向量同步练习
- 格式:doc
- 大小:338.00 KB
- 文档页数:3
2.4 向量的数量积(数学苏教版必修4)建议用时实际用时满分实际得分45分钟100分一、填空题(每小题5分,共30分)1. 已知a=(1,2),b=(-3,2),若k a+b与a-3b垂直,则k的值为.2. 已知向量a=(2cos ϕ,2sin ϕ),ϕ∈(π2,π),b=(0,-1),则a与b的夹角为.3. 设a、b是非零向量,若函数f(x)=(x a+b)·(a-x b)的图象是一条直线,则必有.(填正确的序号)○1a⊥b;○2a∥b;○3|a|=|b|;○4|a|≠|b|.4. 如果向量a与b的夹角为θ,那么我们称a×b 为向量a与b的“向量积”,a×b是一个向量,它的长度为|a×b|=|a||b|sin θ.如果|a|=5,|b|=1,a·b=-3,则|a×b|= .5.若平面向量a,b满足|a+b|=1,a+b平行于x轴,b=(2,-1),则a= .6. 设a=(4,-3),b=(2,1),若a+t b与b的夹角为45°,则t的值为.二、解答题(共70分)7.(15分)已知a=(-2,2),b=(5,m),若|a+b|不超过5,求m的取值范围.8.(20分)已知a=(2,3),b=(-3,5),求a在b方向上的投影. 9. (15分)已知a=(-4,-3),b=(-3,-2),c=2a+λb,d=-a+2λb,当实数λ为何值时,向量c-d与a垂直?10. (20分)四边形ABCD 中,AB=a ,BC =b ,CD =c ,DA=d ,且a ·b =b ·c =c ·d =d ·a ,试问四边形ABCD是什么图形?2.4 向量的数量积(数学苏教版必修4)答题纸得分:一、填空题1. 2. 3. 4. 5. 6.二、解答题7.8.9.10.2.4 向量的数量积(数学苏教版必修4)答案一、填空题1. 19 解析:k a +b =k (1,2)+(-3,2)=(k-3,2k+2), a -3b =(1,2)-3×(-3,2)=(10,-4). 又k a +b 与a -3b 垂直,故(k a +b )·(a -3b )=0, 即(k-3)·10+(2k+2)·(-4)=0,得k =19.2. 3π2-ϕ 解析:设a 与b 的夹角为θ,则 cos θ=∙a b a b =-2sin φ2=-sin ϕ=cos(π2+ϕ). ∵ϕ∈(π2,π),θ∈[0,π], ∴ cos θ=cos(π2+ϕ)=cos(3π2-ϕ).∴ θ=3π2-ϕ. 3. ○1 解析: f (x )=(x a+b )·(a-x b )=- a ·b x 2+(a 2-b 2)x+a ·b ,若函数f (x )的图象是一条直线,则其二次项系数为0,∴ a ·b =0,∴ a ⊥b .4. 4 解析:由于|a |=5,|b |=1,a ·b =|a ||b |cos θ=-3,所以cos θ=-35. 又因为θ为向量a 与b 的夹角,所以sin θ=45, 所以|a ×b |=|a ||b |sin θ=4.5. (-1,1)或(-3,1) 解析:设a =(x ,y ), 则a +b =(x+2,y-1),由题意得221,(2)(1)1,1310y x y x y =⎧++-=⎧⇒⎨⎨=---=⎩⎩或,∴ a =(-1,1)或(-3,1).6.1 解析:∵ a =(4,-3),b =(2,1), ∴ a +t b =(4+2t ,-3+t ). ∵ a +t b 与b 的夹角为45°, ∴ (a +t b )·b =|a +t b |·|b |·cos 45°,∴ (4+2t )×2+(-3+t )=222212t t ⨯+⨯22(4+2)+(-3+), ∴ 5t+5=252252t t ++. ∴225t t ++=(t+1).①将①式两边平方得t 2+2t-3=0,解得t =1或t =-3. 而t =-3时①式无意义,∴ t =-3舍去,取t =1.二、解答题7.解:由a +b =(3,2+m ),|a +b |≤5, 得9+(2+m )2≤25.解得-6≤m ≤2. 8.解:∵ a ·b =2×(-3)+3×5=9,|b |=22(3)5-+=,∴ |a |cos θ=∙a b b =93434. 9.解:因为c =2a +λb ,d =-a +2λb ,所以c -d =(2a +λb )-(-a +2λb )=3a -λb . 又a =(-4,-3),b =(-3,-2),所以c -d =3(-4,-3)-λ(-3,-2)=(-12+3λ,-9+2λ).又(c -d )⊥a ,所以(-12+3λ)×(-4)+(-9+2λ)×(-3)=0.解得λ=256. 10.解:因为a +b +c +d =0,所以a +b =-(c +d ).所以(a +b )2=(c +d )2. 即|a |2+2a ·b +|b |2=|c |2+2c ·d +|d |2. 由于a ·b =c ·d ,所以|a |2+|b |2=|c |2+|d |2.① 同理,有|a |2+|d |2=|c |2+|b |2.② 由①②可得|a |=|c |,且|b |=|d |, 即四边形ABCD 两组对边分别相等. 所以四边形ABCD 是平行四边形. 又由a ·b =b ·c 得b ·(a -c )=0.而由平行四边形ABCD 的性质得a =-c , 代入上式得b ·(2a )=0,即a ·b =0. 所以a ⊥b .亦即AB ⊥BC .综上所述,四边形ABCD 是矩形.。
9.3.3 向量平行的坐标表示(同步训练)-高中数学苏教版(2019)必修二一、选择题1.已知()1,m x = ,(),2n x = ,若//m n,则x =( )2.已知向量()3,a m = ,11,3b ⎛⎫=- ⎪⎝⎭ .若//a b,则实数m =( )A.1B.1-C.9D.9-3.已知向量()2,1a = ,()2,b m m =- ,若//a b,则m =( ).A.4- B.2- C.2D.44.已知向量(),4a m = ,()3,2b =- ,且//a b,则m =( )A.6B.-835.已知向量()1,0a = ,()1,1b =,()()//a b a b λμ+-,则( )A.1λμ+= B.0λμ+= C.1λμ= D.1λμ=-6.已知向量(1,)a λ= ,(,2)b μ=- ,且a 与b共线,则( )=-2= C.2λμ=- D.2λμ=二、多项选择题7.下列说法中,正确的有( )A.若0a λ=,则0a = B.若ab λ=,则//a bC.若0a b λμ+=,则//a bD.若AB AC λ→→=,则A ,B ,C 三点共线8.已知向量()1,3OA =- ,()2,1OB =- ,()1,2m C m O =+-,若点A ,B ,C能构成三角形,则实数m 可以是( ) C.1 D.-1三、填空题9.若向量()2,3a =- ,()1,2b m =+ ,且//a b,则m =__________.10.已知向量()1,1a x x =-+ ,()2,1b =- ,若//a b,则实数x =_____________.11.已知()4,2a = ,()6,b y = ,且//a b ,则y =___________.四、解答题12.已知向量()1,2a =- ,()3,2b =.(1)若2ka b - 与2a b +垂直,求实数k 的值;(2)已知O ,A ,B ,C 为平面内四点,且2OA a b =+ ,3OB a b =+ ,()3,2OC m m =-.若A ,B ,C 三点共线,求实数m 的值.13.已知向量(3,1)a =- ,(1,2)b =- ,m a kb =+,()k ∈R (1)若向量m 与a垂直,求实数k 的值(2)当k 为何值时,向量m 与a b +平行.参考答案1.答案:C解析:因为()1,m x = ,(),2n x = ,//m n,所以2120x ⨯-=,解得x =故选:C.2.答案:B解析:因为向量()3,a m = ,11,3b ⎛⎫=- ⎪⎝⎭ ,且//a b,得()1313m ⨯=-⨯,得m =1-.故选:B.3.答案:B解析:()2,1a = ,()2,b m m =-,由//a b可得22m m =-,解得2m =-.故选:B.4.答案:B解析:向量(),4a m = ,()3,2b =- ,且//a b,2430m ∴--⨯=,解得6m =-.故选:B.5.答案:B解析:因为()1,0a = ,()1,1b =,所以()1,a b λλλ+=+ ,()1,a b μμμ-=--,因为()()//a b a b λμ+-,所以()()()110λμλμ+---=,则0λμ+=.故选:B.6.答案:C解析:向量(1,)a λ= ,(,2)b μ=- ,且a 与b共线,则()12λμ⨯-=,所以2λμ=-.7.答案:BD解析:A 选项中0λ=也成立,故错误;B 选项中当0λ=时,0a = ,0 与任一向量平行,当0λ≠时,//a b,故正确;C 选项中0λμ==时不平行,故错误;D 选项依据共线定理可知正确.故选:BD.8.答案:ABD解析:因为(2,1)(1,3)(1,2)AB OB OA =-=---=,(1,2)(1,3)(,1)AC OC OA m m m m =-=+---=+.假设A ,B ,C 三点共线,则()1120m m ⨯+-=,即1m =.所以只要1m ≠,则A ,B ,C 三点即可构成三角形.故选:ABD.9.答案:73-解析:由题意得()314m +=-,解得m =10.答案:解析: //a b ,()1,1a x x =-+ ,()2,1b =- ,1220x x ∴-++=,x ∴=11.答案:3解析:因为()4,2a = ,()6,b y = ,且//a b,所以4260y -⨯=,则3y =.故答案为:3.12.答案:(1)k =(2)2m =解析:(1)()()()21,223,26,42ka b k k k -=--=---,则()()()221,23,25,2a b +=-+=-,因为2ka b - 与2a b +垂直,所以()()562420k k ----=,解得k =(2)()()()21,223,27,2OA a b =+=-+=,()()()331,23,26,4OB a b =+=-+=-,()()()6,47,21,6AB OB OA =-=--=--,()()()3,27,237,22AC OC OA m m m m =-=--=---,因为A ,B ,C 三点共线,所以//AB AC.所以()()122637m m -⨯--=-⨯-,解得2m =.13.答案:答案:(1)2(2)1解析:(1)由已知可得(3,12)m k k =-+-,因为向量m 与a垂直,所以3(3)1(12)0k k -⨯-++⨯-=,解得2k =;(2)(2,1)a b +=-- ,因为m 与a b +平行,所以2(12)1(3)k k -⨯-=-⨯-+,解得1k =,所以当1k =时,向量m 与a b +平行。
1.对空间任意两个向量→-a ,→-b (→-b ≠→-0),→-a ∥→-b 的充要条件是 ( )A 、→-b =λ→-aB 、→-a =λ→-bC 、→-a =→-bD 、→-a =-→-b2.在空间四边形ABCD 中,M ,G 分别是BC ,CD 的中点,则21AB +→--(→--BD +→--BC )等于 ( )A 、→--ADB 、→--GAC 、→--AGD 、→--MG3.已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点 A 、B 、C 一定共面的是 ( ) A .OC OB OA OM ++=B .OC OB OA OM --=2C .OC OB OA OM 3121++=D .OC OB OA OM 313131++=4.对空间任意两个向量b a o b b a //),(,≠的充要条件是 ( )A .b a =B .b a -=C .a b λ=D .b a λ=5.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) (A )0 (B )1 (C )2 (D )36.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) (A )+-a b c (B )-+a b c (C )-++a b c (D )-+-a b c7.平行六面体ABCD —A 1B 1C 1D 1中,+→--AB →--11C B +→--1DD =____________ 。
8.如果两个向量→-a ,→-b 不共线,则→-p 与→-a ,→-b 共面的充要条件是____ ________。
9.4 向量应用(同步训练)-高中数学苏教版(2019)必修二一、选择题1.已知O 是ABC △2OC OB OC-=+- ABC 一定为( )A.以BC 为底边的等腰三角形B.以AB 为底边的等腰三角形C.以BC 为斜边的直角三角形D.以AB 为斜边的直角三角形2.如图,已知O 是ABC △的垂心,且230OA OB OC ++=,则tan :tan :tan BAC ABC ACB ∠∠∠等于( )A.1:2:3B.1:2:4C.2:3:4D.2:3:63.如果一架飞机向西飞行400km ,再向东飞行500km ,记飞机飞行的路程为s ,位移为a ,那么||s -=a ( )A.800kmB.700kmC.600kmD.500km4.已知,,||||4c a c a ++-=,2650d b d -⋅+= ,则||c d - 的最大值为( )+2+5.某校的八角形校徽由两个正方形叠加变形而成,寓意“方方正正做人”,又寄托南开人“面向四面八方,胸怀博大,广纳新知,锐意进取”之精神.如图,在抽象自“南开校徽”的多边形中,已知其由一个正方形与以该正方形中心为中心逆时针旋转45︒后的正方形组合而成,已知向量n ,k ,则向量=a ( )||a = |1b = 0a b ⋅=A.23+n kB.(23++n kC.(2(2++n kD.(1(2++n k6.如图,圆O 是边长为4的正方形ABCD 的内切圆,PQR △是圆O 的内接正三角形,若PQR △绕着圆心O 旋转,则AQ OR ⋅的最大值是( )A.2++1+2+二、多项选择题7.已知ABC △是边长为1的等边三角形,点D 在边AC 上,且3AC AD =,点E 是BC 边上任意一点(包含B ,C .点),则AE BD ⋅的取值可能是( )A.8.瑞士数学家欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:“三角形的外心、垂心和重心都在同一直线上,而且外心和重心的距离是垂心和重心距离之半,”这就是著名的欧拉线定理.设ABC △中,点O 、H 、G 分别是外心、垂心和重心,下列四个选项中结论正确的是( )A.2GH OG =B.0GA GB GC ++=C.OH OA OB OC=++ D.OA OB OC== 三、填空题9.一个所受重力大小为20N 的物体从倾斜角为30︒,斜面长1m 的光滑斜面顶端下滑到底端,则重力做的功是__________.10.