摘要 (20)致谢 (21)参考 (22)第一章导言1.1交流变频调速发展历史概述自1965年变频器问世以来,已经经历了40多年的发展。
变频器工作原理及控制方式交流电动机的转速N公式为:N=60f(1-s)/p式中: f—频率;p—极对数;s—转差率(0~3%或0~6%);1. 变频调速原理变频器:改变三相异步电动机电源频率,可以改变同步转速,达到调速的目的。
额定频率称为基频,变频调速时,可以从基频向上调(恒功率调速),也可以从基频向下调(恒转距调速)。
因此变频调速方式,比改变极对数p和转差率s两个参数简单得多。
2. 变频器控制算法交流调速的控制核心是:只有保持电机磁通恒定才能保证电机出力,才能获得理想的调速效果;V/F控制——简单实用,性能一般,使用最为广泛,只要保证输出电压和输出频率恒定就能近似保持磁通保持恒定低频时,定子阻抗压降会导致磁通下降,需将输出电压适当提高;矢量控制——性能优良,可以与直流调速媲美,技术成熟较晚,模仿直流电机的控制方法,采用矢量坐标变换来实现对异步电机定子励磁电流分量和转矩电流分量的解耦控制,保持电机磁通的恒定,进而达到良好的转矩控制性能,实现高性能控制。
性能优良,控制相同复杂;3. 变频器技术发展PWM(Pulse Width Modulation)调制·PWM调制是:利用半导体开关器件的导通和关断把直流电压调制成电压可变、频率可变的电压脉冲列。
·SPWM调制是:采用三角波和正弦波相交获得的PWM波形直接控制各个开关可以得到脉冲宽度和各脉冲间的占空比可变的呈正弦变化的输出脉冲电压电压,能获得理想的控制效果:输出电流近似正弦·载波频率必须高,才能保证调制后得到的波形与调制前效果相同·GTR变频器由于开关频率太低,电机噪声较大,IGBT有效的解决了这个问题4. 变频器的基本结构通用变频器的基本电路上图所示,它由四个主要部分组成,分别是:1—整流部分:把交流电压变为直流电压;将交流电变换成直流的电力电子装置,其输入电压为正弦波,输入电流非正弦,带有谐波;2—滤波部分:把脉动较大的直流电进行滤波变成比较平滑的直流电;3—逆变部分:把直流电又转换成三相交流电,这种逆变电路一般是利用功率开关组件按照控制电路的驱动、输出脉冲宽度被调制的PWM波,或者正弦脉宽调制SPWM波,当这种波形的电压加到负载上时,由于负载电感作用,使电流连续化,变成接近正弦波的电流波形;4—控制电路:用来产生输出逆变桥所需要的各驱动信号,这些信号是受外部指令决定的,有频率上升、下降、外部通断控制以及变频器内部各种各样的保护和回馈信号的综合控制等;。
如果保持电动机的气隙磁通一定,则电动机的转矩及电流由转差角频率决定,因此,若添加控制电动机转差角频率的功能,那么异步电动机产生的转矩就可以控制。
转差频率是施加于电动机的交流电压频率与电动机速度(电气角频率)的差频率,在电动机转子上安装测速发电机(PG)等速度检出器可以检测电动机的速度,检测出的转子速度加上转差频率(与产生所要求的转矩相对应)就是逆变器的输出频率。
在电动机允许的过载转矩(额定转矩的150%~200%)以下,大体可以认为产生的转矩与转差频率成比例。
另外,电流随转差频率的增加而单调增加。
所以,如果给出的转差频率不超过允许过载时的转差频率,那么就可以具有限制电流的功能。
为了控制转差频率,需要增加检测电动机速度的装置,虽然设备成本提高了,但系统的加减速特性和稳定性比开环的U/f控制获得了提高,过电流的限制效果也变好。
艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。
如需进一步了解台达变频器、三菱变频器、西门子变频器、安川变频器、艾默生变频器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城/。