浙江省高三数学第二次考试五校联考试题文(含解析)
- 格式:doc
- 大小:1.07 MB
- 文档页数:16
2021学年浙江省第二次五校联考数学〔文科〕试题卷第一卷一、选择题〔本大题共10小题,每题5分,共50分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕 1.集合1Ax x ,B x x m ,且A B R ,那么m 的值可以是〔 〕A .1B .0C .1D .2 2.,a b R ∈,那么“222a b +<〞是 “1ab <〞的( )A .必要而不充分条件B .充要条件C .充分而不必要条件D .既不充分也不必要条件3.如图是某班50位学生期中考试数学成绩的频率分布直方图,其中成绩分组区间是:[)4050,,[)5060,,[)6070,,[)7080,,[)8090,,[]90100,,那么图中x 的值等于 A .0.12 B .0.18 C .0.012 D .0.0184.()cos()3f x x πω=+的图像与1=y 的图象的两相邻交点间的距离为,π要得到()y f x =的图像,只需把sin y x ω=的图像 〔 〕A .向右平移127π个单位 B .向左平移127π个单位 C .向右平移56π个单位 D . 向左平移56π个单位5.以下命题正确的选项是( )A .假设平面α不平行于平面β,那么β内不存在直线平行于平面αB .假设平面α不垂直于平面β,那么β内不存在直线垂直于平面αC .假设直线l 不平行于平面α,那么α内不存在直线平行于直线lD .假设直线l 不垂直于甲面α,那么α内不存在直线垂直于直线l6.执行如下图的程序框图,输出的S 值为〔 〕 A .126 B .105 C .91D .667.假设(,),4παπ∈且3cos 24sin(),4παα=-那么α2sin 的值为 〔 〕 A .79 B .79- C .19- D .19 8.双曲线2222:1x y C a b-=的左、右焦点分别是12,F F ,正三角形12AF F 的一边1AF 与双曲线左支交于点B ,且114AF BF =,那么双曲线C 的离心率的值是〔 〕 A .123+ B .312 C .1313+ D .13139.函数32()69f x x x x abc =-+-, 其中a b c <<,且0)()()(===c f b f a f ,现给出如下结论:①0)1()0(>f f ;②0)1()0(<f f ;③(0)(3)0f f >;④0)3()0(<f f . 其中正确结论的个数是〔 〕A .1B .2C .3D .410.用()n A 表示非空集合A 中的元素个数,定义()(),()(),()(),()()n A n B n A n B A B n B n A n A n B -≥⎧*=⎨-<⎩当当 假设22{|140,},{||2014|2013,}A x x ax a R B x x bx b R =--=∈=++=∈,设{|1}S b A B =*=,那么()n S 等于〔 〕A .4B .3C .2D .1第二卷二、填空题〔本大题共7小题,每题4分,共28分〕11.分别在集合{1,2,4}A =和{3,5,6}B =中随机的各取一个数,那么这两个数的乘积为偶数的概率为 ;12.一个几何体的三视图如下图,侧视图是一个等边三角形,俯视图是半圆和正方形,那么这个几何体的体积为 .13.过点(11,2)A 作圆22241640x y x y ++--=的弦,其中弦长为整数的共有 条。
浙江省普通高校2025届高三第二次联考数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若0.60.5a =,0.50.6b =,0.52c =,则下列结论正确的是( ) A .b c a >>B .c a b >>C .a b c >>D .c b a >>2.已知函数()2xf x x a =+⋅,()ln 42xg x x a -=-⋅,若存在实数0x ,使()()005f x g x -=成立,则正数a 的取值范围为( )A .(]01,B .(]04,C .[)1+∞,D .(]0,ln2 3.已知复数z 满足(1)43z i i +=-,其中i 是虚数单位,则复数z 在复平面中对应的点到原点的距离为( )AB.2C .52D .544.数列{a n },满足对任意的n ∈N +,均有a n +a n +1+a n +2为定值.若a 7=2,a 9=3,a 98=4,则数列{a n }的前100项的和S 100=( ) A .132B .299C .68D .995.在正方体1111ABCD A B C D -中,E ,F 分别为1CC ,1DD 的中点,则异面直线AF ,DE 所成角的余弦值为( ) A .14B.4C.5D .156.已知实数,x y 满足线性约束条件1020x x y x y ≥⎧⎪+≥⎨⎪-+≥⎩,则1y x +的取值范围为( )A .(-2,-1]B .(-1,4]C .[-2,4)D .[0,4]7.已知α、,22ππβ⎛⎫∈- ⎪⎝⎭,αβ≠,则下列是等式sin sin 2αβαβ-=-成立的必要不充分条件的是( ) A .sin sin αβ> B .sin sin αβ< C .cos cos αβ>D .cos cos αβ<8.