如图所示,一个物体被两条轻质细绳拉住,且处于平衡状态,已知两条绳上的拉力分别是1F ,2F ,且1F ,2F 与水平夹角均为45N ,则物体的重力大小为__________N.11.已知等边ABC △的外接圆O 的面积为36π,动点M 在圆O 上,若MA MB MB MC λ⋅+⋅≤,则实数λ的取值范围为________________.四、解答题12.如图,在ABC △中,已知2AB =,5AC =,60BAC ∠=︒,BC ,AC 边上的两条中线AM ,BM 相交于点P ,求MPN ∠的余弦值.13.用向量的方法证明梯形的中位线定理:梯形两腰中点的连线等于两底边和的一半,且平行于上、下两底边.参考答案1.答案:C2OC OB OC-=+-+AC AB -=+ 2AC AB -=+ 2222AB AC AB AC AB AC ⋅=++⋅ ,所以0AB AC ⋅=,则AB AC ⊥,所以ABC △是以BC 为斜边的直角三角形.故选:C.2.答案:A解析:O 是ABC △的垂心,延长,BO ,分别交边AB ,,BC 于点P ,M ,N,如图,则,BM AC ⊥,,BOP BAC ∠=∠,,12tantan 21OP BOP O OC BPBP AP OCAP P AOP ⋅∠===∠⋅==于是得tan :tan :tan ::BOC AOC AOB BAC ABC ACB S S S ∠∠∠=△△△,又230OA OB OC ++= ,由“奔驰定理”有0BOC AOC AOB S OA S OB S OC ⋅+⋅+⋅=△△△,即::1:2:3BOC AOC AOB S S S =△△△,所以tan :tan :tan 1:2:3BAC ABC ACB ∠∠∠=,故选:A.3.答案:ACO AO AC CP AB ⊥AN BC ⊥AOP ABC ∠=∠解析:依题意,400500900(km)s =+=,||100km =a ,所以||900100800(km)s -=-=a .故选A.4.答案:C 解析:如图所示,不妨设a OA ==,(0,1)b OB ==,(,)OC m n = ,(,)OD p q = ,1(A ,满足||a =|1b = ,0a b ⋅= ,又||||c a c a ++-=1422||a c A A +==>==,由椭圆的定义可知点C 在以1A ,A 为焦点,长轴长为4的椭圆上运动,2a =,c ====21y +=,而2650d b d -⋅+= ,即22650p q q +-+=,即,这表明了点D 在圆上面运动,其中点为圆心,为半径,,等号成立当且仅当C ,D ,E 三点共线,故只需求上面运动,所以不妨设,则||CE ===所以当6sin 12(3)θ-=-=-⨯-,且C ,D ,E 三点共线时,||c d - 有最大值,max ||226CE +=+=.故选:C.22(3)4p q +-=22(3)4x y +-=(0,3)E 2r =2d OC OD CD CE ED CE =-=≤+=+|CE 21y =(2cos ,sin )C θθ5.答案:D解析:根据题意可得||||=n k .图形是以正方形中心为中心将正方形逆时针旋转45︒后与原正方形组合而成,如图.由对称性可得||||||||||||AB BC CD DE EQQF =====,|||||||||CE EF FG AB ====n ,点B ,C ,E ,Q共线,点Q ,F ,G 共线,所以(2BQ BC CE EQ =++=k ,(1QG QF FG =+=n ,所以(2(1BQ QG =+=++a k n .故选D.6.答案:D解析:由题意,可得,又由[0,π]AOR ∠∈,所以,又因为2π22cos 23OQ OR ⋅=⨯⨯=- ,所以,所以AQ OR ⋅的最大值为7.答案:AB解析:设BC 的中点为O ,以点O 为坐标原点,BC ,OA 所在直线分别为x ,y 轴,建立如图所示的平面直角坐标系xOy ,2cos OA OR AOR AOR ⋅=⨯∠=∠[AOR ∠∈-()2[22AQ OR OQ OA OR AOR ⋅=-⋅=--∠∈---+2-+由于ABC △是边长为1的等边三角形,且3AC AD =,所以1,02B ⎛⎫- ⎪⎝⎭,A ⎛ ⎝,16D ⎛ ⎝设(),0E x ,则1122x -≤≤,所以,AE x ⎛= ⎝,23BD ⎛= ⎝,所以21113222AE BD x x ⎛⎫⋅=--≤≤ ⎪⎝⎭ ,所以521632x -≤-≤即51,66AE BD ⎡⎤⋅∈--⎢⎥⎣⎦,故选:AB.8.答案:ABC 解析:如图:根据欧拉线定理可知,点O 、H 、G 共线,且2GH OG =.对于A,2GH OG = ,2GH OG ∴=,故A 正确;对于B,G 是重心,则延长AG 与BC 的交点D 为BC 中点,且2AG GD =,则20GA GB GC GA GD ++==+,故B 正确;对于C,233()3232()33OH OG AG AO AD AO AD AO AO OD AO⎛⎫==-=-=-=+- ⎪⎝⎭2OD AO=-OB OC OA =++,故C 正确;对于D,OA OB OC ==显然不正确.故选:ABC.9.答案:10J解析:因为物体的重力为20N,物体在重力方向上的位移大小是11sin 30(m)2⨯︒=,2010(J)=.10.答案:解析:一个物体被两条轻质细绳拉住,且处于平衡状态,所以重力为,与水平夹角均为,所以由向量加法的平行四边形法可知,所以物体的重力大小为.11.答案:[)72,+∞解析:依题意,设ABC △的外接圆的半径为R ,则2π36πR =,故6R =,在等边ABC △12=,则AB =取线段AC 的中点N ,连接BN ,则9BN AB ==,所以()2MA MB MB MC MB MA MC MB MN ⋅+⋅=⋅+=⋅ ;取线段BN 的中点P ,连接BP ,则O 在线段BN 上,且133ON BN ==,所以93322OP NP ON =-=-=,1||=+G F 1F 2F 45N 12+F F 212cos 45210+=︒=⨯=F F N则2214MB MN MP BN ⋅=- 又()2222362MP MP MO OP ⎛⎫=≤+=+= ⎪⎝⎭ 故225813644MB MN ⋅≤-=,则72λ≥.故答案为:[)72,+∞.12解析: M ,N 分别是BC ,AC 的中点,1()2AM AB AC ∴=+ ,12BN AN AB AC AB =-=- .AM 与BN 的夹角等于MPN ∠,cos ||||AM BNMPN AM BN ⋅∴∠=.11()22AM BN AB AC AC AB ⎛⎫⋅=+⋅- ⎪⎝⎭ 2211114242AB AC AB AC AB AC =⋅-+-⋅2211125cos 60253424=-⨯⨯⨯︒-⨯+⨯=,||AM ===,||BN ===,cos MPN ∴∠==13.答案:证明见解析解析:证明:因为,,EF ED DC CF EF EA AB BF ⎧=++⎪⎨=++⎪⎩所以1()2EF ED DC CF EA AB BF =+++++ .又因为E ,F 分别为AD ,BC 的中点,则ED EA +=0 ,CF BF +=0,所以1()2EF AB DC =+ .因为AB ,DC共线且同向,所以1||(||||)2EF AB DC =+ .不妨设(0)AB DC λλ=≠,则11()(1)22EF DC DC DC λλ=+=+ ,所以//EF DC .又EF ,CD 无公共点,所以//EF DC .同理.所以梯形的中位线定理即证.//EF AB。
用向量讨论平行与垂直同步练习题一、选择题1.直线l 的方向向量,平面α的法向量分别是a =(3,2,1),u =(-1,2,-1),则l 与α的位置关系是( )A .l ⊥αB .l ∥αC .l 与α相交但不垂直D .l ∥α或l ⊂α2.若两个不同平面α,β的法向量分别为u =(2,1,-1),v =(3,2,8),则( )A .α∥βB .α⊥βC .α,β相交不垂直D .以上均不正确3.平面α的一个法向量为(1,2,0),平面β的一个法向量为(2,-1,0),则平面α与平面β的位置关系是( )A .平行B .相交但不垂直C .垂直D .不能确定 4.已知a =(2,4,5),b =(3,x ,y)分别是直线l 1、l 2的方向向量,若l 1∥l 2,则( )A .x =6,y =15B .x =3,y =152C .x =3,y =15D .x =6,y =1525.若直线l 的方向向量为a =(1,0,2),平面α的法向量为u =(-2,0,-4),则( )A .l∥αB .l⊥αC .l αD .l 与α斜交 6.若直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的可能是( ) A .a =(1,0,0),n =(-2,0,0) B .a =(1,3,5),n =(1,-2,1)C .a =(0,2,1),n =(-1,0,-1)D .a =(1,-1,3),n =(0,3,-1)7.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k 等于( ) A .2 B .-4 C .4 D .-2 8.已知直线l 1的方向向量a =(2,4,x ),直线l 2的方向向量b =(2,y,2),若|a |=6,且a⊥b ,则x +y 的值是( )A .-3或1B .3或-1C .-3D .1 9.已知A 、B 、C 三点的坐标分别为A (4,1,3),B (2,-5,1),C (3,7,λ),若AB ⊥AC ,则λ等于( ) A.28 B.-28 C.14 D.-14 10.在正方体ABCD -A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于( )A .ACB .BDC .A 1D D .A 1A 二、填空题11.设a ,b 分别是直线l 1,l 2的方向向量,根据下列条件判断直线l 1,l 2的位置关系: (1)a =(2,3,-1),b =(-6,-9,3),l 1与l 2__ __;(2)a =(-2,1,4),b =(6,0,3),l 1与l 2__ _____.12.平面α,β的法向量分别为m =(1,2,-2),n =(-2,-4,k ),若α⊥β,则k 等于_______. 13.已知A (1,0,1),B (0,1,1),C (1,1,0),则平面ABC 的一个法向量为________.14.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0), AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是_______.15.若A ⎝⎛⎭⎪⎫0,2,198,B ⎝ ⎛⎭⎪⎫1,-1,58,C ⎝ ⎛⎭⎪⎫-2,1,58是平面α内三点,设平面α的法向量为a =(x ,y ,z ),则x ∶y ∶z =________.16.已知A(1,1,-1),B(2,3,1),则直线AB 的模为1的方向向量是_____________. 三、解答题17.已知平面α经过三点A(1,2,3),B(2,0,-1), C(3,-2,0),试求平面α的一个法向量.18.已知正方体ABCD -A 1B 1C 1D 1中,求证:(1)AD 1∥平面BDC 1;(2)A 1C ⊥平面BDC 1.19.已知四棱锥P -ABCD 的底面是直角梯形,AB ∥DC ,∠DAB =90°,PD ⊥底面ABCD ,且PD =DA =CD =2AB =2,M 点为PC 的中点.(1)求证:BM ∥平面PAD ; (2)在平面PAD 内找一点N ,使MN ⊥平面PBD .20.在正方体1111D C B A ABCD -中,O 是11D B 的中点,求证:11//ODC C B 面.21.在正方体1111D C B A ABCD -中,F E ,分别是棱BC AB ,的中点,试在棱1BB 上找一点M ,使得M D 1⊥平面1EFB .22.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E 、F 分别是BB 1、DD 1的中点,求证:(1)FC 1∥平面ADE ;(2)平面ADE∥平面B 1C 1F.23.在棱长为1的正方体AC 1中,O 1为B 1D 1的中点.求证:(1)B 1D ⊥平面ACD 1;(2)BO 1∥平面ACD 1.24.在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点. (1)求证:EF ⊥CD ;(2)在平面PAD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论.。
1.2 空间向量基本定理同步练习一、单选题1.{},,a b c 为空间向量的一组基底,则下列各项中,能构成空间向量的基底的一组向量是( )A .{},,a a b a b +-B .{},,b a b a b +-C .{},,c a b a b +-D .{},,2a b a b a b +-+【答案】C【解析】对于A ,因为()()2a b a b a ++-=,所以,,a a b a b +-共面,不能构成基底,排除A , 对于B ,因为)()2a b a b b +--=(,所以,,b a b a b +-共面,不能构成基底,排除B , 对于D ,312()()22a b a b a b +=+--,所以,,2a b a b a b +-+共面,不能构成基底,排除D , 对于C ,若,,c a b a b +-共面,则()()()()c a b a b a b λμλμλμ=++-=++-,则,,a b c 共面,与{},,a b c 为空间向量的一组基底相矛盾,故,,c a b a b +-可以构成空间向量的一组基底,故选C2.如图,在三棱锥O ABC -中,点D 是棱AC 的中点,若OA a =,OB b =,OC c =,则BD 等于( )A .1122a b c -+ B .a b c +-C .a b c -+D .1122a b c -+- 【答案】A【解析】由题意在三棱锥O ABC -中,点D 是棱AC 的中点,若OA a =,OB b =,OC c =, 可知:BD BO OD =+,BO b =-,11112222OD OA OC a c =+=+,1122BD a b c =-+.故选A .3.如图,在三棱锥A BCD -中,E 、F 分别是棱AD 、BC 的中点,则向量EF →与,AB CD →→的关系是( )A .1122EF AB CD →→→=+B .1122EF AB CD →→→=-+C .1122EF AB CD →→→=-D .1122EF AB CD →→→=--【答案】C【解析】取AC 的中点M ,连结,EM FM ,,E F 分别是,AD BC 的中点,12ME CD →→∴=,12MF AB →→∴=,1122EF MF ME AB CD →→→→→∴=-=-.故选C .4.