第七章 专题强化 卫星变轨问题和双星问题
- 格式:docx
- 大小:1005.60 KB
- 文档页数:16
专题强化 卫星的变轨和双星问题[学习目标] 1.知道卫星变轨的原因,会分析卫星变轨前后的物理量变化(重难点)。
2.知道航天器的对接问题的处理方法(重难点)。
3.掌握双星运动的特点,会分析双星的相关问题(重点)。
一、卫星的变轨问题如图是飞船从地球上发射到绕月球运动的飞行示意图。
(1)从绕地球运动的轨道上进入奔月轨道,飞船应采取什么措施?为什么?(2)从奔月轨道进入月球轨道,又应采取什么措施?为什么?答案 (1)从绕地球运动的轨道上加速,使飞船做离心运动。
当飞船加速时,飞船所需的向心力F 向=m v 2r增大,万有引力不足以提供飞船所需的向心力,飞船将做离心运动,向高轨道变轨。
(2)飞船从奔月轨道进入月球轨道应减速。
当飞船减速时,飞船所需的向心力F 向=m v 2r 减小,万有引力大于所需的向心力,飞船将做近心运动,向低轨道变轨。
1.变轨过程(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上,如图所示。
(2)在A 点(近地点)点火加(选填“加”或“减”)速,由于速度变大,万有引力不足以提供卫星在轨道Ⅰ上做圆周运动所需的向心力,卫星做离心运动进入椭圆轨道Ⅱ。
(3)在B 点(远地点)再次点火加(选填“加”或“减”)速进入圆轨道Ⅲ。
2.变轨过程各物理量分析 (1)两个不同轨道的“切点”处线速度v 不相等,图中v Ⅲ>v ⅡB ,v ⅡA >v Ⅰ(均选填“>”“<”或“=”)。
(2)同一个椭圆轨道上近地点和远地点线速度大小不相等,从远地点到近地点线速度逐渐增大。
(3)两个不同轨道上的线速度v 不相等,轨道半径越大,v 越小,图中v Ⅰ>v Ⅲ(选填“>”“<”或“=”)。
(4)不同轨道上运行周期T 不相等。
根据开普勒第三定律a 3T 2=k 知,内侧轨道的周期小于外侧轨道的周期,图中T Ⅰ<T Ⅱ<T Ⅲ。
(5)两个不同轨道的“切点”处加速度a 相同,图中a Ⅲ=a ⅡB ,a ⅡA =a Ⅰ。
专题强化七卫星运动的三类问题学习目标 1.会分析卫星的变轨过程及各物理量的变化。
2.掌握双星或多星模型的特点。
3.会分析卫星的追及与相遇问题。
考点一卫星的变轨和能量问题1.变轨原理(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上,如图所示。
(2)在A 点(近地点)点火加速,由于速度变大,万有引力不足以提供卫星在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ。
(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅲ。
2.变轨过程各物理量比较速度关系在A 点加速:v ⅡA >v Ⅰ,在B 点加速:v Ⅲ>v ⅡB ,即v ⅡA >v Ⅰ>v Ⅲ>v ⅡB(向心)加速度关系a Ⅲ=a ⅡB a ⅡA =a Ⅰ周期关系T Ⅰ<T Ⅱ<T Ⅲ机械能E Ⅰ<E Ⅱ<E Ⅲ例1(2023·江苏南京模拟)2020年我国实施“天问一号”计划,通过一次发射,实现“环绕、降落、巡视”三大任务。
如图1所示,探测器经历椭圆轨道Ⅰ→椭圆轨道Ⅱ→圆轨道Ⅲ的变轨过程。
Q 为轨道Ⅰ远火点,P 为轨道Ⅰ近火点,探测器在三个轨道运行时都经过P 点。
则探测器()图1A.沿轨道Ⅰ运行至P点速度大于运行至Q点速度B.沿轨道Ⅱ运行至P点的加速度小于沿轨道Ⅲ运行至P点的加速度C.沿轨道Ⅰ运行的周期小于沿轨道Ⅱ运行的周期D.与火星连线在相等时间内,沿轨道Ⅰ运行与沿轨道Ⅱ运行扫过面积相等答案A解析根据开普勒第二定律可知,沿轨道Ⅰ运行至近火点P的速度大于运行至远火点Q的速度,选项A正确;根据a=GMr2可知,沿轨道Ⅱ运行至P点的加速度等于沿轨道Ⅲ运行至P点的加速度,选项B错误;根据开普勒第三定律r3T2=k,可知沿轨道Ⅰ运行的半长轴大于沿轨道Ⅱ运行的半长轴,则沿轨道Ⅰ运行的周期大于沿轨道Ⅱ运行的周期,选项C错误;根据开普勒第二定律可知,沿同一轨道运动时在相等的时间内与火星的连线扫过的面积相等,而在相等时间内,沿轨道Ⅰ运行与沿轨道Ⅱ运行扫过面积一定不相等,选项D错误。
高中物理双星问题和卫星变轨考点归纳考点1:双星问题一、 要明确双星中两颗子星做匀速圆周运动的向心力来源双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提供。
由于力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,利用万有引力定律可以求得其大小。
二、 要明确双星中两颗子星匀速圆周运动的运动参量的关系两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等的,所以线速度与两子星的轨道半径成正比。
