导数与三次函数的关系(1)
- 格式:ppt
- 大小:230.00 KB
- 文档页数:10
第28关:三次函数专题—全解全析一、定义:定义1、形如的函数,称为“三次函数”(从函数解析式的结构上命名)定义2、三次函数的导数,把叫做三次函数导函数的判别式二、三次函数图象与性质的探究:1、单调性一般地,当时,三次函数在上是单调函数;当时,三次函数在上有三个单调区间(根据两种不同情况进行分类讨论)2、对称中心三次函数是关于点对称,且对称中心为点,此点的横坐标是其导函数极值点的横坐标。
证明:设函数的对称中心为(m,n)。
按向量将函数的图象平移,则所得函数是奇函数,所以化简得:上式对恒成立,故,得,。
所以,函数的对称中心是()。
可见,y=f(x)图象的对称中心在导函数y=的对称轴上,且又是两个极值点的中点,同时也是二阶导为零的点。
3、三次方程根的问题(1)当△=时,由于不等式恒成立,函数是单调递增的,所以原方程仅有一个实根。
(2)当△=时,由于方程有两个不同的实根,不妨设,可知,为函数的极大值点,为极小值点,且函数在和上单调递增,在上单调递减。
此时:①若,即函数极大值点和极小值点在轴同侧,图象均与轴只有一个交点,所以原方程有且只有一个实根。
②若,即函数极大值点与极小值点在轴异侧,图象与轴必有三个交点,所以原方程有三个不等实根。
③若,即与中有且只有一个值为0,所以,原方程有三个实根,其中两个相等。
4、极值点问题若函数f(x)在点x0的附近恒有f(x)≥f(x) (或f(x)≤f(x)),则称函数f(x)在点x0处取得极大值(或极小值),称点x为极大值点(或极小值点)。
当时,三次函数在上的极值点要么有两个。
当时,三次函数在上不存在极值点。
5、最值问题函数若,且,则:;三、三次函数与导数专题:1. 三次函数与导数例题例1. 函数.(1)讨论函数的单调性;(2)若函数在区间(1,2)是增函数,求的取值范围.解:(Ⅰ),的判别式△=36(1-a).(ⅰ)当a≥1时,△≤0,则恒成立,且当且仅当,故此时在R上是增函数.来自QQ群3(ⅱ)当且,时,有两个根:,若,则, 当或时,,故在上是增函数;当时,,故在上是减函数;若,则当或时,,故在和上是减函数;当时,,故在上是增函数;(Ⅱ)当且时,,所以当时,在区间(1,2)是增函数.当时,在区间(1,2)是增函数,当且仅当且,解得.综上,的取值范围是.例 2. 设函数,其中。
三次函数的导数与导函数引言三次函数是指次数为3的多项式函数,其一般形式为 f(x) =ax^3 + bx^2 + cx + d。
在本文中,将讨论三次函数的导数与导函数。
导数的定义导数是函数在某一点处的变化率。
对于三次函数 f(x) = ax^3 +bx^2 + cx + d,其导数可以通过求函数的微分得到。
微分就是对函数进行局部线性近似,即求切线的斜率。
三次函数的导数计算根据导数的定义,可以使用微分的方法求出三次函数的导数。
首先,对三次函数 f(x) 进行微分得到 f'(x)。
然后求导数的公式为f'(x) = 3ax^2 + 2bx + c。
导函数的意义导函数是三次函数的导数,它描述了函数在不同点的变化率。
导函数的图像可以反映出原函数的整体趋势。
导函数的图像特点根据导函数的公式 f'(x) = 3ax^2 + 2bx + c,可以得到以下结论:- 如果 a>0,那么导函数是向上开口的抛物线;- 如果 a<0,那么导函数是向下开口的抛物线;- b 的值决定了导函数的平移与压缩;- c 的值决定了导函数的上下偏移。
导函数与原函数的关系根据导函数与原函数的关系,可以推导出以下结论:- 如果三次函数 f(x) 在某一点处的导数为0,那么该点是函数的极值点;- 如果三次函数 f(x) 的导函数恒为正,那么原函数是递增的;- 如果三次函数 f(x) 的导函数恒为负,那么原函数是递减的。
结论本文介绍了三次函数的导数与导函数的概念,并讨论了它们的计算方法、图像特点以及与原函数的关系。
对于进一步理解三次函数及其特性具有一定的参考价值。