如图,在四面体OABC 中,2OM MA =,BN NC =,则MN =( )A .111222OA OB OC →→→+-B .221332OA OB OC →→→+-C .121232OA OB OC →→→-+D .211322OA OB OC →→→-++【答案】D【解析】∵2OM MA →→=,BN NC →→=,∴12()23MN ON OM OB OC OA →→→→→→=-=+-211322OA OB OC →→→=-++.故选D .5.在下列结论中:①若向量,a b 共线,则向量,a b 所在的直线平行;②若向量,a b 所在的直线为异面直线,则向量,a b 一定不共面; ③若三个向量,,a b c 两两共面,则向量,,a b c 共面;④已知空间的三个向量,,a b c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p xa yb zc =++. 其中正确结论的个数是( ) A .0B .1C .2D .3【答案】A【解析】平行向量就是共线向量,它们的方向相同或相反,未必在同一条直线上,故①错. 两条异面直线的方向向量可通过平移使得它们在同一平面内,故②错,三个向量两两共面,这三个向量未必共面,如三棱锥P ABC -中,,,PA PB PC 两两共面,但它们不是共面向量,故③错.根据空间向量基本定理,,,a b c 需不共面,故④错. 故选A .6.如图所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若1,,AB a AD b AA c ===,则CM =( )A .1122++a b c B .1122-+a b c C .1122a b c -++ D .1122--+a b c【答案】D【解析】由题意,因为M 为11A C 与11B D 的交点,所以M 也为11A C 与11B D 的中点, 因此()()11112CM AM AC AA A M AB AD AA AC AB AD =-=+-+=+-+ ()1121122AA AB AD a b c -=-+=-+.故选D. 7.在三棱锥A BCD -中,E 是棱CD 的中点,且23BF BE =,则AF =( ) A .133244AB AC AD +- B .3344AB AC AD +-C .533AB AC AD -++D .111333AB AC AD ++【答案】D【解析】因为E 是棱CD 的中点,23BF BE =, 所以()22213333AF AB BF AB BE AB AE AB AE AB =+=+=+-=+ ()1111133333AC AD AB AB AC AD =++=++.故选D.8.若{},,a b c 是空间的一个基底,则下列各组中不能构成空间一个基底的是( )A .,2,3a b cB .,,a b b c c a +++C .,,a b c b c c +++D .2,23,39a b b c a c ++-【答案】D【解析】对于:,2,3,:,,,:,,A a b c B a b b c c a C a b c b c c ++++++,每组都是不共面的向量,能构成空间的一个基底,对于D :2,23,3-9a b b c a c ++满足:()()3-932-23a c a b b c ⎡⎤=++⎣⎦,是共面向量,不能构成空间的一个基底,故选D9.如图,在四面体OABC 中,G 是底面∆ABC 的重心,则OG 等于( )A .OA OB OC ++ B .111222OA OB OC ++ C .111236OA OB OC ++D .111333OA OB OC ++【答案】D 【解析】()()211112323333AG AC AB OC OA OB OA OC OB OA ⎛⎫=⋅⋅+=⋅-+-=+- ⎪⎝⎭ 则111333OG AG OA OA OB OC =+=++,故选D. 10.已知在平行六面体ABCD A B C D '-'''中,3AB =,45AD AA ='=,,120BAD ∠=︒,60BAA ∠='︒,90DAA ∠='︒,则AC '的长为( )A .2B .53C 58D 53【答案】D【解析】在平行六面体ABCD A B C D '-'''中,3AB =,AD 4=, 5AA '=,120BAD ∠=︒,60BAA ∠='︒,90DAA ∠='︒,AC AB AD AA ''=++,()22AC AB AD AA '∴=++'222222AB AD AA AB AD AB AA AD AA =+++⋅+⋅+'⋅''91625234cos120235cos6050121553=+++⨯⨯⨯︒+⨯⨯⨯︒=-+=则53AC ='.故选D11.(多选题)给出下列命题,其中正确命题有( )A .空间任意三个不共面的向量都可以作为一个基底B .已知向量//a b ,则,a b 与任何向量都不能构成空间的一个基底C .,,,A B M N 是空间四点,若,,BA BM BN 不能构成空间的一个基底,那么,,,A B M N 共面D .已知向量{},,a b c 组是空间的一个基底,若m a c =+,则{},,a b m 也是空间的一个基底 【答案】ABCD【解析】选项A 中,根据空间基底的概念,可得任意三个不共面的向量都可以作为一个空间基底,所以A 正确;选项B 中,根据空间基底的概念,可得B 正确;选项C 中,由,,BA BM BN 不能构成空间的一个基底,可得,,BA BM BN 共面, 又由,,BA BM BN 过相同点B ,可得,,,A B M N 四点共面,所以C 正确;选项D 中:由{},,a b c 是空间的一个基底,则基向量,a b 与向量m a c =+一定不共面,所以可以构成空间另一个基底,所以D 正确. 故选ABCD.12.(多选题)设a ,b ,c 是空间一个基底,则( )A .若a ⊥b ,b ⊥c ,则a ⊥cB .则a ,b ,c 两两共面,但a ,b ,c 不可能共面C .对空间任一向量p ,总存在有序实数组(x ,y ,z ),使p xa yb zc =++D .则a +b ,b +c ,c +a 一定能构成空间的一个基底 【答案】BCD【解析】对于A 选项,b 与,a c 都垂直,,a c 夹角不一定是π2,所以A 选项错误. 对于B 选项,根据基底的概念可知a ,b ,c 两两共面,但a ,b ,c 不可能共面. 对于C 选项,根据空间向量的基本定理可知,C 选项正确.对于D 选项,由于a ,b ,c 是空间一个基底,所以a ,b ,c 不共面.假设a +b ,b +c ,c +a 共面,设()()()1a b x b c x c a +=++-+,化简得()1x a x b c ⋅=-+,即()1c x a x b =⋅+-,所以a ,b ,c 共面,这与已知矛盾,所以a +b ,b +c ,c +a 不共面,可以作为基底.所以D 选项正确.故选BCD三、填空题13.已知S 是△ABC 所在平面外一点,D 是SC 的中点,若BD =x SA ySB zSC ++,则x +y +z =_____.【答案】12-【解析】如图,根据条件()12BD BC BS =+ ()12SC SB SB =-- 12SB SC =-+ 102SA SB SC =-+,又BD xSA ySB zSC =++,∴由空间向量基本定理得110122x y z ++=-+=-,故填12-14.平行六面体ABCD-A 1B 1C 1D 1中,向量1,,AB AD AA 两两的夹角均为60°,且AB =1,|AD |=2,|1AA |=3,则|1AC |等于_____. 【答案】5【解析】由平行六面体ABCD-A 1B 1C 1D 1可得:11AC AB AD AA =++, ∴22221111222AC AB AD AA AB AD AB AA AD AA =++⋅⋅++⋅+=12+22+32+2cos 60°(1×2+1×3+2×3) =25,∴1AC =5.故填5.15.已知点M ,N 分别是空间四面体OABC 的边OA 和BC 的中点,P 为线段MN 的中点,若OP =λOA +μOB +γOC ,则实数λ+μ+γ=_____.【答案】34【解析】如图,连接ON ,在△OMN 中,点P 是MN 中点,由平行四边形法则得.()()111111111222422444OP OM ON OM ON OA OB OC OA OB OC =+=+=+⨯+=++, 又OP =λOA +μOB +γOC ,∴111,,444λμγ===,∴34λμγ++=.故填34.16.如图,在三棱柱111ABC A B C -中,D 是1CC 的中点,1113A F AB =,且1DF AB AC AA αβγ=++,则αβγ++=__________.【答案】12-【解析】由题意的:1113A F A B =,1111DF DC C A A F =++=111123CC AC A B -+=1111111233AA AC A B A A -++=1111111233AA AC A B AA -+-=11136AB AC A A -+, 故可得α=13,β=-1,γ=16,可得:αβγ++=1-2.故填1-2.17.如图所示,在空间四边形OABC 中,,,OA a OB b OC c ===,点M 在线段OA 上,且2OM MA =,N为BC 中点,若=MN xa yb zc ++,则x y z ++=_____________【答案】13【解析】,,,OA a OB b OC c ===点M 在OA 上,且2OM MA =,N 为BC 的中点,22=33OM OA a ∴= ()111222ON OB OC b c =+=+ 112=223MN ON OM b c a ∴-=+-211,,322x y z ∴=-== 故21113223x y z ++=-++= 故填1318.如图,在空间四边形OABC 中,M ,N 分别为OA 、BC 的中点,点G 在线段MN 上,且3MG GN =,用向量OA 、OB 、OC 表示向量OG ,设OG x OA y OB z OC =⋅+⋅+⋅,则x 、y 、z 的和为______.【答案】78【解析】MN MA AB BN =++11111()22222OA OB OA OC OB OA OB OC =+-+-=-++ 13131112424222OG OM MG OA MN OA OA OB OC ⎛⎫∴=+=+=+-++ ⎪⎝⎭813388OA OB OC =++133,,888x y z ∴===,即78x y z ++=.故填78三、解答题19.已知ABCD A B C D -''''是平行六面体.(1)化简1223AA BC AB '++,并在图形中标出其结果; (2)设M 是底面ABCD 的中心,N 是侧面BCC B ''的对角线BC '上的点,且:3:1BN NC '=,设MN AB AD AA αβγ'=++,试求α,β,γ的值.【解析】(1)如图所示,取线段AA '中点E ,则12EA AA ''=, BC AD A D ''==, 取23D F D C '''=, ∵AB D C ='',∴2233AB D C D F '''==.则2312AA BC AB EA A D D F EF '''''++=++=.(2)∵ M N MB BN +=124 3BC DB =+'314()()2DA AB BC CC '=+++ 113 244AB AD AA '=++αAB βAD γAA '++=,∴12α=,14β=,34γ=. 20.在平行六面体ABCD-A 1B 1C 1D 1中,设1,,AB a AD b AA c ===,E ,F 分别是AD 1,BD 的中点.(1)用向量,,a b c 表示1,D B EF ,;(2)若1D F xa yb zc =++,求实数x ,y ,z 的值.【解析】(1)111D B D D DB AA AB AD a b c=+=-+-=--,11122EF EA AF D A AC =+=+ 1111()()()222AA AD AB AD a c =-+++=-.(2)11111111()()22222D F D D D B c a b c a b c =+=-+--=--,所以11,,122x y z ==-=-.21.如图,三棱柱111ABC A B C -中,底面边长和侧棱长都等于1,1160BAA CAA ∠=∠=︒.(1)设1AA a =,AB b =,AC c =,用向量a ,b ,c 表示1BC ,并求出1BC 的长度; (2)求异面直线1AB 与1BC 所成角的余弦值.【解析】(1)111111111BC BB B C BB A C A B a c b =+=+-=+-∴11cos 11cos602a b a b BAA ︒=∠=⨯⨯=,同理可得12a cbc ==, ∴()222212222BC a c ba cb ac a b c b =+-=++-+-=.(2)因为1AB a b =+,所以()222123AB a b a b a b =+=++=,因为()()22111AB BC a ba cb a ac a b b a c b b =++-=+-++-=,所以1111116cos ,23AB BC AB BC AB BC <>==⨯.∴异面直线1AB 与1BC 所成角的余弦值为6622.如图,在平行六面体1111ABCD A B C D -中,以顶点A 为端点的三条棱长都是1,且它们彼此的夹角都是60︒,M 为11A C 与11B D 的交点.若AB a =,AD b =,1AA c =,(1)用,,a b c 表示BM ; (2)求对角线1AC 的长; (3)求1cos ,AB AC【解析】(1)连接1A B ,AC ,1AC ,如图:AB a =,AD b =,1AA c =在1A AB ,根据向量减法法则可得:11BA AA AB c a =-=- 底面ABCD 是平行四边形,∴AC AB AD a b =+=+11//AC A C 且11AC AC =,∴ 11AC AC a b==+ 又M 为线段11A C 中点,∴ ()1111122A M b AC a ==+ 在1A MB 中()11111222BM BA A M c a a a b c b -+=+=+-++= (2)顶点A 为端点的三条棱长都是1,且它们彼此的夹角都是60︒∴1cos602a b a b ⋅=⋅︒=,s 2c 160o a a c c ⋅⋅==︒,s 2c 160o b b c c ⋅⋅==︒,由(1)可知AC a b =+∴平行四边形11AA CC 中故:11AC AC A b A a c+=+=+ ()()22211C a cb A AC ==++()()()222+++222+a c a b c c b b a =⋅+⋅⋅222+++cos cos cos 606062022b a bc a b c c a ︒+⋅⋅︒+︒=⋅11121+1+1+22222++=⨯⨯⨯6=∴16AC =故:对角线1AC . (3)1AC a b c=++,AB a =又111cos ,a a c AB AC AB AC AB AC b ⋅+⋅==⋅+212311b a a a c+++⋅⋅=+===。