三、 要明确两子星圆周运动的动力学关系。
设双星的两子星的质量分别为M 1和M 2,相距L ,M 1和M 2的线速度分别为v 1和v 2,角速度分别为ω1和ω2,由万有引力定律和牛顿第二定律得: M 1: 22121111121M M v G M M r L r ω== M 2: 22122222222M M v G M M r L r ω== 在这里要特别注意的是在求两子星间的万有引力时两子星间的距离不能代成了两子星做圆周运动的轨道半径。
四、“双星”问题的分析思路质量m 1,m 2;球心间距离L ;轨道半径 r 1 ,r 2 ;周期T 1,T 2 ;角速度ω1,ω2 线速度V 1 V 2;角速度相同:(参考同轴转动问题)ω1 =ω2(由于在双星运动问题中,忽略其他星体引力的情况下向心力由双星彼此间万有引力提供,可理解为一对作用力与反作用力)m 1ω2r 1=m 2ω2r 2m 1r 1=m 2r 2 r 1:r 2=m2:m 12 2线速度之比与质量比相反:(由半径之比推导)V 1=ωr 1 V 2=ωr 2V 1:V 2=r 1:r 2=m 2:m 1两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。
双星问题是万有引力定律在天文学上的应用的一个重要内容,现就这类问题的处理作简要分析。
考点2:卫星变轨一、人造卫星基本原理绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。
卫星变轨问题和双星、多星模型绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。
轨道半径r 确定后,与之对应的卫星线速度r GM v =、周期GMr T 32π=、向心加速度2r GM a =也都是唯一确定的称为“一定四定”。
如果卫星的质量是确定的,那么与轨道半径r 对应的卫星的动能E k 、重力势能E p 和总机械能E 机也是唯一确定的。
一旦卫星发生了变轨,即轨道半径r 发生变化,上述所有物理量都将随之变化称为“一变四变”。
题型一 卫星的变轨和对接问题1.变轨原理(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上,如图1所示.图1(2)在A 点(近地点)点火加速,由于速度变大,万有引力不足以提供卫星在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ.(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅲ.2.变轨过程分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在轨道Ⅱ上过A 点和B 点时速率分别为v A 、v B .在A 点加速,则v A >v 1,在B 点加速,则v 3>v B ,又因v 1>v 3,故有v A >v 1>v 3>v B .(2)加速度:因为在A 点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A 点,卫星的加速度都相同,同理,卫星在轨道Ⅱ或轨道Ⅲ上经过B 点的加速度也相同. 总结:同一点加速度相同,高道速度大。
(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T 1、T 2、T 3,轨道半径分别为r 1、r 2(半长轴)、r 3,由开普勒第三定律r 3T2=k 可知T 1<T 2<T 3. (4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E 1、E 2、E 3,则E 1<E 2<E 3.例1 (2019·北京市通州区期中)如图2所示,一颗人造卫星原来在椭圆轨道1上绕地球E 运行,在A 点变轨后进入轨道2做匀速圆周运动,下列说法正确的是( )图2A .在轨道1上,卫星在A 点的速度等于在B 点的速度B .卫星在轨道2上的周期大于在轨道1上的周期C .在轨道1和轨道2上,卫星在A 点的速度大小相同D .在轨道1和轨道2上,卫星在A 点的加速度大小不同答案 B解析 在轨道1上,卫星由A 点运动到B 点,万有引力做正功,动能变大,速度变大,故选项A 错误;由开普勒第三定律知卫星在轨道2上的周期较大,故选项B 正确;卫星由轨道1变到轨道2,需要在A 点加速,即在轨道1和轨道2上,卫星在A 点的速度大小不相同,故选项C 错误;由G Mm r 2=ma 得a =G M r2,可知在轨道1和轨道2上,卫星在A 点的加速度大小相等,故选项D 错误.例2.(2019·江苏卷·4)1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动.