> 注意:本文所述内容仅为概念介绍,具体应用时请结合实际情况进行分析和计算。
专题2-2三次函数图像与性质【题型1】求三次函数的解析式【题型2】三次函数的单调性问题【题型3】三次函数的图像【题型4】三次函数的最值、极值问题【题型5】三次函数的零点问题【题型6】三次函数图像,单调性,极值,最值综合问题【题型7】三次函数对称中心【题型8】三次函数的切线问题【题型9】三次函数根与系数的关系1/342/34【题型1】求三次函数的解析式(1)一般式:()³²f x ax bx cx d =+++(a ≠0)(2)交点式:()123()()()f x a x x x x x x =---(a ≠0)1.若三次函数()f x 满足()()()()00,11,03,19f f f f ''====,则()3f =()A .38B .171C .460D .965【解析】待定系数法,求函数解析式设()³²f x ax bx cx d =+++,则()232f x ax bx c '=++,由题意可得:()()()()0011031329f d f a b c d f c f a b c ⎧==⎪=+++=⎪⎨==⎪⎪=+'=⎩'+,解得101230a b c d =⎧⎪=-⎪⎨=⎪⎪=⎩,则()3210123f x x x x =-+,所以()32310312333171f =⨯-⨯+⨯=.【题型2】三次函数的单调性问题三次函数是高中数学中的一个重要内容,其考点广泛且深入,主要涉及函数的性质、图像、最值、零点以及与其他函数的综合应用等方面。
以下是对三次函数常见考点的详细分析:1.三次函数的定义与形式∙定义:形如f (x )=ax 3+bx 2+cx +d (其中a ≠=0)的函数称为三次函数。
∙形式:注意系数a ,b ,c ,d 的作用,特别是a 的正负决定了函数的开口方向(a >0开口向上,a <0开口向下)。
三次函数性质的探索我们已经学习了一次函数,知道图象是单调递增或单调递减,在整个定义域上不存在最大值与最小值,在某一区间取得最大值与最小值.那么,是什么决定函数的单调性呢?利用已学过的知识得出:当k>0时函数单调递增;当k<0时函数单调递增;b决定函数与y轴相交的位置.其中运用的较多的一次函数不等式性质是:()0>f在[m,n]上恒成立的充要条件x()0>fm()0>fn接着,我们同样学习了二次函数,图象大致如下:图1 图2利用已学知识归纳得出:当时(如图1),在对称轴的左侧单调递减、右侧单调递增,对称轴上取得最小值;当时(图2),在对称轴的左侧单调递增、右侧单调递减,对称轴上取得最大值.在某一区间取得最大值与最小值.其中a决定函数的开口方向,a、b同时决定对称轴,c决定函数与y轴相交的位置.总结:一次函数只有一个单调性,二次函数有两个单调性,那么三次函数是否就有三个单调性呢?三次函数专题一、定义:定义1、形如32(0)y ax bx cx d a =+++≠的函数,称为“三次函数”(从函数解析式的结构上命名)。
定义2、三次函数的导数232(0)y ax bx c a '=++≠,把2412b ac ∆=-叫做三次函数导函数的判别式。
由于三次函数的导函数是二次函数,而二次函数是高中数学中的重要内容,所以三次函数的问题,已经成为高考命题的一个新的热点和亮点。
特别是文科。
系列探究1:从最简单的三次函数3x y =开始反思1:三次函数31y x =+的相关性质呢? 反思2:三次函数31y x =-+的相关性质呢? 反思3:三次函数()311y x =-+的相关性质呢?(2012天津理)(4)函数22)(3-+=x x f x在区间(0,1)内的零点个数是 B (A )0 (B )1 (C )2 (D )3系列探究2:探究一般三次函数)0()(23>+++=a d cx bx ax x f 的性质:先求导2()32(0)f x ax bx c a '=++>1.单调性:(1)若22120b ac =-≤△(),此时函数()f x 在R 上是增函数;(2)若22120b ac =->△(),令2()320f x ax bx c '=++=两根为12,x x 且12x x <,则()f x 在12(,),()x x -∞+∞上单调递增,在12(,)x x 上单调递减。