向量一、选择题1.已知平行四边形ABCD 中,AD =(3,7), AB =(-2,3),对角线AC 、BD 交于O ,则CO 的坐标是( ) A.(- 21,5) B.(- 21, -5) C.( 21),-5) D.( 21,5) 2.设点P 分21P P 的比为λ,若|21P P |=4|2PP |,则λ的值为( )A..-5或3B.-4或2C.5或-3D.4或-23.三点A(x 1,y 1)、B(x 2,y 2)、C(x 3,y 3)共线的充要条件是( )A.x 1y 2-x 2y 1=0B.x 1y 3-x 3y 1=0C.(x 2-x 1)(y 3-y 1)=(x 3-x 1)(y 2-y 1)D.(x 2-x 1)(x 3-x 1)=(y 2-y 1)(y 3-y 1)4.已知点A(1,8),B(5,0)且|PA |=3|PB |,(A 、B 、P 三点共线)则点P 的坐标为( )A.(4,2)B.(7,-4)C.(4,2)或(7,-4)D.不存在5.设=(23,sin α), =(cos α,31)且∥,则锐角α为( ) A.30°B.60°C.45°D.75° 6.点P 分有向线段21P P 成定比λ,若λ∈(-∞,-1),则λ所对应点,P 的集合是( )A.线段P 1P 2B.线段P 1P 2的延长线C.射线P 2P 1D.线段P 1P 2的反向延长线7.已知向量AB =(6,1), BC =(x,y), CD =(-2,-3),则DA =( )A.(x+4,2-y)B.(x-4,2-y)C.(x-4,y-2)D.(-4-x,-y+2)8.已知M(-1,0),N(5,6),P(3,4),P 为MN 的定比分点,则λ的值是( ) A.31 B.3 C. 21 D.29.已知=(1,2), =(x,1),当+2与2-共线时,x 值为( )A.1B.2C. 31D. 21 10.在△ABC 中,A(3,1),AB 中点为D(2,4),三角形的重心G(3,4),则B 、C 坐标分别为( )A.(1,7)、(4,5)B.(1,7)、(5,4)C.(7,1)、(4,5)D.(7,1)、(5,4)11.如果1e 、2e 是平面α内所有向量的一组基底,那么( )A.若实数λ1、λ2,使λ11e +λ22e =,λ1=λ2=0B.空间任一向量a 可以表示为a =λ11e +λ22e ,这里λ1、λ2是实数C.对实数λ1、λ2,λ11e +λ22e )不一定在平面α内D.对平面α内的任一向量a ,使a =λ11e +λ22e 的实数λ1、λ2有无数对.12.已知:平面上有三个点A(-2,1)、B(1,4)、D(4,-3),又有一点C 在线段AB 上,使||=2||,连结DC 并延长至E ,使||=4||,则点E 的坐标为( )A.(0,1)B.(-83 ,311)C.(0,1)或(-38,311)D.(-8,-35) 二、填空题:1.已知1e 、2e 是一对不共线的非零向量,若=1e +λ2e , b =-2λ1e -2e ,且、共线,则λ= .2.若向量=(1,-2)的终点在原点,那么这个向量的始点坐标是 .3. 在△ABC 中,已知=a ,CA =c ,O 是△ABC 的重心,则OB +OC = .4.已知△ABC 的顶点A(4,5),重心G(-1,2),则BC 边的中点D 坐标为三、解答题:1.已知=,B(1,0), =(-3,4), =(-1,1),且=3-2,求点A 的坐标.2.已知△ABC ,A(7,8)、B(3,5)、C(4,3),M 、N 是AB 、AC 的中点,D 是BC 中点,MN 与AD 交于F ,求DF .3.已知A(1,-2),B(2,1),C(3,2)和D(-2,3),以、为一组基底来表示++. 4.已知两点A(3,-4)、B(-9,2),在直线AB 上求一点P ,使得|AP |=31|AB |. 5.正方形ABCO ,按顺时针方向依次为A →B →C →O ,O 为坐标原点=(1,3),求向量,OC 的坐标.6.已知点M(2,3)、N(8,4),点P 在线段MN 内,且MP =λPN =λ2MN ,求λ的值及P 点的坐标.附加题1、已知,不共线,=+, =2-,将符合下列条件的向量写成m +n )的形式:(1)点C 分所成的比λ=2,则= .(2)点C 分所成的比λ=-3,则= .2、已知平行四边形三个顶点是(3,-2),(5,2),(-1,4),则第四个顶点的坐标为 .3、已知A(2,3)、B(0,1)、C(3,0),点D 、E 分别在AB 、AC 上,DE ∥BC ,且DE 平分△ABC 的面积,求点D 的坐标. 向量测试01 一、选择题 BACCC BDDDB AB 二、填空 1.±22 2. (-1,2) 3. 31 (a -c ) 4. (- 27,21) 三、解答题: 1.(8,-10) 2. DF =-21 AD =(47,2) 3.32AB -22AC 4、.P(-1,-2)或P(7,-6)5、OA =(231-,231+), OC =2 (462+,62-) 6、λ=215-,P(11-35,259-) 附加题1、解:(1)由AC =λCB ,有OC -OA =λ(OB -OC )有OC =λ+11OA +λλ+1OB 所以OC =211+OA +212+OB =31 (a +b )+32(a -b )=35a -31b (2) OC =λ+11 OB +λλ+1OA =-21 (2a -b )+23( a +b )=21a +2b 2、解:如图,设OA =(3,-2), OB =(5,-2), OC =(-1,4), OD =(x,y)依题意,AB =DC 或AC =DB 或AB =CD由AB =DC ,可得:OB -OA =OC -OD即(5,2)-(3,2)=(-1,4)-(x,y) ⇔ (2,4)=(-1-x,4-y)∴D(-3,0)同理,若=可得:(-4,6)=(5-x,2-y).∴x=9,y=-4, ∴D(9,4)若=可得:(2,4)=(x+1,y-4)∴x=1,y=8. ∴D(1,8)∴点D 的坐标为(-3,0)或(9,-4)或(1,8)3、解:因为DE ∥BC ,则有△ADE ∽△ABC.有ABC ADE S S △△=(ABAD )2 由已知,有(AB AD )2=21,即AB AD =21以点D 分所成的比为λ,利用分点定义可得λ=121-=2+1所以得点D 的横、纵坐标为 x=1212++=2-2,y=121123++++=3-2则点D 的坐标为(2-2,3-2)。
《1.2空间向量及其运算的坐标表示》同步练习一、单选题1.已知向量,,则向量( )A .B .C .D .2.已知向量,向量,若,则实数( )A .B .C .D .3.若向量,且,则实数的值是( )A .B .0C .D .14.已知空间向量,,若与垂直,则等于( )A .BC .D . 5.已知,,且,则( )A .-4B .-5C .5D .-26.若,则的最小值是( )ACD7.在空间直角坐标系中,点关于平面的对称点为,则( ) A . B . C . D .8.已知向量,,则下列结论正确的是( )A .B .C .D .9.已知,, ,若、、三个向量共面,则实数( )A .3B .5C .7D .910.如图,在边长为的正方体中,为的中点,点在底面(1,2,1)a =-(1,2,1)a b -=--b =(2,4,2)-(2,4,2)--(2,0,2)--(2,1,3)-()3,2,a x =()2,0,1b =a b ⊥x =33-66-(0,1,1),(1,1,0)a b =-=()a b a λ+⊥λ1-2-()1,,2a n =()2,1,2b =-2a b -b a 222()2,1,2a =-()4,2,b x =-//a b x =(1,21,0),(2,,)a m m b m m =--=b a -(2,1,3)A -xOz B OA OB ⋅=10-1012-12),4(4,2a =--)6,(3,2b =-)10,,6(5a b +=--()2,1,6a b -=--10a b ⋅=6a =()2,1,3a =-()1,4,4b =--()7,7,c λ=a b c λ=21111ABCD A B C D -E BC P ABCD上移动,且满足,则线段的长度的最大值为( )A .B .C ..二、多选题11.已知向量,则与共线的单位向量( )A .B .C .D .12.对于任意非零向量,,以下说法错误的有( )A .若,则B .若,则C .D.若,则为单位向量13.若,,与的夹角为,则的值为()A .17B .-17C .-1D .1三、填空题 11B P D E ⊥1B P 523(1,1,0)a =a e =(22--(0,1,0)(1,1,1)()111,,a x y z =()222,,b x y z =a b ⊥1212120x x y y z z ++=//a b 111222x y z x y z ==cos ,a b =><1111===x y z a ()1,,2a λ=--()2,1,1b =-a b 120︒λ14.已知,,则______.15.已知向量,,则____;若,则______16.已知,,,,,则______.17如图,棱长为2的正方体中,是棱的中点,点P 在侧面内,若垂直于,则的面积的最小值为__________.四、解答题18.已知,,.(1)若,求的值;(2)若,求的值.19.已知向量,,.(1)若,求的值;(2)若、、、四点共面,求的值.20.已知向量,,.(Ⅰ)当时,若向量与垂直,求实数和的值;(Ⅱ)若向量与向量,共面,求实数的值.21.已知空间三点,设. ()3,2,5a =-()1,5,1b =-a b ⋅=(1,2,2)a (2,,1)b x a =a b ⊥x =()1,1,0a =()0,1,1b =()1,0,1c =p a b =-2q a b c =+-p q ⋅=1111ABCD A B C D -M 1AA 11ABB A 1D P CM PBC ∆()2,1,3a =-()4,2,b x =-()1,,2c x =-//a b x ()a b c +⊥x ()1,1,1AB =()1,2,1AC =-()3,,1AD y =AD AC ⊥y A B C D y (2,1,2)=--a (1,1,2)b =-(,2,2)x =c ||22c =ka b +c x k c a b x ()()()2,0,2,1,1,2,3,0,4A B C ---,a AB b AC ==(1)求和的夹角的余弦值;(2)若向量与互相垂直,求的值.22.已知向量.(1)求与共线的单位向量;(2)若与单位向量垂直,求m ,n 的值.23.已知空间中三点,,,设,.(1)若,且,求向量;(2)已知向量与互相垂直,求的值;(3)求的面积.答案解析一、单选题1.已知向量,,则向量( )A .B .C .D .【答案】A【解析】由已知可得.故选:A.2.已知向量,向量,若,则实数( )A .B .C .D . a b θka b +2ka b -k ()1,2,2a =-a b a ()0,,c m n =()2,0,2A -()1,1,2B --()3,0,4C -a AB =b AC =3c =//c BC c ka b +b k ABC ∆(1,2,1)a =-(1,2,1)a b -=--b =(2,4,2)-(2,4,2)--(2,0,2)--(2,1,3)-()()()1,2,11,2,12,4,2b =----=-()3,2,a x =()2,0,1b =a b ⊥x =33-66-【答案】D【解析】,,,,解得.故选:D.3.若向量,且,则实数的值是( )A .B .0C .D .1【答案】C【解析】由已知,由得:,,故选:C.4.已知空间向量,,若与垂直,则等于()ABC.【答案】A【解析】由空间向量,,若与垂直,则,即,即,即,即,即, 故选:A. ()3,2,a x =()2,0,1b =a b ⊥60a b x ∴⋅=+=6x =-(0,1,1),(1,1,0)a b =-=()a b a λ+⊥λ1-2-(0,1,1)(1,1,0)(,1,1)a bλλλλ+=-+=+-()a b a λ+⊥()(,1,1)(0,1,1)110a b a λλλλ+⋅=+-⋅-=++=2λ∴=-()1,,2a n =()2,1,2b =-2a b -b a 2()1,,2a n =()2,1,2b =-2a b -b (2)0a b b -⋅=22a b b ⋅=249n +=52n =51,,22a ⎛⎫= ⎪⎝⎭251a =+=5.已知,,且,则( )A .-4B .-5C .5D .-2【答案】A【解析】因为,,且,所以存在实数,使得,即解得 故选:6.若,则的最小值是( )ACD【答案】C【解析】,所以故选C7.在空间直角坐标系中,点关于平面的对称点为,则( ) A . B . C . D .【答案】D【解析】由题意,空间直角坐标系中,点关于平面的对称点, 所以,则,故选 D. 8.已知向量,,则下列结论正确的是( )A .B .C .D .【答案】D()2,1,2a =-()4,2,b x =-//a b x =()2,1,2a =-()4,2,b x =-//a b λb a λ=4222x λλλ-=⎧⎪=-⎨⎪=⎩24x λ=-⎧⎨=-⎩A (1,21,0),(2,,)a m m b m m =--=b a -(1,1,)b a m m m -=+-(1)b a m -=+=≥(2,1,3)A -xOz B OA OB ⋅=10-1012-12(2,1,3)A -xOz (2,1,3)B =(2,1,3),(2,1,3)OA OB -=22(1)13312OA OB ⋅=⨯+-⨯+⨯=),4(4,2a =--)6,(3,2b =-)10,,6(5a b +=--()2,1,6a b -=--10a b ⋅=6a =【解析】因为,所以,,故选:9.已知,, ,若、、三个向量共面,则实数( )A .3B .5C .7D .9【答案】A【解析】,, , 、、三个向量共面,存在实数,,使得,即有:,解得,,实数.故选:.10.如图,在边长为的正方体中,为的中点,点在底面上移动,且满足,则线段的长度的最大值为( )),4(4,2a =--)6,(3,2b =-)10,,2(5a b +=--()2,1,6a b -=--()()()46234222a b =⨯+-⨯-+-⨯=(246a =+=D ()2,1,3a =-()1,4,4b =--()7,7,c λ=a b c λ=()2,1,3a =-()1,4,4b =--()7,7,c λ=a b c ∴m n c ma nb =+727434m n m n m n λ=-⎧⎪=-+⎨⎪=-⎩5m =3n =∴35433λ=⨯-⨯=A 21111ABCD A B C D -E BC P ABCD 11B P D E ⊥1B PA. C .. 