如图1所示,设卫星在近地点、远地点的速度分别为v 1、v 2,近地点到地心的距离为r ,地球质量为M ,引力常量为G .则( )图1A .v 1>v 2,v 1=GM r B .v 1>v 2,v 1>GM r C .v 1<v 2,v 1=GM r D .v 1<v 2,v 1>GM r 答案 B解析 “东方红一号”环绕地球在椭圆轨道上运动的过程中,只有万有引力做功,因而机械能守恒,其由近地点向远地点运动时,万有引力做负功,卫星的势能增加,动能减小,因此v 1>v 2;“东方红一号”离开近地点开始做离心运动,则由离心运动的条件可知G Mm r 2<m v 12r,解得v 1>GM r ,B 正确,A 、C 、D 错误.题型二双星或多星模型1.双星模型(1)模型构建:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图4所示.图4(2)特点:①各自所需的向心力由彼此间的万有引力提供,即Gm1m2L2=m1ω12r1,Gm1m2L2=m2ω22r2②两颗星的周期及角速度都相同,即T1=T2,ω1=ω2.③两颗星的轨道半径与它们之间的距离关系为:r1+r2=L.2.多星模型(1)模型构建:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星体位于同一直线上,两颗质量相等的环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图5甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).图5(3)四星模型:①其中一种是四颗质量相等的星体位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙所示).②另一种是三颗质量相等的星体始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).例 3.(双星模型)(多选)(2020·广东深圳中学质检)有一对相互环绕旋转的超大质量双黑洞系统,如图7所示.若图中双黑洞的质量分别为M1和M2,它们以两者连线上的某一点为圆心做匀速圆周运动.根据所学知识,下列说法中正确的是()图7A.双黑洞的角速度之比ω1∶ω2=M2∶M1B.双黑洞的轨道半径之比r1∶r2=M2∶M1C.双黑洞的线速度大小之比v1∶v2=M1∶M2D.双黑洞的向心加速度大小之比a1∶a2=M2∶M1答案BD解析双黑洞绕连线的某点做匀速圆周运动的周期相等,所以角速度也相等,故A错误;双黑洞做匀速圆周运动的向心力由它们间的万有引力提供,向心力大小相等,设双黑洞的距离为L,由M1ω2r1=M2ω2r2,得r1∶r2=M2∶M1,故B正确;由v=ωr得双黑洞的线速度大小之比为v1∶v2=r1∶r2=M2∶M1,故C错误;由a=ω2r得双黑洞的向心加速度大小之比为a1∶a2=r1∶r2=M2∶M1,D正确.例4(多星模型)(多选)宇宙间存在一些离其他恒星较远的三星系统,其中一种三星系统如图6所示.三颗质量均为m的星体位于等边三角形的三个顶点,三角形边长为R.忽略其他星体对它们的引力作用,三星在同一平面内绕三角形中心O做匀速圆周运动,万有引力常量为G,则()图6A.每颗星做圆周运动的线速度大小为Gm RB.每颗星做圆周运动的角速度为3Gm R3C.每颗星做圆周运动的周期为2πR3 3GmD .每颗星做圆周运动的加速度与三星的质量无关 答案 ABC解析 每颗星受到的合力为F =2G m 2R 2sin 60°=3G m 2R 2,轨道半径为r =33R ,由向心力公式F =ma =m v 2r =mω2r =m 4π2T 2r ,解得a =3Gm R2,v =Gm R ,ω=3Gm R 3,T =2πR 33Gm ,显然加速度a 与m 有关,故A 、B 、C 正确,D 错误.。
专题强化 卫星变轨问题和双星问题[学习目标]1.会分析卫星的变轨问题,知道卫星变轨的原因和变轨前后卫星速度的变化.2.掌握双星运动的特点,会分析求解双星运动的周期和角速度.一、人造卫星的变轨问题 1.变轨问题概述 (1)稳定运行卫星绕天体稳定运行时,万有引力提供了卫星做圆周运动的向心力,即G Mmr 2=m v 2r .(2)变轨运行卫星变轨时,先是线速度大小v 发生变化导致需要的向心力发生变化,进而使轨道半径r 发生变化.①当卫星减速时,卫星所需的向心力F 向=m v 2r 减小,万有引力大于所需的向心力,卫星将做近心运动,向低轨道变轨.②当卫星加速时,卫星所需的向心力F 向=m v 2r 增大,万有引力不足以提供卫星所需的向心力,卫星将做离心运动,向高轨道变轨. 2.