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且cos sin a B b A c +=.若2a =,ABC 的面积为3(21)-,则b c +=( ) A .5 B .22C .4D .169.函数的图象可能是下面的图象( )A .B .C .D .10.已知等差数列{}n a 的前n 项和为n S ,且43a =-,1224S =,若0+=i j a a (*,i j ∈N ,且1i j ≤<),则i 的取值集合是( ) A .{}1,2,3B .{}6,7,8C .{}1,2,3,4,5D .{}6,7,8,9,1011.函数cos 1ln(),1,(),1x x x f x xex π⎧->⎪=⎨⎪≤⎩的图象大致是( ) A . B .C .D .12.执行如图所示的程序框图,则输出的S 的值是( )A .8B .32C .64D .128二、填空题:本题共4小题,每小题5分,共20分。
2025届浙江省杭州市五校联盟高三第二次联考数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.运行如图所示的程序框图,若输出的值为300,则判断框中可以填( )A .30i >?B .40i >?C .50i >?D .60i >?2.已知x ,y R ∈,则“x y <”是“1xy <”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.若不等式22ln x x x ax -+对[1,)x ∈+∞恒成立,则实数a 的取值范围是( )A .(,0)-∞B .(,1]-∞C .(0,)+∞D .[1,)+∞4.等比数列{}n a 的各项均为正数,且384718a a a a +=,则3132310log log log a a a +++=() A .12 B .10 C .8 D .32log 5+5.已知集合{}22|A x y x ==-,2{|}10B x x x =-+≤,则A B =( )A .[12]-,B .[2]-,C .(2]-,D .2,2⎡-⎣6.给出下列三个命题:①“2000,210x x x ∃∈-+≤R ”的否定;②在ABC 中,“30B ︒>”是“3cos 2B <”的充要条件; ③将函数2cos2y x =的图象向左平移6π个单位长度,得到函数π2cos 26y x ⎛⎫=+ ⎪⎝⎭的图象. 其中假命题的个数是( )A .0B .1C .2D .37.将函数()sin(2)3f x x π=-()x R ∈的图象分别向右平移3π个单位长度与向左平移n (n >0)个单位长度,若所得到的两个图象重合,则n 的最小值为( )A .3πB .23πC .2πD .π8.已知函数()ln ln(3)f x x x =+-,则( )A .函数()f x 在()0,3上单调递增B .函数()f x 在()0,3上单调递减C .函数()f x 图像关于32x =对称D .函数()f x 图像关于3,02⎛⎫ ⎪⎝⎭对称 9.已知,x y 满足001x y x y x -⎧⎪+⎨⎪⎩,则32y x --的取值范围为( ) A .3,42⎡⎤⎢⎥⎣⎦ B .(1,2] C .(,0][2,)-∞+∞ D .(,1)[2,)-∞⋃+∞10.已知等差数列{}n a 中,若5732a a =,则此数列中一定为0的是( )A .1aB .3aC .8aD .10a11.如图,在平面四边形ABCD 中,满足,AB BC CD AD ==,且10,8AB AD BD +==,沿着BD 把ABD 折起,使点A 到达点P 的位置,且使2PC =,则三棱锥P BCD -体积的最大值为( )A .12B .122C .23D .16312.函数||1()e sin 28x f x x =的部分图象大致是( ) A . B .C .D .二、填空题:本题共4小题,每小题5分,共20分。
浙江省高三数学文科第二次五校联考试卷参考公式:如果事件 A , B 互斥,那么P ( A+ B )= P( A)+ P( B) , P( A+ B)= P( A)⋅P( B) 如果事件A 在一次试验中发生的概念是p ,那么n 次独立重复试验中恰好发生 k 次的概率:k n k n n p p C k P +-=)1()(4球的表面积公式:S=24R π, 其中 R 表示球的半径 球的体积公式V=234R π,其中R 表示球的半径卷一一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知四边形ABCD 上任意一点P 在映射f :),(y x →)2,1(+-y x 作用下的象P ‘构成的图形为四边形D C B A ''''。