【答案】D【解析】如下图所示,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,则点、、,设点,,, ,,得, 由,得,得,23D DA DC 1DD x y z D xyz -()12,2,2B ()10,0,2D ()1,2,0E ()(),,002,02P x y x y ≤≤≤≤()11,2,2D E =-()12,2,2B P x y =---11D E B P ⊥()112224220B P D E x y x y ∴⋅=-+-+=+-=22x y =-0202x y ≤≤⎧⎨≤≤⎩022202y y ≤-≤⎧⎨≤≤⎩01y ≤≤,当时,取得最大值. 故选:D.二、多选题 11.已知向量,则与共线的单位向量( )A. B . C .D . 【答案】AC【解析】设与共线的单位向量为,所以,因而,得到. 故,而或. 故选:AC . 12.对于任意非零向量,,以下说法错误的有( )A .若,则B .若,则 C.D .若,则为单位向量【答案】BD【解析】 对于A 选项,因为,则,A 选项正确; 对于B 选项,若,且,,若,但分式无意义,B 选项错误; ()124B P x ∴=+=01y ≤≤1y =1B P 3(1,1,0)a =a e =(22--(0,1,0)(22(1,1,1)a e a e λ=a e λλ==a λ=±ae a =±11a =+=2(,22e =2(,2e =-()111,,a x y z =()222,,b x y z =a b ⊥1212120x x y y z z ++=//a b 111222x y z x y z ==cos ,a b =><1111===x y z a a b ⊥1212120a b x x y y z z ⋅=++=20x =20y ≠20z ≠//a b 12x x对于C 选项,由空间向量数量积的坐标运算可知,C 选项正确;对于D 选项,若,则,此时,不是单位向量,D 选项错误.故选:BD.13.若,,与的夹角为,则的值为( )A .17B .-17C .-1D .1【答案】AC【解析】由已知,, ,解得或, 故选:AC.三、填空题 14.已知,,则______.【答案】 【解析】,故答案为:15.已知向量,,则_____;若,则_______ 【答案】3 0【解析】∵向量,, ∴. cos ,a b =><1111===x y z 2211a =+=a ()1,,2a λ=--()2,1,1b =-a b 120︒λ224a b λλ⋅=---=--22145,4116a b λλ=++=+=++=1cos12025a b a b λλ⋅-∴===-⋅+17λ=1λ=-()3,2,5a =-()1,5,1b =-a b ⋅=2()3,2,5a =-()1,5,1b =-()3125512a b ∴=-⨯+⨯+⨯-=2(1,2,2)a(2,,1)b x a =a b ⊥x =(1,2,2)a (2,,1)b x ||143a =++=若,则,解得.故答案为:3,0.16.已知,,,,,则______.【答案】-1【解析】依题意,所以.故答案为:17.如图,棱长为2的正方体中,是棱的中点,点P 在侧面内,若垂直于,则的面积的最小值为__________.【解析】以D 点为空间直角坐标系的原点,以DC 所在直线为y 轴,以DA 所在直线为x 轴,以 为z 轴,建立空间直角坐标系.则点, 所以.因为,所以,因为,所以,所以,因为B(2,2,0),所以,所以因为,所以当时,. a b ⊥2220a b x ⋅=+-=0x=()1,1,0a =()0,1,1b =()1,0,1c =p a b =-2q a b c =+-p q ⋅=()()1,0,1,0,3,1p a b q =-=-=0011p q ⋅=+-=-1-1111ABCD A B C D -M 1AA 11ABB A 1D P CM PBC ∆1DD 1(2,,),(0,0,2)P y z D 1(2,,2)D P y z =-(0,2,0),(2,0,1)C M (2,2,1)CM =-1D P CM ⊥4220y z -+-=22z y =-(0,2,)BP y z =-BP ===02y ≤≤65y =min BP =因为BC ⊥BP,所以. 四、解答题18.已知,,.(1)若,求的值;(2)若,求的值.【答案】(1)-6;(2)-4.【解析】(1), ∴,∴. (2),∵,∴,∴,∴.19.已知向量,,.(1)若,求的值;(2)若、、、四点共面,求的值.【答案】(1);(2).【解析】(1),得,,,,解得;min 1()22PBC S ∆=⨯=()2,1,3a =-()4,2,b x =-()1,,2c x =-//a b x ()a b c +⊥x b a λ=2423x λλλ=-⎧⎪-=⎨⎪=⎩6x =-()2,1,3a b x +=-+()a b c +⊥()0a b c +⋅=()2230x x --++=4x =-()1,1,1AB =()1,2,1AC =-()3,,1AD y =AD AC ⊥y A B C D y 1y =-4y =AD AC ⊥AD AC ⊥0AD AC ∴⋅=()()3,,11,2,10y ∴⋅-=3210y ∴+-=1y =-(2)由、、、四点共面,得,,使得,,,,解得.20.已知向量,,.(Ⅰ)当时,若向量与垂直,求实数和的值; (Ⅱ)若向量与向量,共面,求实数的值.【答案】(Ⅰ)实数和的值分别为和.(Ⅱ) 【解析】 (Ⅰ)因为,.且.因为向量与垂直,所以.即.所以实数和的值分别为和.(Ⅱ)因为向量与向量,共面,所以设(). 因为, 所以 所以实数的值为. 21.已知空间三点,设.(1)求和的夹角的余弦值; A B C D λ∃R μ∈AD AB AC λμ=+()()()1,1,11,2,13,,1y λμ∴+-=321y λμλμλμ+=⎧⎪∴+=⎨⎪-=⎩4y =(2,1,2)=--a (1,1,2)b =-(,2,2)x =c ||22c =ka b +c x k c a b x x k 03-12-||22c =0x ==ka b =+(21,1,22)k k k ---+ka b +c ()0ka b c =+⋅260k +=x k 03-c a b c a b λμ=+,R λμ∈(,2,2)(2,1,2)(1,1,2)x λμ=--+-2,2,222,x λμμλλμ=--⎧⎪=-⎨⎪=+⎩1,21,23.2x λμ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩x 12-()()()2,0,2,1,1,2,3,0,4A B C ---,a AB b AC ==a b θ(2)若向量与互相垂直,求的值.【答案】(1);(2)或. 【解析】 ,.(1)所以与的夹角的余弦值为. (2),,所以, 即,所以或. 22.已知向量.(1)求与共线的单位向量; (2)若与单位向量垂直,求m ,n的值.【答案】(1)或.(2)或 【解析】(1)设=(λ,2λ,-2λ),而为单位向量,∴||=1,即λ2+4λ2+4λ2=9λ2=1,∴λ=±. ka b +2ka b -k 52k =-2k =(1,1,2)(2,0,2)(1,1,0)a AB ==---=(3,0,4)(2,0,2)(1,0,2)b AC ==---=-10cos ||||2a b a b θ⋅-+===⨯a b θ,,01,)0,21,,()()(2ka b k k k k +=+-=-2,,02,)0,42,,()()(4ka b k k k k -=--=+-()()21,,22,,(4)()1280k k k k k k k -⋅+-=-++-=22100k k +-=52k =-2k =()1,2,2a =-a b a ()0,,c m n =122,,333b ⎛⎫=- ⎪⎝⎭122,,333b ⎛⎫=-- ⎪⎝⎭m n ⎧=⎪⎪⎨⎪=⎪⎩,2m n ⎧=-⎪⎪⎨⎪=⎪⎩b b b 13∴=或=. (2)由题意,知,且故可得 解得或 23.已知空间中三点,,,设,.(1)若,且,求向量;(2)已知向量与互相垂直,求的值;(3)求的面积.【答案】(1)或;(2);(3)【解析】(1)空间中三点,,,设,, 所以,,,,且,设,,,或.(2), 且向量与互相垂直, b 122,,333⎛⎫- ⎪⎝⎭b 122,,333⎛⎫-- ⎪⎝⎭0a c ⋅=1c=10220,1,m n ⨯+-=⎧⎪=2m n ⎧=⎪⎪⎨⎪=⎪⎩2m n ⎧=⎪⎪⎨⎪=-⎪⎩()2,0,2A -()1,1,2B --()3,0,4C -a AB =b AC =3c =//c BC c ka b +b k ABC ∆()2,1,2c =-()2,1,2c =--532()2,0,2A -()1,1,2B --()3,0,4C -a AB =b AC =()()()1,1,22,0,21,1,0a AB =--=--=--()()()3,0,42,0,21,0,2b AC ==---=-∴(3,0,4)(1,1,2)(2,1,2)BC =----=-3c =//c BC c mBC =∴()()2,1,22,,2c mBC m m m m ==-=-(233c m m ∴=-==1m ∴=±∴()2,1,2c =-()2,1,2c =--()()()1,0,21,,21,1,0ka b k k k -++=---=--()1,0,2b =-ka b +b,解得. 的值是.(3)因为,, ,,,. ()140ka b b k ∴+=-+=5k =k ∴5()1,1,0AB =--()1,0,2AC =-()2,1,2BC =-1AB AC ∴=-(AB =-21AC ==11cos ,||||2510AB AC AB AC AB AC -∴<>===-sin ,1AB AC ∴<>==1sin ,2ABC S AB AC AB AC ∆∴=⨯⨯⨯<>12=32=。
1.2 空间向量基本定理题型一:空间向量基底概念与判断1.下列能使向量MA uuu r ,MB uuu r ,MC uuu ur 成为空间的一个基底的关系式是( )A .111333OM OA OB OC =++uuuu r uuu r uuu r uuu r B .MA MB MC=+uuu r uuu r uuu u r C .OM OA OB OC=++uuuu r uuu r uuu r uuu r D .2MA MB MC=-uuu ruuu r uuu u r2.空间四个点O ,A ,B ,C ,,,OA OB OC uuu r uuu r uuu r为空间的一个基底,则下列说法正确的是( )A .O ,A ,B ,C 四点不共线B .O ,A ,B ,C 四点共面,但不共线C .O ,A ,B ,C 四点中任意三点不共线D .O ,A ,B ,C 四点不共面3.若{},,a b c r r r为空间的一组基底,则下列各项中能构成基底的一组向量是( )A .{},,a a b a b+-r r r r r B .{},,b a b a b+-r r r r r C .{},,c a b a b+-r r r r r D .{},,2a b a b a b+-+r r r r r r题型二:空间向量基本定理的应用4.空间四边形OABC 中,,,OA a OB b OC c ===uuu r r uuu r r uuu r r.点M 在OA 上,且2OM MA =,N 为BC 的中点,则MN uuuu r 等于( )A .12a r -2132b c+r r B .-211322a b c++r r rC .12a r 12b +r -23crD .2233a b +r r -12cr5.设O ABC -是正三棱锥,1G 是ABC V 的重心,G 是1OG 上的一点,且13OG GG =,若OG xOA yOB zOC =++uuu r uuu r uuu r uuu r,则x y z ++=( ).A .14B .12C .34D .16.如图,在四面体ABCD 中,点M 是棱BC 上的点,且2BM MC =,点N 是棱AD 的中点.若MN x AB y AC z AD =++uuuu r uuu r uuu r uuu r,其中,,x y z 为实数,则xyz 的值是( )A .19-B .18-C .19D .18【双基达标】一、单选题7.已知{},,a b c r r r 是空间的一个基底,若p a b,q a b =+=-u r r r r r r,则( )A .a,p,q r u r r是空间的一组基底B .b,p,q r u r r是空间的一组基底C .c,p,q r u r r是空间的一组基底D .,p q u r r 与,,a b c r r r中的任何一个都不能构成空间的一组基底8.点P 是矩形ABCD 所在平面外一点,且PA ^平面ABCD ,M ,N 分别是PC ,PD 上的点,且23PM PC =uuuu r uuu r,=uuu r uuu rPN ND 则满足MN x AB y AD z AP =++uuuu r uuu r uuu r uuu r 的实数,,x y z 的值分别为( )A .211,,366-B .211,,366-C .211,,366--D .211,,366--9.在下列两个命题中,真命题是( )①若三个非零向量a r ,b r ,c r 不能构成空间的一个基底,则a r ,b r ,c r共面;②若a r ,b r 是两个不共线向量,而c r =λa r +μb r (λ,μR Î且λμ≠0),则{a r ,b r ,c r}构成空间的一个基底.A .仅①B .仅②C .①②D .都不是10.如图,在长方体1111ABCD A B C D -中,P 是线段1D B 上一点,且12BP D P =,若1DP xAB y AD z AA =++uuu r uuu r uuu r uuur,则x y z ++=( )A .43B .23C .13D .111.如图,在三棱锥O ABC -中,点P ,Q 分别是OA ,BC 的中点,点D 为线段PQ 上一点,且2PD DQ =uuu r uuur,若记OA a =uuu r r ,OB b =uuu r r ,OC c =uuu r r,则OD =uuu r ( )A .111633a b c++r r r B .111333a b c++r r rC .111363a b c++r r r D .111336a b c++r r r 12.下列结论错误的是( ).A .三个非零向量能构成空间的一个基底,则它们不共面B .两个非零向量与任何一个向量都不能构成空间的一个基底,则这两个向量共线C .若a r 、b r是两个不共线的向量,且c a b l m =+r r r (R l m Î、且0l m ×¹),则{}a b c r r r ,,构成空间的一个基底D .若OA uuu r 、OB uuur 、OC uuu r 不能构成空间的一个基底,则O 、A 、B 、C 四点共面13.如图,已知空间四边形OABC ,其对角线为,,,OB AC M N 分别是,OA CB 的中点,点G 在线段MN 上,且使2MG GN =,用向量,,OA OB OC uuu r uuu r uuu r 表示向量OG uuu r为( )A .111633OG OA OB OC =++uuu r uuu r uuu r uuu r B .122233OG OA OB OC=++uuu r uuu r uuu r uuu r C .2233OG OA OB OC=++uuu r uuu r uuu r uuu r D .112233OG OA OB OC=++uuu uuu r uuu r uu r u r 14.