实例分析 (1)飞船对接问题①低轨道飞船与高轨道空间站对接时,让飞船合理地加速,使飞船沿椭圆轨道做离心运动,追上高轨道空间站完成对接(如图1甲所示).②若飞船和空间站在同一轨道上,飞船加速时无法追上空间站,因为飞船加速时,将做离心运动,从而离开这个轨道.通常先使后面的飞船减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度,如图乙所示.图1(2)卫星的发射、变轨问题如图2,发射卫星时,先将卫星发射至近地圆轨道1,在Q 点点火加速做离心运动进入椭圆轨道2,在P 点点火加速,使其满足GMmr 2=m v 2r,进入圆轨道3做圆周运动.图2(2019·通许县实验中学期末)如图3所示为卫星发射过程的示意图,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再一次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法中正确的是( )图3A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的周期大于在轨道2上的周期C.卫星在轨道1上经过Q 点时的速率大于它在轨道2上经过Q 点时的速率D.卫星在轨道2上经过P 点时的加速度小于它在轨道3上经过P 点时的加速度 答案 B解析 卫星在圆轨道上做匀速圆周运动时有: G Mmr 2=m v 2r,可得v =GMr因为r 1<r 3,所以v 1>v 3,A 项错误; 由开普勒第三定律知T 3>T 2,B 项正确;在Q 点从轨道1到轨道2需要做离心运动,故需要加速, 所以在Q 点v 2Q >v 1Q ,C 项错误;在同一点P ,由GMmr 2=ma n 知,卫星在轨道2上经过P 点的加速度等于它在轨道3上经过P点的加速度,D 项错误.判断卫星变轨时速度、加速度变化情况的思路1.判断卫星在不同圆轨道的运行速度大小时,可根据“越远越慢”的规律判断.2.判断卫星在同一椭圆轨道上不同点的速度大小时,可根据开普勒第二定律判断,即离中心天体越远,速度越小.3.判断卫星由圆轨道进入椭圆轨道或由椭圆轨道进入圆轨道时的速度大小如何变化时,可根据离心运动或近心运动的条件进行分析.4.判断卫星的加速度大小时,可根据a =F m =G Mr2判断.针对训练 (多选)(2019·定远育才实验学校期末)航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的一点,如图4所示.关于航天飞机的运动,下列说法中正确的有( )图4A.在轨道Ⅱ上经过A 的速度小于经过B 点的速度B.在轨道Ⅱ上经过A 的速度小于在轨道Ⅰ上经过A 的速度C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度 答案 ABC解析 在轨道Ⅱ上由A 点运动到B 点,由开普勒第二定律可知,经过A 的速度小于经过B 的速度,A 正确;从轨道Ⅰ的A 点进入轨道Ⅱ需减速,使万有引力大于所需要的向心力,做近心运动,所以在轨道Ⅱ上经过A 的速度小于在轨道Ⅰ上经过A 的速度,B 正确;根据开普勒第三定律r 3T 2=k ,椭圆轨道的半长轴小于圆轨道的半径,所以在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期,C 正确;在轨道Ⅱ上和在轨道Ⅰ上通过A 点时所受的万有引力相等,根据牛顿第二定律,加速度相等,D 错误. 二、双星或多星问题 1.双星模型(1)如图5所示,宇宙中有相距较近、质量相差不大的两个星球,它们离其他星球都较远,其他星球对它们的万有引力可以忽略不计.在这种情况下,它们将围绕其连线上的某一固定点做周期相同的匀速圆周运动,通常,我们把这样的两个星球称为“双星”.图5(2)特点①两星围绕它们之间连线上的某一点做匀速圆周运动,两星的运行周期、角速度相同. ②两星的向心力大小相等,由它们间的万有引力提供.③两星的轨道半径之和等于两星之间的距离,即r 1+r 2=L ,轨道半径与两星质量成反比. (3)处理方法:双星间的万有引力提供了它们做圆周运动的向心力,即Gm 1m 2L 2=m 1ω2r 1,G m 1m 2L 2=m 2ω2r 2. 2.多星系统在宇宙中存在类似于“双星”的系统,如“三星”“四星”等多星系统,在多星系统中: (1)各个星体做圆周运动的周期、角速度相同.(2)某一星体做圆周运动的向心力是由其他星体对它引力的合力提供的.两个靠得很近的天体,离其他天体非常遥远,它们以其连线上某一点O 为圆心各自做匀速圆周运动,两者的距离保持不变,科学家把这样的两个天体称为“双星”,如图6所示.已知双星的质量分别为m 1和m 2,它们之间的距离为L ,引力常量为G ,求双星的运行轨道半径r 1和r 2及运行周期T .