若四边形ABCD 的面积等于6,则四边形D C B A ''''的面积等于 ( )A .9B .26C .34D .6 2.方程3330x x --=的根所在的区间是( )A .()1,0-B .()0,1C .()1,2D .()2,33.有一正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的结果如图所示.如果记3的对面的数字为m ,4的对面的数字为n ,那么m+n 的值为( ) A .3 B .7 C .8 D .114.以下通项公式中,不是数列3,5,9,的通项公式的是 ( ) A .21n n a =+B .23n a n n =-+C .21n a n =+D .322255733n a n n n =-+-+5.有一种波,其波形为函数sin()2y x π=-的图象,若其在区间[0,t ]上至少有2个波峰(图象的最高点),则正整数t 的最小值是( )A .5B .6C .7D .8 6.已知集合A 中有10个元素,B 中有6个元素,全集U 中有18个元素,设∁U (A∪B)有x个元素,则x 的取值范围是( )A .3≤x ≤8且x ∈NB .2≤x ≤8且x ∈NC .8≤x ≤12且x ∈ND .10≤x ≤15且x ∈N7.已知平面向量1122(,),(,),||2,||3,6====⋅=-若a x y b x y a b a b ,则1122x y x y ++的值为( )A .32 B .-32 C .65 D .-65 8.要从10名女生与5名男生中选取6名学生组成课外兴趣小组,如果按性别分层随机抽样,则能组成课外兴趣小组的概率是 ( )A .61525410C C CB .61535310C C C C .615615A CD .61525410A A C 9.已知直线l 通过抛物线24x y =的焦点F ,且与抛物线相交于,A B 两点,分别过,A B 两点的抛物线的两条切线相交于M 点,则AMB ∠的大小是 ( )A .4πB .3πC .2πD .34π10.设,a b 是异面直线,给出下列四个命题:①存在平面,αβ,使,,//a b ⊂α⊂βαβ;②存在惟一平面α,使,a b 与α距离相等;③空间存在直线c ,使c 上任一点到,a b 距离相等;④与,a b 都相交的两条直线,m n 一定是异面直线。
2024年浙江省高考数学模拟卷命题:浙江省温州中学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足1i 3iz=+−,则z 的共轭复数z 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.设集合{}21,M x x k k ==+∈Z ,{}31,N x x k k ==−∈Z ,则M N = ( ) A .{}21,x x k k =+∈Z B .{}31,x x k k =−∈Z C .{}61,x x k k =+∈ZD .{}61,x x k k =−∈Z3.已知不共线的平面向量a ,b 满足()()2a b a b λλ++∥,则正数λ=( )A .1BCD .24.传输信号会受到各种随机干扰,为了在强干扰背景下提取微弱信号,可用同步累积法.设s 是需提取的确定信号的值,每隔一段时间重复发送一次信号,共发送m 次,每次接收端收到的信号()1,2,3,,i i X s i m ε=+= ,其中干扰信号i ε为服从正态分布()20,N σ的随机变量,令累积信号1mi i Y X ==∑,则Y 服从正态分布()2,N ms m σ,定义信噪比为信号的均值与标准差之比的平方,例如1X 的信噪比为2s σ,则累积信号Y 的信噪比是接收一次信号的( )倍AB .mC .32mD .2m5.已知函数()πcos 24f x x=+,则“()ππ8k k θ=+∈Z ”是“()f x θ+为奇函数且()f x θ−为偶函数”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.在平面直角坐标系xOy 中,直线2y x t =+与圆C :22240x y x y +−+=相交于点A ,B ,若2π3ACB ∠=,则t =( ) A .12−或112− B .-1或-6C .32−或132− D .-2或-77.已知甲、乙、丙、丁、戊5人身高从低到高,互不相同,将他们排成相对身高为“高低高低高”或“低高低高低”的队形,则甲、丁不相邻的不同排法种数为( ) A .12B .14C .16D .188.已知双曲线()22221,0x y a b a b−=>上存在关于原点中心对称的两点A ,B ,以及双曲线上的另一点C ,使得ABC △为正三角形,则该双曲线离心率的取值范围是( )A .)+∞B .)+∞C .()2,+∞D .+∞二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()()1e x f x x =+,则下列结论正确的是( )A .()f x 在区间()2,−+∞上单调递增B .()f x 的最小值为21e−C .方程()2f x =的解有2个D .导函数()f x ′的极值点为-310.南丁格尔是一位英国护士、统计学家及社会改革者,被誉为现代护理学的奠基人.1854年,在克里米亚战争期间,她在接到英国政府的请求后,带领由38名志愿女护士组成的团队前往克里米亚救治伤员,并收集士兵死亡原因数据绘制了如下“玫瑰图”.图中圆圈被划分为12个扇形,按顺时针方向代表一年中的各个月份.每个扇形的面积与该月的死亡人数成比例.扇形中的白色部分代表因疾病或其他原因导致的死亡,灰色部分代表因战争受伤导致的死亡.