设p :a r ,b r ,c r是三个非零向量;q :{},,a b c r r r 为空间的一个基底,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件15.已知空间向量a r ,b r 满足|a r |=|b r |=1,且a r ,b r的夹角为3p ,O 为空间直角坐标系的原点,点A ,B 满足OA uuu r =2a r +b r ,OB uuu r =3a r -b r,则△OAB 的面积为( )A B C D .11416.已知在四棱柱ABCD A B C D ¢¢¢¢-中,四边形ABCD 为平行四边形,若32AC a AB bBC cCC =+¢+¢uuuu r uuu r uuu r uuur,则abc =()A .12B .13C .16D .56【高分突破】一:单选题17.在空间四边形OABC 中,OA a =uuu r r ,OB b =uuu r r ,OC c =uuu r r ,且AM MB =uuuu r uuu r,则MC =uuu u r ( )A .1122+-r r r a b cB .1122a b c ++r r rC .1122---r r r a b c D .1122a b c--+r r r18.在三棱锥O ABC -中,,,,2OA a OB b OC c AM MO ====uuu r r uuu r uuu r r uuuu r uuuu r r ,N 为BC 中点,则MN =uuuu r( )A .121232a b c-+r r r B .111322a b c-++r r rC .111222a b c+-r rr D .121332a b c+-r r r 19.在平行六面体1111ABCD A B C D -中,AC 与BD 的交点为M ,设AB a =uuu r r ,AD b =uuu r r ,1AA c =uuur r,则下列向量中与1D M uuuuu r相等的向量是( )A .1122-++r r r a b cB .1122a b c-+r r rC .1122+-r r ra b cD .1122--r r ra b c20.如图,在四面体OABC 中,M ,N 分别在棱OA ,BC 上且满足2OM MA =uuuu r uuu r ,BN NC =uuu r uuu r,点G 是线段MN 的中点,用向量OA uuu r ,OB uuu r ,OC uuu r 作为空间的一组基底表示向量OG uuu r应为( )A .111363OG OA OB OC =++uuu r uuu r uuu r uuu r B .111344OG OA OB OC =++uuu r uuu r uuu r uuu rC .111336OG OA OB OC=++uuu r uuu r uuu r uuu r D .111443OG OA OB OC=++uuu r uuu r uuu r uuu r21.已知0a b c ++=r r r,||2a =r ,||3b =r ,||c =r ,则向量a r 与b r 之间的夹角,a b áñr r 为( ).A .30°B .45°C .60°D .以上都不对22.给出下列命题:①已知a b ^r r,则()()a b c c b a b c ×++×-=×r r r r r r r r ;②A 、B 、M 、N 为空间四点,若BA uuu r、BM uuuu r、BN uuu r不构成空间的一个基底,那么A 、B 、M 、N 共面;③已知a b ^r r,则a r 、b r 与任何向量都不构成空间的一个基底;④若a r 、b r 共线,则a r 、b r所在直线或者平行或者重合.正确的结论的个数为( )A .1B .2C .3D .423.已知O ,A ,B ,C 为空间不共面的四点,且向量a r =OA OB OC ++uuu r uuu r uuu r ,向量b =r OA OB OC +-uuu r uuu r uuu r ,则不能与,a b rr 构成空间的一个基底的是( )A .OA uuu rB .OB uuu rC .OC uuu rD .OA uuu r 或OBuuu r24.在棱长为1的正方体1111ABCD A B C D -中,M ,N ,H 分别在棱1BB ,BC ,BA 上,且满足134BM BB =uuuu v uuuv,12BN BC =uuu v uuu v ,12BH BA =uuuv uuu v ,O 是平面1B HN ,平面ACM 与平面11B BDD 的一个公共点,设BO xBH yBN zBM=++uuu v uuuv uuu v uuuu v,则3x y z ++=( )A .105B .125C .145D .165二、多选题25.在以下命题中,不正确的命题有( )A .a b a b -=+r r r r 是a r 、b r共线的充要条件B .若//a b r r,则存在唯一的实数l ,使λa b=r r C .对空间任意一点O 和不共线的三点A 、B 、C ,若22OP OA OB OC =--uuu r uuu r uuu r uuu r,则P 、A 、B 、C 四点共面D .若{},,a b c r r r 为空间的一个基底,则{},,a b b c c a +++r r r r r r构成空间的另一个基底26.关于空间向量,以下说法正确的是( )A .空间中的三个向量,若有两个向量共线,则这三个向量一定共面B .若对空间中任意一点O ,有111632OP OA OB OC ®®®®=++,则P ,A ,B ,C 四点共面C .已知向量{},,a b c ®®®组是空间的一个基底,若m a c ®®®=+,则{},,a b m ®®®也是空间的一个基底D .若0a b ®®×<,则a b ®®×是钝角27.已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别是对边OA 、BC 的中点,点G 在线段MN 上,且2MG GN =uuuu r uuu r ,现用基组{},,OA OB OC uuu r uuu r uuu r 表示向量OG uuu r,有OG xOA yOB zOC =++uuu r uuu r uuu r uuu r ,则( )A .16x =B .13y =C .13z =D .1x y z ++=28.如图,在平行六面体1111ABCD A B C D -中,以顶点A 为端点的三条棱长都是1,且它们彼此的夹角都是60°,M 为11A C 与11B D 的交点.若AB a =uuu r r ,AD b =uuu r r ,1AA c =uuur r.则下列正确的是( )A .1122BM a b c =-+u u u u r r r rB .1AC a b c=++uuuu r r r rC .1ACD .1cos ,AB AC <>uuu r uuuu r =29.下列命题中,正确的命题有( )A .a b a b +=-r r r r 是a b r r ,共线的充要条件B .若//a b r r 则存在唯一的实数l ,使得=a bl r r C .对空间中任意一点O 和不共线的三点,,,A B C 若243OP OA OB OC =-+uuu r uuu r uuu r uuu r,则,,,P A B C 四点共面D .若{}a b c r r r,,为空间的一个基底,则{}23a b b c c a +++r r r r r r ,,构成空间的另一个基底30.给出下列命题,其中正确的有( )A .空间任意三个向量都可以作为一组基底B .已知向量//a b rr ,则a r 、b r 与任何向量都不能构成空间的一组基底C .A ,B ,M ,N 是空间四点,若BA uuu r ,BM uuuu r ,BN uuu r不能构成空间的一组基底,则A ,B ,M ,N 共面D .已知{,,}a b c r r r是空间向量的一组基底,若m a c =+r r r ,则{,,}a b m r r r 也是空间一组基底三、填空题31.已知在正方体ABCD 一1111D C B A 中,点E 为底面1111D C B A 的中心,112a AA =ruuur ,12b AB =ruuu r ,13c AD =ruuu r ,AE xa yb zc =++uuu r r r r,则x =______,y =_______,z =_______.32.设,,x a b y b c z c a =+=+=+r r r u r r r r r r且{},,a b c r r r 是空间的一组基底,给出下列向量组:①{},,a b x r r r ;②{,,}x y z r u r r③{,,}b c z r r r ④{,,}x y a b c ++r u r r r r其中可以作为空间的基底的向量组是___________(填序号).33.如图,已知空间四边形OABC ,其对角线为OB 、AC ,M 是边OA 的中点,G 是ABC D 的重心,则用基向量OA uuu r ,OB uuur ,OC uuu r 表示向量MG uuuu r 的表达式为___________.34.如图,点M 为OA 的中点,{},,OA OC OD uuu r uuu r uuu r 为空间的一个基底,DM xOA yOC zOD =++uuuu r uuu r uuu r uuu r ,则有序实数组(x ,y ,z )=________.35.已知123e e e u r u u r ur ,,为不共面的三个向量,123123123a e e e b e e e c e e e =++=+-=-+u r u ur ur u r u u r ur u r u u r ur r r r ,,,12323d e e e =++u r u u r ur r ,若d a b c a b l =++r r r r,则α,β,λ的值分别为________.36.下列关于空间向量的命题中,正确的有______.①若向量a r ,b r与空间任意向量都不能构成基底,则//a b r r ;②若非零向量a r ,b r ,c r 满足a b ^r r,b c ^r r ,则有//r r a c ;③若OA uuu r ,OB uuur ,OC uuu r 是空间的一组基底,且111333OD OA OB OC =++uuu r uuu r uuu r uuu r ,则A ,B ,C ,D 四点共面;④若向量a b +r r ,b c +r r ,c a +r r ,是空间一组基底,则a r ,b r ,c r也是空间的一组基底.四、解答题37.在平行六面体ABCD -A 1B 1C 1D 1中,设AB a =uuu r r ,AD b =uuu r r ,1AA c =uuur r,E ,F 分别是AD 1,BD 的中点.(1)用向量,,a b c r r r 表示1D B uuuu r,EF uuu r ;(2)若1D F xa yb zc =++uuuu r r r r,求实数,,x y z 的值.38.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,E ,F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1.求证:A,E ,C 1,F 四点共面.39.如图,在平行六面体ABCD -A 1B 1C 1D 1中,1,,AB a AD b AA c ===uuu r r uuu r r uuur r,E 为A 1D 1的中点,F 为BC 1与B 1C 的交点.(1)用基底{},,a b c r r r 表示向量1,,DB BE AFuuu r uuu r uuu r(2)化简1DD DB CD ++uuur uuu r uuu r,并在图中标出化简结果.40.如图,已知PA ⊥平面ABCD ,四边形ABCD 为正方形,G 为△PDC 的重心,AB =uuu ri ,AD =uuu r j ,AP =uuu rk ,试用基底{i ,j ,k }表示向量PG uuu r ,BG uuu r.【答案详解】1.C 【详解】对于A :由()1OM xOA yOB zOC x y z =++++=uuuu v uuuu v uuu v uuu v ,可得M ,A ,B ,C 四点共面,即,,MA MB MC uuu r uuur uuuu r共面,所以选项A 无法构成基底,选项C 可以构成基底;对于B :因为MA MB MC =+uuu r uuu r uuu u r ,由平面向量基本定理,可得,,MA MB MC uuu r uuur uuuu r共面,无法构成基底,故B 错误;同理选项D 中,,,MA MB MC uuu r uuur uuuu r共面,故D 错误.故选:C 2.D 【详解】由空间基底的定义,,,OA OB OC uuu r uuu r uuu r三个向量不共面,但选项A ,B ,C 三种情形都有可能使,,OA OB OC uuu r uuu r uuu r共面,只有D 才能使这三个向量不共面.故选:D.【点睛】本题考查基底的概念,属于基础题.3.C 【详解】A :因为()()2a b a b a r r r r r++-=,所以向量,,a a b a b r r r r r +-是共面向量,因此这三个向量不能构成基底;B :因为()(1)()2a b a b b r r r r r++--=,所以向量,,b a b a b r r r r r +-是共面向量,因此这三个向量不能构成基底;C :因为{},,a b c r r r为空间的一组基底,所以这三个向量不共面.若,,c a b a b r r r r r +-不构成一组基底,则有()()()()c x a b y a b c x y a x y b r r r r r r r r =++-Þ=++-,所以向量,,a b c r r r是共面向量,这与这三个向量不共面矛盾,故假设不正确,因此,,c a b a b r r r r r+-能构成一组基底,D :因为312()()22a b a b a b r r r r r r +=+++,所以向量,,2a b a b a b r r r r r r+-+是共面向量,因此,,2a b a b a b r r r r r r+-+不能构成一组基底.故选:C 4.B【详解】解:因为2OM MA =,所以2233OM OA a ==uuuu r uuu r r ,N 为BC 的中点,则()111222ON OB OC b c =+=+uuu r uuu r uuu r r r ,()2121132322MN MO ON OA OB OC a b c =+=-++=-++uuuu r uuuu r uuu r uuu r uuu r uuu r r r r .