图6答案 Lm 2m 1+m 2 Lm 1m 1+m 24π2L 3G (m 1+m 2)解析 双星间的万有引力提供了各自做圆周运动的向心力,对m 1:Gm 1m 2L 2=m 1r 1ω2对m 2:Gm 1m 2L 2=m 2r 2ω2,且r 1+r 2=L解得r 1=Lm 2m 1+m 2,r 2=Lm 1m 1+m 2由G m 1m 2L 2=m 1r 14π2T 2及r 1=Lm 2m 1+m 2得周期T =4π2L 3G (m 1+m 2).宇宙间存在一些离其他恒星较远的三星系统,其中有一种三星系统如图7所示,三颗质量均为m 的星体位于等边三角形的三个顶点,三角形边长为L ,忽略其他星体对它们的引力作用,三星在同一平面内绕三角形中心O 做匀速圆周运动,引力常量为G ,下列说法正确的是( )图7A.每颗星做圆周运动的角速度为GmL 3B.每颗星做圆周运动的加速度大小与三星的质量无关C.若距离L 和每颗星的质量m 都变为原来的2倍,则周期变为原来的2倍D.若距离L 和每颗星的质量m 都变为原来的2倍,则线速度变为原来的4倍 答案 C解析 任意两星间的万有引力F =G m 2L 2,对任一星受力分析,如图所示,由图中几何关系知r=33L ,F 合=2F cos 30°=3F ,由牛顿第二定律可得F 合=mω2r ,联立可得ω=3GmL 3,a n =ω2r =3Gm L 2,选项A 、B 错误;由周期公式可得T =2πω=2πL 33Gm,L 和m 都变为原来的2倍,则周期T ′=2T ,选项C 正确;由速度公式可得v =ωr =GmL,L 和m 都变为原来的2倍,则线速度v ′=v ,大小不变,选项D 错误.1.(卫星变轨问题)(2019·启东中学高一下学期期中)2019年春节期间,中国科幻电影里程碑的作品《流浪地球》热播,影片中为了让地球逃离太阳系,人们在地球上建造特大功率发动机,使地球完成一系列变轨操作,其逃离过程如图8所示,地球在椭圆轨道 Ⅰ 上运行到远日点B 变轨,进入圆形轨道 Ⅱ.在圆形轨道 Ⅱ 上运行到B 点时再次加速变轨,从而最终摆脱太阳束缚.对于该过程,下列说法正确的是( )图8A.沿轨道 Ⅰ 运动至B 点时,需向前喷气减速才能进入轨道 ⅡB.沿轨道Ⅰ运行的周期小于沿轨道Ⅱ运行的周期C.沿轨道 Ⅰ 运行时,在A 点的加速度小于在B 点的加速度D.在轨道 Ⅰ 上由A 点运行到B 点的过程,速度逐渐增大 答案 B2.(卫星、飞船的对接问题)如图9所示,我国发射的“神舟十一号”飞船和“天宫二号”空间实验室于2016年10月19日自动交会对接成功.假设对接前“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是( )图9A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C.飞船先在比空间实验室轨道半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.飞船先在比空间实验室轨道半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接 答案 C解析 飞船在同一轨道上加速追赶空间实验室时,速度增大,所需向心力大于万有引力,飞船将做离心运动,不能实现与空间实验室的对接,选项A 错误;空间实验室在同一轨道上减速等待飞船时,速度减小,所需向心力小于万有引力,空间实验室将做近心运动,也不能实现对接,选项B 错误;当飞船在比空间实验室半径小的轨道上加速时,飞船将做离心运动,逐渐靠近空间实验室,可实现对接,选项C 正确;当飞船在比空间实验室半径小的轨道上减速时,飞船将做近心运动,远离空间实验室,不能实现对接,选项D 错误.3.(双星问题)冥王星与其附近的另一星体卡戎可视为双星系统,冥王星与星体卡戎的质量之比约为7∶1,同时绕它们连线上某点O 做匀速圆周运动,由此可知,冥王星绕O 点运动的( ) A.轨道半径约为卡戎的17B.角速度约为卡戎的17C.线速度大小约为卡戎的7倍D.向心力大小约为卡戎的7倍 答案 A解析 双星系统内的两颗星运动的角速度相等,B 错误;双星的向心力为二者间的万有引力,所以向心力大小相等,D 错误;根据m 1ω2r 1=m 2ω2r 2,得r 1r 2=m 2m 1=17,A 正确;根据v =ωr ,得v 1v 2=r 1r 2=17,C 错误. 4.(双星问题)(多选)宇宙中两颗相距很近的恒星常常组成一个双星系统.它们以相互间的万有引力彼此提供向心力,从而使它们绕着某一共同的圆心做匀速圆周运动,若已知某双星系统的运转周期为T ,两星到共同圆心的距离分别为R 1和R 2,引力常量为G ,那么下列说法正确的是( )A.这两颗恒星的质量必定相等B.这两颗恒星的质量之和为4π2(R 1+R 2)3GT 2C.这两颗恒星的质量之比m 1∶m 2=R 2∶R 1D.