右侧图像为1854年4月至1855年3月的数据,左侧图像为1855年4月至1856年3月的数据.下列选项正确的为( )A .由于疾病或其他原因而死的士兵远少于战场上因伤死亡的士兵B .1854年4月至1855年3月,冬季(12月至来年2月)死亡人数相较其他季节显著增加C .1855年12月之后,因疾病或其他原因导致的死亡人数总体上相较之前显著下降D .此玫瑰图可以佐证,通过改善军队和医院的卫生状况,可以大幅度降低不必要的死亡11.如图,平面直角坐标系上的一条动直线l 和x ,y 轴的非负半轴交于A ,B 两点,若1OB OA +=恒成立,则l 始终和曲线C 1=相切,关于曲线C 的说法正确的有( )A .曲线C 关于直线y x =和y x =−都对称B .曲线C 上的点到11,22和到直线y x =−的距离相等C .曲线C 上任意一点到原点距离的取值范围是D .曲线C 和坐标轴围成的曲边三角形面积小于π14−三、填空题:本小题共3小题,每小题5分,共15分.12.若62a x x−展开式中的常数项为-160,则实数a =______.13.已知公差为正数的等差数列{}n a 的前n 项和为n S ,{}n b 是等比数列,且()22342S b b =−+,()()612566S b b b b =++,则{}n S 的最小项是第______项.14.已知正三角形ABC 的边长为2,中心为O ,将ABC △绕点O 逆时针旋转角2π03θθ<<,然后沿垂直于平面ABC 的方向向上平移至A B C ′′′△,连接AA ′,AC ′,BA ′,BB ′,CB ′,CC ′,得到八面体ABCA B C ′′′,则该八面体体积的取值范围为______.四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.(13分)在ABC △中,角A ,B ,C 的对边为a ,b ,c ,已知1tan A ,1cos B ,1tan C是等差数列.(1)若a ,b ,c 是等比数列,求tan B ;(2)若π3B =,求()cos A C −.16.(15分)已知椭圆()222210x y a b a b+=>>的左焦点为F ,椭圆上的点到点F 距离的最大值和最小值分1+1. (1)求该椭圆的方程;(2)对椭圆上不在上下顶点的任意一点P ,其关于y 轴的对称点记为P ′,求P F PF ′+; (3)过点()2,0Q 作直线交椭圆于不同的两点A ,B ,求FAB △面积的最大值.17.(15分)如图,已知三棱台111ABC A B C −,112AB BC CA AA BB =====,114A B =,点O 为线段11A B 的中点,点D 为线段1OA 的中点.(1)证明:直线AD ∥平面1OCC ;(2)若平面11BCC B ⊥平面11ACC A ,求直线1AA 与平面1BCC B 所成线面角的大小.18.(17分)第二次世界大战期间,了解德军坦克的生产能力对盟军具有非常重要的战略意义.已知德军的每辆坦克上都有一个按生产顺序从1开始的连续编号.假设德军某月生产的坦克总数为N ,随机缴获该月生产的n 辆(n N <)坦克的编号为1X ,2X ,…,n X ,记{}12max ,,,n M X X X = ,即缴获坦克中的最大编号.现考虑用概率统计的方法利用缴获的坦克编号信息估计总数N . 甲同学根据样本均值估计总体均值的思想,用12nX X X X n+++=估计总体的均值,因此()112Ni N N i N X =+≈=∑,得12N X +≈,故可用21Y X =−作为N 的估计.乙同学对此提出异议,认为这种方法可能出现Y M <的无意义结果.例如,当5N =,3n =时,若11X =,22X =,34X =,则4M =,此时124112133Y M ++=⋅−=<. (1)当5N =,3n =时,求条件概率()5P Y M M <=;(2)为了避免甲同学方法的缺点,乙同学提出直接用M 作为N 的估计值.当8N =,4n =时,求随机变量M 的分布列和均值()E M ;(3)丙同学认为估计值的均值应稳定于实际值,但直观上可以发现()E M 与N 存在明确的大小关系,因此乙同学的方法也存在缺陷.请判断()E M 与N 的大小关系,并给出证明.19.(17分)卷积运算在图像处理、人工智能、通信系统等领域有广泛的应用.一般地,对无穷数列{}n a ,{}n b ,定义无穷数列()11nk n k n k c a b n +−=+=∈∑N ,记作{}{}{}*n n n a b c =,称为{}n a 与{}n b 的卷积.卷积运算有如图所示的直观含义,即{}n c 中的项依次为所列数阵从左上角开始各条对角线上元素的和,易知有交换律{}{}{}{}**n n n n a b b a =.(1)若n a n =,2n n b =,{}{}{}*n n n a b c =,求1c ,2c ,3c ,4c ;(2)对i +∈N ,定义{}i n T a 如下:①当1i =时,{}{}i n n T a a =;②当2i ≥时,{}i n T a 为满足通项10,,n n i n id a n i +−< = ≥ 的数列{}n d ,即将{}n a 的每一项向后平移1i −项,前1i −项都取为0.