故选:B.5.C【详解】如下图所示,连接1AG 并延长交BC 于点D ,则点D 为BC 的中点,1G Q 为ABC V 的重心,可得123AG AD =uuuu r uuu r ,而()()111222OD OB BD OB BC OB OC OB OB OC =+=+=+-=+uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r ,()1122123333OG OA AG OA AD OA OD OA OA OD =+=+=+-=+uuuu r uuu r uuuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r ()()12113323OA OB OC OA OB OC =+×+=++uuu r uuu r uuu r uuu r uuu r uuu r ,所以,13311111144333444OG OG OA OB OC OA OB OC æö==++=++ç÷èøuuu r uuuu r uuu r uuu r uuu r uuu r uuu r uuu r ,所以,14x y z ===,因此,34x y z ++=.故选:C.6.C 【详解】因为12()23MN AN AM AD AB BC =-=-+uuuu r uuu r uuuu r uuu r uuu r uuu r 12()23AD AB AC AB =---uuu r uuu r uuu r uuu r 112233AD AB AC =--uuu r uuu r uuu r ,所以121,,332x y z =-=-=,故19xyz =.故选:C.7.C假设12c k p k q =+r u r r ,即()()12c k a b k a b =++-r r r r r ,得()()12120k k a k k b c ++--=r r r r ,这与{},,a b c r r r 是空间的一个基底矛盾,故c,p,q r u r r 是空间的一组基底,故选:C .8.D取PC 的中点E ,连接NE ,则()21321122MN EN EM PC PC CD PM PE CD æö=-=--=--ç÷èøuuuu r uuu r uuuu r uuu r uuuu r uuu r uuu r uuu r uuu r ()()111221116626PC AC AP AB AD A B P CD A AB =--=+----=-u uuu r uuu r u uu r uuu r uu uu r uu u r uuu u r r uuu r 211366AB AD AP =--+uuu r uuu r uuu r ,又因为MN x AB y AD z AP =++uuuu r uuu r uuu r uuu r ,由空间向量基本定理可得:231616x y z ì=-ïïï=-íïï=ïî故选:D.9.A【详解】解:根据空间向量基底的定义,三个非零向量a r ,b r ,c r 不能构成空间的一个基底,则a r ,b r ,c r 共面正确,故①为真命题;根据平面向量基本定理,若a r ,b r 是两个不共线向量,且c r =λa r +μb r(λ,μR Î且λμ≠0),则c r 与a r 、b r 所确定的平面共面,即a r ,b r ,c r 共面,所以{a r ,b r ,c r }不能构成空间的一个基底,故②为假命题.故选:A.10.B【详解】长方体1111ABCD A B C D -中,依题意,1113D P D B =uuuu r uuuu r ,11111111121()()3333DP DD D P DD D B DD DB DD DD DA AB =+=+=+-=++uuu r uuuu r uuuu r uuuu r uuuu r uuuu r uuu r uuuu r uuuu r uuu r uuu r 1112333AB AD AA =-+uuu r uuu r uuur ,而1DP xAB y AD z AA =++uuu r uuu r uuu r uuur ,又1,,AB AD AA uuu r uuu r uuur 不共面,于是得13x =,13y =-,23z =,所以23x y z ++=.故选:B 11.A【详解】解: ()12121222323233OD OP PD OA PQ OA OQ OP OA OQ OP =+=+=+-=+-uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r ()12121111+11126332326333OA OB OC OA OA OB OC a b c =+´+´=++-=+uuu r uuu r uuu r uuu r uuu r uuu r u r r uu r r ,故选:A12.C【详解】A 选项,三个非零向量能构成空间的一个基底,则三个非零向量不共面,故A 正确;B 选项,三个非零向量不共面,则此三个向量可以构成空间的一个基底,若两个非零向量与任何一个向量都不能构成空间的一个基底,则这三个向量共面,则已知的两个向量共线,如图,故B 正确;C 选项,∵ 满足c a b l m =+r r r ,∴a r ,b r ,c r 共面,不能构成基底,故C 错误,D 选项,因为OA uuu r 、OB uuu r 、OC uuu r 共起点,若O ,A ,B ,C 四点不共面,则必能作为空间的一个基底,故D 正确,故选C .13.A 【详解】221333OG OM MG OM MN ON OM =+=+=+uuu r uuuu r uuuu r uuuu r uuuu r uuu r uuuu r .因为,M N 分别为,OA CB 的中点,所以()11,,22OM OA ON OB OC ==+uuuu r uuu r uuu r uuu r uuu r 所以()1111136633OG OB OC OA OA OB OC =++=++uuu r uuu r uuu r uuu r uuu r uuu r uuu r .故选:A.14.B当非零向量a r ,b r ,c r 共面时,{},,a b c r r r 不能是空间的一个基底,由p 得不出q ,若{},,a b c r r r 为空间的一个基底,则a r ,b r ,c r 一定不共面,所以a r ,b r ,c r 一定是非零向量,所以由q 可以得出p ,因此p 是q 的必要不充分条件,故选:B.15.B【详解】|OA uuu r,|OB uuu r |==,则cos∠AOB=·||||OA OB OA OB uuu r uuu r uuu r uuu r=226||||7a b a b -+×r r r r 1611127-+´´==1114,从而有sin ∠AOB=,∴△OAB 的面积S 1||||sin 2OA OB AOB =Ðuuu r uuu r =12,故选:B .16.C【详解】据题意,得AC AB BC CC ¢¢=++uuuu r uuu r uuu r uuuu r ,32AC a AB bBC cCC =+¢+¢uuuu r uuu r uuu r uuur ,所以32AB BC CC a AB bBC cCC ¢¢++=++uuu r uuu r uuur uuu r uuu r uuur ,即(31)(21)(1)0a AB b BC c CC ¢-+-+-=uuu r uuu r uuur .又因为,,AB BC CC ¢uuu r uuu r uuur 为空间不共面的三个向量,所以312110a b c -=-=-=,所以11,,132a b c ===,所以16abc =.故选:C.17.D()1122MC OC OM OC OA AB OC OA OB OA æö=-=-+=---ç÷èøu u u r u u u r u u u r u u u r u u r u u u r u u u r u u r u u u r u u r 11112222OC OA OB c a b --=--=u u u r u u r u u u r r r r 故选:D18.B【详解】连接ON ,所以()()1122ON OB OC b c =+=+uuu r uuu r uuu r r r ,因为2AM MO =uuuu r uuuu r ,所以1133OM OA a ==uuuu r uuu r r ,所以()11112322MN MO ON OM OB OC a b c =+=-++=-++uuuu r uuu r uuuu r uuu r uuu r uu r r uu r r .故选:B.19.D 【详解】()()11112D M AM AD AB AD AD AA =-=+-+uuuuu r uuuu r uuuu r uuu r uuu r uuu r uuu r 11122AB AD AA =--uuu r uuu r uuur 1122a b c =--r r r 故选:D20.B【详解】连接ON ,如图,则由向量加法的平行四边形法则可得()()1121122322OG OM ON OA OB OC =+=´+´+uuu r uuuu r uuu r uuu r uuu r uuu r 111344OA OB OC =++uuu r uuu r uuu r .故选:B.21.C因为0a b c ++=r r r ,所以a b c +=-r r r ,两边平方得:222||||||2||||cos ,c a b a b a b =++áñr r r r r r r ,即1949223cos ,a b =++´´´áñr r ,所以1cos ,2a b áñ=r r ,因为[],0,180a b ΰ°n n r r ,所以,60a b °áñ=r r .故选:C22.C对于①,若a b ^r r ,则0a b ×=r r ,故()()a b c c b a a b a c c b c a c b ×++×-=×+×+×-×=×r r r r r r r r r r r r r r r r ,故①正确;对于②,若BA uuu r 、BM uuuu r 、BN uuu r 不构成空间的一个基底,则BA uuu r 、BM uuuu r 、BN uuu r 这3个向量在同一平面内,故A 、B 、M、N 共面,故②正确;对于③,当a b ^r r 时,若c r 与a r 、b r 不共面,则a r 、b r 、c r 可构成空间的一个基底,故③不正确;对于④,根据向量共线的定义可得其成立,故④正确,故选:C.23.C【详解】因为a r =OA OB OC ++uuu r uuu r uuu r ,b r =OA OB OC +-uuu r uuu r uuu r ,故12OC =uuu r (a b -r r ),所以OC uuu r 与向量,a b r r 共面,故OC uuu r ,a r ,b r 不能构成空间的一个基底.故选:C .24.C【详解】如图,Q 为AC 与BD 交点,P 为BQ 中点,O 为MQ 与1B P 的交点.过P 作PT 平行MQ 交1BB 于T .如图,则T 为BM 中点,所以1111131334224242MT BM BB MB MB ==´=´´=.所以123B O OP =uuur uuu r ,因此1323421411()555352555BO BB BP BM BH BN BM BH BN =+=×+×+=++uuu r uuur uuu r uuuu r uuur uuu r uuuu r uuur uuu r ,因为BO xBH yBN zBM =++uuu r uuu r ,所以411,,555z x y ===,1435x y z \++=.故选:C25.ABC 【详解】对于A 选项,充分性:若a b a b -=+r r r r ,则a r 、b r 方向相反,且a b ³r r ,充分性成立;必要性:若a r 、b r 共线且方向相同,则a b a b +=+r r r r ,即必要性不成立,所以,a b a b -=+r r r r 是a r 、b r 共线的充分不必要条件,A 选项错误;对于B 选项,若0b =r r ,0a ¹r r ,则//a b r r ,但不存在实数l ,使得λa b =r r ,B 选项错误;对于C 选项,对空间任意一点O 和不共线的三点A 、B 、C ,若P 、A 、B 、C 四点共面,可设AP xAB y AC =+uuu r uuu r uuu r,其中x 、y R Î,则()()OP OA x OB OA y OC OA -=-+-uuu r uuu r uuu r uuu r uuu r uuu r ,可得()1OP x y OA xOB yOC =--++uuu r uuu r uuu r uuu r ,由于22OP OA OB OC =--uuu r uuu r uuu r uuu r ,22111--=-¹Q ,此时,P 、A 、B 、C 四点不共面,C 选项错误;对于D 选项,假设a b +r r 、b c +r r 、c a +r r 共面,可设()()()a b m b c n c a na mb m n c +=+++=+++r r r r r r r r r ,由于{},,a b c r r r 为空间的一个基底,可得110m n m n =ìï=íï+=î,该方程组无解,假设不成立,所以,{},,a b b c c a +++r r r r r r 构成空间的另一个基底,D 选项正确.故选:ABC.26.ABC【详解】对于A 中,根据共线向量的概念,可知空间中的三个向量,若有两个向量共线,则这三个向量一定共面,所以是正确的;对于B 中,若对空间中任意一点O ,有111632OP OA OB OC ®®®®=++,因为1111632++=,根据空间向量的基本定理,可得P,A,B,C 四点一定共面,所以是正确的;对于C 中,由{},,a b c ®®®是空间中的一组基底,则向量,,a b c ®®®不共面,可得向量,,a b c a +r r r r 不共面,所以{},,a b m ®®®也是空间的一组基底,所以是正确的;对于D 中,若0a b ®®×<,又由[0,]a b p ®®×Î,所以(,]2a b pp ®®×Î,所以不正确.故选:ABC27.ABC【详解】如下图所示,N Q 为BC 的中点,则()11112222ON OB BN OB BC OB OC OB OB OC =+=+=+-=+uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r ,M Q 为OA 的中点,则12OM OA =uuuu r uuu r ,111222MN ON OM OB OC OA \=-=+-uuuu r uuu r uuuu r uuu r uuu r uuu r ,2MG GN =uuuu r uuu r Q ,则23MG MN =uuuu r uuuu r ,212111111323222633OG OM MG OM MN OA OB OC OA OA OB OC æö\=+=+=++-=++ç÷èøuuu r uuuu r uuuu r uuuu r uuuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r ,16x \=,13y z ==,则56x y z ++=.