其中必有一颗恒星的质量为4π2R 1(R 1+R 2)2GT 2答案 BCD解析 两星有共同的周期T ,由牛顿第二定律得G m 1m 2(R 1+R 2)2=m 14π2T 2R 1=m 24π2T 2R 2,所以两星的质量之比m 1∶m 2=R 2∶R 1,故A 错误,C 正确;由上式可得m 1=4π2R 2(R 1+R 2)2GT 2,m 2=4π2R 1(R 1+R 2)2GT 2,m 1+m 2=4π2(R 1+R 2)3GT 2,故B 、D 正确.一、选择题1.(2019·江苏卷)1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动.如图1所示,设卫星在近地点、远地点的速度分别为v 1、v 2,近地点到地心的距离为r ,地球质量为M ,引力常量为G .则( )图1A.v 1>v 2,v 1=GMr B.v 1>v 2,v 1>GMr C.v 1<v 2,v 1=GMrD.v 1<v 2,v 1>GMr答案 B解析 根据开普勒第二定律知,v 1>v 2,在近地点画出近地圆轨道,由GMm r 2=m v 2r 可知,过近地点做匀速圆周运动的速度为v =GMr,由于“东方红一号”在椭圆轨道上运动,所以v 1>GMr,故B 正确.2.(2019·北京市石景山区一模)两个质量不同的天体构成双星系统,它们以二者连线上的某一点为圆心做匀速圆周运动,下列说法正确的是( ) A.质量大的天体线速度较大 B.质量小的天体角速度较大 C.两个天体的向心力大小一定相等 D.两个天体的向心加速度大小一定相等 答案 C解析 双星系统的结构是稳定的,故它们的角速度相等,故B 项错误;两个星球间的万有引力提供向心力,根据牛顿第三定律可知,两个天体的向心力大小相等,而天体质量不一定相等,故两个天体的向心加速度大小不一定相等,故C 项正确,D 错误;根据牛顿第二定律有: G m 1m 2L 2=m 1ω2r 1,Gm 1m 2L 2=m 2ω2r 2,其中r 1+r 2=L 故r 1=m 2m 1+m 2L ,r 2=m 1m 1+m 2L ,故v 1v 2=r 1r 2=m 2m 1故质量大的天体线速度较小,故A 错误.3.(2019·定州中学期末)如图2,“嫦娥三号”探测器经轨道 Ⅰ 到达P 点后经过调整速度进入圆轨道 Ⅱ,再经过调整速度变轨进入椭圆轨道Ⅲ,最后降落到月球表面上.下列说法正确的是( )图2A.“嫦娥三号”在地球上的发射速度大于11.2 km/sB.“嫦娥三号”由轨道Ⅰ经过P点进入轨道Ⅱ时要加速C.“嫦娥三号”在轨道Ⅲ上经过P点的速度大于在轨道Ⅱ上经过P点的速度D.“嫦娥三号”稳定运行时,在轨道Ⅱ上经过P点的加速度与在轨道Ⅲ上经过P点的加速度相等答案D4.(2019·长丰县二中期末)如图3所示,发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火使其沿椭圆轨道2运行,最后再次点火将卫星送入同步圆轨道3.轨道1、2相切于Q点,轨道2、3相切于P点,则当卫星分别在1、2、3轨道正常运行时,下列说法中不正确的是()图3A.卫星在轨道3上的周期小于在轨道1上的周期B.卫星在轨道3上的速率小于在轨道1上的速率C.卫星在轨道2上运行时,经过Q点时的速率大于经过P点时的速率D.卫星在轨道2上运行时,经过Q点时加速度大于经过P点的加速度答案A解析根据开普勒第三定律r3T2=k知,卫星的轨道半径越大,则周期也越大,故卫星在轨道3上的周期大于在轨道1上的周期,故A不正确;由卫星运行时所受万有引力提供向心力,即GMmr2=m v2r,可知v=GMr,因此卫星的轨道半径越大,运行速率越小,则卫星在轨道3上的速率小于在轨道1上的速率,故B正确;根据开普勒第二定律知,卫星在轨道2上运行时,从Q点向P点运动,速度逐渐减小,经过Q点时的速率大于经过P点时的速率,故C 正确;卫星离地面越远,万有引力越小,根据牛顿第二定律,加速度也越小,故卫星在轨道2上运行时经过Q点时加速度大于经过P点的加速度,故D正确.5.(2019·杨村一中期末)如图4所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕其连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1∶m 2=3∶2,下列说法中正确的是( )图4A.m 1、m 2做圆周运动的线速度大小之比为3∶2B.m 1、m 2做圆周运动的角速度之比为3∶2C.m 1做圆周运动的半径为25LD.m 2做圆周运动的半径为25L答案 C解析 设双星m 1、m 2距转动中心O 的距离分别为r 1、r 2,双星绕O 点转动的角速度均为ω,据万有引力定律和牛顿第二定律得G m 1m 2L 2=m 1r 1ω2=m 2r 2ω2,又r 1+r 2=L ,m 1∶m 2=3∶2,解得r 1=25L ,r 2=35Lm 1、m 2运动的线速度大小分别为v 1=r 1ω,v 2=r 2ω 故v 1∶v 2=r 1∶r 2=2∶3.