三次函数的图像与性质形如f(x)=ax3+bx2+cx+d(a≠0)的函数叫做三次函数。
由于三次函数的导函数是二次函数,而二次函数是高中数学中的重要内容,所以三次函数的问题已经成为高考命题的一个新的热点和亮点,尤其是文科数学更是如此。
我们可以采用类比的方法,利用几何画板,较为深入地研究三次函数的图像与性质以及三次方程的解的个数的问题。
1三次函数的图像与性质设三次函数f(x)=ax3+bx2+cx+d(a≠0),其导函数f’(x)=3ax2+2bx+c,其判别式△=4b2-12ac=4(b2-3ac)。
当a>0时,若△>0,方程f’(x)=0有两个不相等的实数根,记作x1,x2,不妨令x1f(x2)。
结论1:f(x1)·f(x2)>0时,函数f(x)的图像与x轴有且仅有一个公共点;f(x1)·f(x2)=0时,函数f(x)的图像与x轴有且仅有两个公共点;f (x1)·f(x2)0,f(x2)0为例):当a>0时,f(x)的四种图象3推论设三次函数f(x)=ax3+bx2+cx+d(a>0),其导函数f’(x)=3ax2+2bx+c 的判别式△=4b2-12ac=4(b2-3ac)>0。
方程f’(x)=0有两个不相等的实数根,记作x1,x2,不妨令x1<x2,则函数f(x)在x=x1处取得极大值f(x1),函数f(x)在x=x2处取得极小值f(x2)。
类似可知a<0的情形(其余条件同前):函数在x=x1处取得极小值f(x1),函数f(x)在x=x2处取得极大值f(x2)。
4例题例1.(湖南卷)用长为18 cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?解:设长方体的宽为x(m),则长为2x(m),高为h==4.5-3x(m)(0<x<),故长方体的体积为V(x)=2x2(4.5-3x)=9x2-6x3(m3)(0<x<),从而V’(x)=18x-18x2(4.5-3x)=18x(1-x)。
用导数研究报告三次多项式曲线引言在数学中,多项式函数是一类重要的函数。
其中,三次多项式函数的特点是在自变量的三次方次项与一次方次项之间存在关系。
因此,研究三次多项式函数的性质对于数学理论的发展具有重要意义。
导数的定义导数是用来描述函数变化率的工具。
对于函数$f(x)$,它的导数$f'(x)$可以通过以下公式计算:$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$三次多项式函数的导数对于三次多项式函数$P(x)$,它的一般形式可以表示为:$$P(x) = ax^3 + bx^2 + cx + d$$其中$a$,$b$,$c$和$d$为常数。
为了研究三次多项式函数的性质,我们需要计算它的导数。
根据导数的定义,可以得到三次多项式函数$P(x)$的导数$P'(x)$:$$P'(x) = 3ax^2 + 2bx + c$$三次多项式曲线的特点通过对三次多项式函数的导数$P'(x)$进行分析,我们可以得到三次多项式曲线的一些特点:1. 曲线的斜率:导数$P'(x)$描述了曲线在不同点上的斜率。
当导数为正时,曲线上升;当导数为负时,曲线下降;当导数为零时,曲线达到极值点。
2. 曲线的拐点:拐点是指曲线从凸向上凹或从凹向上凸变化的点。
在三次多项式曲线上,拐点的位置可以通过导数$P'(x)$的二阶导数来确定。
3. 曲线的极值点:极值点是曲线上最高或最低的点。
在三次多项式曲线上,极值点可以通过导数$P'(x)$的一阶导数为零的点来确定。
结论通过导数的研究,我们可以了解到三次多项式曲线的斜率、拐点和极值点的位置,进而对曲线的形状和性质进行分析。
这为进一步研究和应用三次多项式函数提供了重要的理论基础。
需要注意的是,在实际应用中,有时会出现多个极值点或拐点的情况。
此外,导数可以应用于许多其他数学领域,如最优化问题和微分方程的求解等。