故选:ABC.28.BD【详解】由空间向量的加法法则得1AC a b c =++uuuu r r r r ,B 正确,111111111111()22BM BB B M BB B D AA B A B C =+=+=++uuuu r uuur uuuur uuur uuuu r uuur uuuu r uuuu r 111()222c a b a b c =+-+=-++r r r r r r ,A 错误;由已知111cos 602a b b ca c ×=×=×=´´°=r r r r r r ,1AC a b =+===uuuu r r rC 错;1cos ,AB AC <==uuu r uuuu r ,D 正确.故选:BD .29.CD【详解】对于,A 当a b a b +=-r r r r 时,a b r r ,共线成立,但当a b r r ,同向共线时a a bb +¹-r r r r 所以a b a b +=-r r r r 是a b r r ,共线的充分不必要条件,故A 不正确对于B ,当0b =r 时,//a b r r ,不存在唯一的实数,l 使得=a b l r r ,故B 不正确对于C ,由于243OP OA OB OC =-+uuu r uuu r uuu r uuu r ,而2431-+=,根据共面向量定理知P A B C ,,,四点共面,故C 正确对于D ,若{}a b c r r r ,,为空间的一个基底,则a b c r r r ,,不共面,由基底的定义可知,23a b b c c a +++r r r r r r ,,不共面,则{}23a b b c c a +++r r r r r r ,,构成空间的另一个基底,故D 正确.故选:CD30.BCD【详解】选项A 中,根据空间基底的概念,可得任意三个不共面的向量都可以作为一个空间基底,所以A 不正确;选项B 中,根据空间基底的概念,可得B 正确;选项C 中,由,,BA BM BN uuu r uuuu r uuu r 不能构成空间的一个基底,可得,,BA BM BN uuu r uuuu r uuu r 共面,又由,,BA BM BN uuu r uuuu r uuu r 过相同点B ,可得,,,A B M N 四点共面,所以C 正确;选项D 中:由{},,a b c r r r 是空间的一个基底,则基向量,a b r r 与向量m a c =+r r r 一定不共面,所以可以构成空间另一个基底,所以D 正确.故选:BCD.31.2 132如图所示,11113()222AE AA A E AA AB AD a b c xa yb zc =+=++=++=++uuu r uuur uuu u r uuur uuu r uuu r r r r r r r 所以3212x y z ===,,,故答案为:①2,②1,③3232.②③④【详解】如图,平行六面体1111ABCD A B C D -中,设1,,a AB b AD c AA ===r uuu r r uuu r r uuur ,则11,,x AC y AD z AB ===r uuu r u r uuuu r r uuu u r ,1a b c AC ++=r r r uuuu r ,因,,,A B D C 四点共面,则向量,,a b x r r r 共面,而11,,,A C D B 四点不共面,则向量,,x y z r u r r 不共面,又11,,,A D A B 四点不共面,则,,b c z r r r 不共面,11,,,A C D C 四点不共面,则,,x y a b c ++r u r r r r 也不共面,所以可以作为空间的基底的向量组是②③④.故答案为:②③④33.如图所示,连AG 延长交BC 于E ,MG MA AG=+u u u r u u u r u u u r 1223OA AE =+uuu r uuu r ()121232OA AB AC =+×+uuu r uuu r uuu r ()()111233OA OB OA OC OA =+-+-uuu r uuu r uuu r uuu r uuu r 111633OA OB OC =-++uuu r uuu r uuu r 故答案为:111633MG OA OB OC =-++uuuu r uuu r uuu r uuu r .34.1,0,12æö-ç÷èø12DM OM OD OA OD =-=-uuuu r uuuu r uuu r uuu r uuu r 所以有序实数组()1,,,0,12x y z æö=-ç÷èø,故答案为:1,0,12æö-ç÷èø.35.511.22a b l ==-=-;;∵()()()123123123d a b c e e e e e e e e e a b l a b l =++=++++-+-+u r u u r ur u r u u r ur u r u u r ur r r r r 且123e e e u r u u r ur ,,不共面()()()123d e e e a b l a b l a b l \=++++-+-+u r u r u u r ur∴123a a a b l b l b l ++=ìï+-=íï-+=î,∴5,21,1.2a b l ì=ïï=-íïï=-î故答案为:511.22a b l ==-=-;;36.①③④【详解】对于①:若向量a r , b r 与空间任意向量都不能构成基底,只能两个向量为共线向量,即//a b r r ,故①正确;对于②:若非零向量a r ,b r ,c r 满足a b ^r r ,b c ^r r ,则a r 与c r 不一定共线,故②错误;对于③:若OA uuu r ,OB uuu r ,OC uuu r 是空间的一组基底,且111333OD OA OB OC =++uuu r uuu r uuu r uuu r ,则11()()33OD OA OB OA OC OA -=-+-uuu r uuu r uuu r uuu r uuu r uuu r ,即1133AD AB AC =+uuu r uuu r uuu r ,可得到,,A B C ,D 四点共面,故③正确;对于④:若向量a b +r r ,b c +r r ,c a +r r ,是空间一组基底,则空间任意一个向量d u r ,存在唯一实数组(,,)x y z ,使得()()()()()()d x a b y b c z c a x z a x y b y z c =+++++=+++++v v v v v v v v v v ,由,,x y z 的唯一性,则x z +,x y +,y z +也是唯一的则a r ,b r ,c r 也是空间的一组基底,故④正确.故答案为:①③④37.(1)1D B a b c =--uuuu r r r r ,()12EF a c =-uuu r r r ;(2)11,,122x y z ==-=-(1)如图,连接AC ,EF ,D 1F ,BD 1,111D B D D DB AA AB AD a b c=+=-+-=--uuuu r uuuu r uuu r uuur uuu r uuu r r r r ()()()111111122222EF EA AF D A AC AA AD AB AD a c =+=+=-+++=-uuu r uuu r uuu r uuuu r uuu r uuur uuu r uuu r uuu r r r (2)()()()111111*********D F D D D B AA D B c a b c a b c =+=-+=-+--=--uuuu r uuuu r uuuu r uuur uuuu r r r r r r r r 11,,122x y z \==-=-38.证明:因为11AC AB AD AA ®®®®=++=111233AB AD AA AA ®®®®+++=11()3AB AA ®®++12()3AD AA ®®+=AB BE AD DF AE AF ®®®®®®+++=+,所以1AC ®,AE ®,AF ®共面,所以A ,E ,C 1,F 四点共面.39.(1)111DC CB DC BB BC a b B c D =+=+-=-+uuu r uuu r uuur uuu r uuur uuu r r r r ,1112BA AA A E a b BE c =++=-++uuu r uuu r uuur uuur r r r ,()111222AB BF a b c a b AF c =+=++=++uuu r uuu r uuu r r r r r r r ;(2)()1111111DD DB CD DD DB CD DD CB DD D A DA ++====++++uuur uuu r uuu r uuur uuu r uuu r uuur uuu r uuur uuuur uuu u r 如图,连接DA 1,则1DA uuu u r 即为所求.40.PG uuu r 13=i +23j -23k ;BG uuu r =-23i +23j +13k .【详解】延长PG 交CD 于点N ,则N 为CD 的中点,因为G 为△PDC 的重心,所以PG uuu r ()1122233333PN PA AB AD AP A A A AD P D B ==+++-+-==uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r 13i +23j -23k .111323BG BC CN NG BC CN NP AD DC PN =++=++=--uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r 111221()63323331A AB AD AP AD AB AP D AB =+-=-+--uuu r uuu r uuu r uuu r uuu uuu r uuu r r uuu r 23=-i +23j +13k .。
A B C
D
O
A
B
· ·
A
B
C
D
N
M
2.1平面向量的实际背景及基本概念
1、下列说法中,正确的个数有( )
①零向量可以与任何向量平行,也可以与任何向量垂直; ②若向量e 的模等于1,则e 为单位向量; ③所有的单位向量都相等;
A .0个
B .1个
C .2个
D .3个 2、设O 是正六边形ABCDEF 的中心,则与向量OA 相等的向量的个数有( ) A .4个 B .3个 C .2个 D .1个 3、如图,已正方形ABCD 边长为2,O 为其中心,则OA =
4、把同一平面内所有不小于1,不大于2的向量的起点,移到同一点O ,
则这些向量的终点构成的图形的面积等于 .
5、如图的方格纸由若干个边长为1的小方形并在一起组成,方格纸中有两个定点A 、B. 点C 为小正方形的顶点,且5AC =.
(1)画出所有的向量AC ; (2)求BC 的最大值与最小值.
2.2平面向量的线性运算
1、已知2,1==a b ,则-a b 的取值范围是( ) A .[1,2] B .[1,3] C .[1,2] D .[1,3]
2、下列等式错误..
的是( ) A .0-=a a B .-=a a 0 C .0⋅=a 0 D .0⋅=0a 3、如图,向量-a b 等于 .
4、已知向量a ,b 不共线,且k +a b 与k +a b 共线, 则实数k = .
5、如图,在平行四边形ABCD ,AD =a ,AB =b ,M 为AB 的中点,点N 在DB 上,且DN tNB =. (1)当2t =时,证明:M 、N 、C 三点共线; (2)若M 、N 、C 三点共线,求实数t 的值.
2.3平面向量的基本定理及坐标表示
1、已知向量(1,2),(2,3),(3,4)===a b c ,则用,a b 表示c 为( )
A .=+c a b
B .2=+c a b
C .2=-+c a b
D .2=-c a b
2
e 1
e b
a
O
A
B
P
M
N
B
C
A
2、已知向量(1,2)=a ,(,1)x =b ,2=+u a b ,2=-v a b ,且u v ,则x =( )
A .1-
B .1
C .1
2
-
D .12
3、若(1,3),(3,5)+=-=a b a b ,则=a ;=b .
4、已知在梯形ABCD 中,AB
DC ,且A 、B 、D 三点的坐标分别为(0,0)、(2,0)、
(1,1),则顶点C 的横坐标的取值范围是 .
5、如图,在□OABP 中,过点P 的直线与线段OA 、OB 分别相交于点M 、N ,若OM xOA =,
(01)ON yOB x =<<.
(1)求()y f x =的解析式; (2)令1
()()
F x x f x =
+,判断()F x 的单调性, 并给出你的证明
1、设,,a b c 为非零向量,下列等恒成立的个数有( )
①()()⋅⋅=⋅⋅a b c c a b ②[()()]0⋅⋅-⋅⋅⋅=b c a c a b c ③2
2
()()-=+-a b a b a b ④3
3
2
2
()()+=+-⋅+a b a b a a b b A .1个 B .2个 C .3个 D .4个 2、如图,在等腰ABC △中,AB=AC=1,30B ∠=,则向量
AB 在向量AC 上的投影等于( )
A .1
B .1-
C .12
D .12
- 3、若向量,a b 满足2,1=
=a b ,且()1⋅+=a a b ,则向量,a b 的夹角的大小为 .
4、设向量,,a b c 满足++=a b c 0,()-⊥a b c ,⊥a b ,1=a ,则=c .
5、已知两个向量,a b 满足2,1==a b ,,a b 的夹角为60,27x =+m a b ,x =+n a b ,
x ∈R .
(1)若,m n 的夹角为钝角,求x 的取值范围;
(2)设函数()f x =⋅m n ,求()f x 在[1,1]-上的最大值与最小值
2.4.数量积的坐标表示、模、夹角
1、在等腰Rt ABC △中,90A ∠=,(1,2),(,)AB AC m n ==,则BC =( ) A .(0,4)-或(2,0)- B .(0,4)或(2,0) C .(0,4)- D .(2,0)-
2、定义向量,a b 的外积为sin θ⨯=a b a b ,其中θ为a 与b 的夹角,若(1,2),=-a
(1,1)=b ,则⨯=a b ( )
A .1-
B .1
C .2
D .3
3、点(2,0),(3,0)A B -,动点(,)P x y 满足2
PA PB x ⋅=,则点P 的轨迹方程为 . 4、已知(2,1)=a ,(1,)=λb ,若a 与b 的夹角为锐角,则λ的取值范围是 . 5、已知三点(2,1)A 、(3,2)B 、(1,4)D -.
(1)证明:AB AD ⊥;
(2)若点C 使得四边形ABCD 为矩形,求点C 的坐标,并求该矩形对角线所夹的锐角的余弦值.。