综上所述,选项C 正确.6.(2019·榆树一中期末)如图5所示,我国发射“神舟十号”飞船时,先将飞船发送到一个椭圆轨道上,其近地点M 距地面200 km ,远地点N 距地面340 km.进入该轨道正常运行时,通过M 、N 点时的速率分别是v 1和v 2,加速度大小分别为a 1和a 2.当某次飞船通过N 点时,地面指挥部发出指令,点燃飞船上的发动机,使飞船在短时间内加速后进入离地面340 km 的圆形轨道,开始绕地球做匀速圆周运动,这时飞船的速率为v 3,加速度大小为a 3,比较飞船在M 、N 、P 三点正常运行时(不包括点火加速阶段)的速率和加速度大小,下列结论正确的是( )图5A.v 1>v 3>v 2,a 1>a 3>a 2B.v 1>v 2>v 3,a 1>a 2=a 3C.v 1>v 2=v 3,a 1>a 2>a 3D.v 1>v 3>v 2,a 1>a 2=a 3 答案 D解析 根据万有引力提供向心力,即GMm r 2=ma n 得:a n =GMr 2,由题图可知r 1<r 2=r 3,所以a 1>a 2=a 3;当某次飞船通过N 点时,地面指挥部发出指令,点燃飞船上的发动机,使飞船在短时间内加速后进入离地面340 km 的圆形轨道,所以v 3>v 2,假设飞船在半径为r 1的圆轨道上做匀速圆周运动,经过M 点时的速率为v 1′,根据GMm r 2=m v 2r得:v =GMr,又因为r 1<r 3,所以v 1′>v 3,飞船在圆轨道M 点时需加速才能进入椭圆轨道,则v 1>v 1′,故v 1>v 3>v 2,故选D.7.我国未来将建立月球基地,并在绕月轨道上建造空间站.如图6所示,关闭发动机的航天飞机仅在月球引力作用下沿椭圆轨道向月球靠近,并将在椭圆的近月点B 处与空间站对接.已知空间站C 绕月轨道半径为r ,周期为T ,引力常量为G ,月球的半径为R ,忽略月球自转.那么以下选项正确的是( )图6A.月球的质量为4π2r 3GT2B.航天飞机到达B 处由椭圆轨道进入空间站圆轨道时必须加速C.航天飞机从A 处到B 处做减速运动D.月球表面的重力加速度为4π2RT 2答案 A解析 设空间站质量为m ,在圆轨道上,由G mM r 2=m 4π2r T 2,得M =4π2r 3GT 2,A 正确;要使航天飞机在椭圆轨道的近月点B 处与空间站C 对接,必须在B 点时减速,否则航天飞机将继续做椭圆运动,B 错误;航天飞机飞向B 处,根据开普勒第二定律可知,向近月点靠近做加速运动,C 错误;月球表面物体重力等于月球对物体的引力,则有mg 月=G Mm R 2,可得g 月=GMR 2=4π2r 3R 2T 2,D 错误. 8.(多选)如图7所示,在嫦娥探月工程中,设月球半径为R ,月球表面的重力加速度为g 0.飞船在半径为4R 的圆形轨道Ⅰ上运动,到达轨道的A 点时点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B 时,再次点火进入近月轨道Ⅲ绕月球做圆周运动,忽略月球的自转,则( )图7A.飞船在轨道Ⅲ上的运行速率大于g 0RB.飞船在轨道Ⅰ上的运行速率小于在轨道Ⅱ上B 处的运行速率C.飞船在轨道Ⅰ上的向心加速度小于在轨道Ⅱ上B 处的向心加速度D.飞船在轨道Ⅰ、轨道Ⅲ上运行的周期之比T Ⅰ∶T Ⅲ=4∶1 答案 BC解析 由m v 2R =mg 0知,v =g 0R ,即飞船在轨道Ⅲ上的运行速率等于g 0R ,A 错误;由v =GMr 知,v Ⅰ<v Ⅲ,而飞船在轨道Ⅱ上的B 点做离心运动,有v ⅡB >v Ⅲ,则有v ⅡB >v Ⅰ,B 正确;由a n =GMr 2知,飞船在轨道Ⅰ上的向心加速度小于在轨道Ⅱ上B 处的向心加速度,C 正确;由T =2πr 3GM知,飞船在轨道Ⅰ、轨道Ⅲ上运行的周期之比T Ⅰ∶T Ⅲ=8∶1,D 错误. 9.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做匀速圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时匀速圆周运动的周期为( ) A.n 3k 2T B.n 3k T C.n 2kT D.n kT 答案 B解析 设两恒星的质量分别为m 1、m 2,距离为L , 双星靠彼此的引力提供向心力,则有 G m 1m 2L 2=m 1r 14π2T 2 G m 1m 2L 2=m 2r 24π2T 2 并且r 1+r 2=L 解得T =2πL 3G (m 1+m 2)当两星总质量变为原来的k 倍,两星之间距离变为原来的n 倍时T ′=2πn 3L 3Gk (m 1+m 2)=n 3kT 故选项B 正确.10.(多选)(2019·雅安中学高一下学期期中)国际研究小组借助于智利的甚大望远镜,观测到了一组双星系统,它们绕两者连线上的某点O 做匀速圆周运动,如图8所示,此双星系统中体积较小成员能“吸食”另一颗体积较大星体表面物质,达到质量转移的目的,被吸食星体的质量远大于吸食星体的质量.假设在演变的过程中两者球心之间的距离保持不变,则在最初演变的过程中( )图8A.它们做圆周运动的万有引力保持不变B.它们做圆周运动的角速度不断变大C.体积较大星体圆周运动轨迹半径变大D.体积较大星体圆周运动的线速度变大 答案 CD解析 由F =Gm 1m 2L 2知F 增大,A 错误;设体积较小者质量为m 1,轨迹半径为r 1,体积较大者质量为m 2,轨迹半径为r 2,则有Gm 1m 2L 2=m 1ω2r 1,Gm 1m 2L 2=m 2ω2r 2得:ω=G (m 1+m 2)L 3,因m 1+m 2及L 不变,故ω不变,B 错误;半径r 2=Gm 1ω2L 2,因m 1增大,故r 2变大,C 正确;线速度大小v 2=ωr 2,变大,D 正确.11.(2019·扬州中学模拟)进行科学研究有时需要大胆的想象,假设宇宙中存在一些离其他恒星较远的、由质量相等的四颗星组成的四星系统(忽略其他星体对它们的引力作用),这四颗星恰好位于正方形的四个顶点上,并沿外接于正方形的圆形轨道运行,若此正方形边长变为原来的一半,要使此系统依然稳定存在,星体的角速度应变为原来的( ) A.1倍 B.2倍 C.12倍 D.22倍答案 D解析 设正方形边长为L ,每颗星的轨道半径为r =22L ,对其中一颗星受力分析,如图所示,由合力提供向心力:2×Gm 2L 2cos 45°+Gm 22L2=mω2r得:ω=(2+22)Gm L L,所以当边长变为原来的一半,星体的角速度变为原来的22倍,故D 项正确. 二、非选择题12.中国自行研制、具有完全自主知识产权的“神舟号”飞船,目前已经达到或优于国际第三代载人飞船技术,其发射过程简化如下:飞船在酒泉卫星发射中心发射,由长征运载火箭送入近地点为A 、远地点为B 的椭圆轨道上,A 点距地面的高度为h 1,飞船飞行5圈后进行变轨,进入预定圆轨道,如图9所示.设飞船在预定圆轨道上飞行n 圈所用时间为t ,若已知地球表面重力加速度为g ,地球半径为R ,忽略地球的自转,求:图9(1)飞船在B 点经椭圆轨道进入预定圆轨道时是加速还是减速; (2)飞船经过椭圆轨道近地点A 时的加速度大小; (3)椭圆轨道远地点B 距地面的高度h 2. 答案 (1)加速 (2)gR 2(R +h 1)2 (3)3gR 2t 24n 2π2-R 解析 (2)在地球表面有mg =GMmR 2① 根据牛顿第二定律有:G Mm(R +h 1)2=ma A ②由①②式联立解得,飞船经过椭圆轨道近地点A 时的加速度大小为a A =gR 2(R +h 1)2(3)飞船在预定圆轨道上,由万有引力提供向心力,有G Mm (R +h 2)2=m 4π2T 2(R +h 2)③由题意可知,飞船在预定圆轨道上运行的周期为T =tn④由①③④式联立解得h 2=3gR 2t 24n 2π2-R . 13.(2019·厦门一中模拟)如图10所示,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知星球A 、B 的中心和O 三点始终共线,星球A 和B 分别在O 的两侧.引力常量为G .图10(1)求两星球做圆周运动的周期;(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A 和B ,月球绕其轨道中心运行的周期记为T 1.但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为T 2.已知地球和月球的质量分别为5.98×1024 kg 和7.35×1022 kg.求T 2与T 1两者平方之比.(计算结果保留四位有效数字) 答案 (1)2πL 3G (M +m )(2)1.012解析 (1)两星球围绕同一点O 做匀速圆周运动,其角速度相同,周期也相同,其所需向心力由两者间的万有引力提供,设A 、B 的轨道半径分别为r 1、r 2,由牛顿第二定律知: 对B 有:G Mm L 2=M 4π2T 2r 2对A 有:G Mm L 2=m 4π2T 2r 1又r 1+r 2=L 联立解得T =2πL 3G (M +m )(2)若认为地球和月球都围绕中心连线某点O 做匀速圆周运动,根据题意可知M 地=5.98×1024 kg ,m 月=7.35×1022 kg ,地月距离设为L ′,由(1)可知地球和月球绕其轨道中心的运行周期为T 1=2πL ′3G (M 地+m 月)若认为月球围绕地心做匀速圆周运动,由万有引力定律和牛顿第二定律得 GM 地m 月L ′2=m 月4π2T 22L ′解得T 2=2πL ′3GM 地则T2T1=M地+m月M地故T22T21=M地+m月M地≈1.012.。