试找到数列(){}int ,使得(){}{}{}innni t a T a ⋅=; (3)若n a n =,{}{}{}*n n n a b c =,证明:当3n ≥时,122n n n n b c c c −−=−+.2024年浙江省高考数学模拟卷参考答案命题:温州中学 审题:金华一中一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1 2 3 4 5 6 78 DDBBACBA第8题解析:设点(),A x y ,则可取),C,故22222222331x y y x a b a b=−=−,得2222222233a b b yb ax a +<=+,解得b a >,故离心率e >. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9 10 11 ABDBCDBCD第11题解析:A .曲线C 不关于直线y x =−对称;B .设C 上一点(),P x y2222210x y x y xy +−−−+=,而()222114122210x y xy x y x y x y xy =⇔++=⇒=−−⇔+−−−+=,成立;C.2221OP x y =+≤=,()222211228x y x y++≥≥=,成立; D .(),P x y 到点()1,1A 的距离()()2222211222211AP x y x y x y xy −+−+−−++≥,故曲线C位于圆()()22111x y −+−=的左下部分四分之一圆弧的下方,故围成面积小于π14−. 三、填空题:本小题共3小题,每小题5分,共15分.第13题解析:6244020264S S SS =+=⋅⇒=,故{}n S 的最小项是第2项. 第14题解析:ABCA B C A ABCC A B C A B BC A C AC V V V V V ′′′′′′′′−−−′′−′=+++211π12222sin 22sin 3636θθ=+⋅⋅⋅+⋅⋅⋅π1sin 6θ =++∈ . 四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.(13分)(1)由2b ac =得2sin sin sin B A C =,sin cos cos 2112sin sinsin sin cos tan tan cos BC A B C A B A CC A =⇔+==+, 故22sin 1tan cos sin 2B B B B =⇔=.(2)若π3B =,则1sin sin sin cos 2A CB B ==, 又由()1cos cos cos sin sin 2A C A C AB +=−=−得1cos cos 2A C=−,故()1cos 2A C −=−. 注:第二问直接利用积化和差公式()()()1sin sin cos cos 2A C A C A C =−−+,写对公式给3分,条件代入正确化简给3分,最终答案1分. 16.(15分)(1)记c =1a c +=+,1a c −=−,解得a =1c =,故椭圆的方程为2212x y +=.(2)记椭圆的右焦点为F ′,则2PF P F PF PF a +=+=′′. (3)设()11,A x y ,()22,B x y ,直线AB 的方程为2x my =+,联立22212x my x y =++=,得()222420m y my +++=, 故12y y −=21132ABF S y y =⋅⋅−=△令0t =>,则ABF S =≤=△m =时取到等号. 17.(15分)(1)取AB 中点M ,则1CM C O ∥,故O ,M ,C ,1C 共面, 由AM 与OD 平行且相等得平行四边形ODAM ,故AD OM ∥, 故AD ∥平面1OCC .(2)法1(建系):以O 为原点,OM ,1OA为x ,y 轴正方向,垂直于平面11ABB A 向上为z 轴正方向,建立空间直角坐标系Oxyz .设))1cos Cαα−,表示出平面1ACC A的法向量11cos sin n αα+=,由对称性得平面11BCC B的法向量21cos 1,sin n αα+=,故120n n ⋅=,解得1cos 3α=,故C,(1n =,(11,n = , 记所求线面角为θ,则1212,sin AA n n AA θ==,故π4θ=.法2(综合法):连接1CA ,1CB ,取1A C 中点N ,则1111CN AA NA NC ====,故11CA CC ⊥, 由平面11BCC B ⊥平面11ACC A ,1CC =平面1BCC B 平面1ACC A ,故1CA ⊥平面1BCC B ,故11B C A C ⊥,又由11B C A C =,得11B C AC ==,延长1C C ,1A A ,1B B 交于点V ,则所求线面角即1AVC ∠,而111sin A C AVC AV ∠=1AA 与平面11BCC B法3(三余弦定理):延长1C C ,1A A ,1B B 交于点V ,则11π3BVA ∠=,1111AVC BVC ∠=∠, 由平面11BCC B ⊥平面11ACC A ,用三余弦定理得111111cos cos cos BVA C VA C VB ∠=∠⋅∠,因此11cos C VA ∠1AA 与平面1BCC B 所成线面角即为11π4C VA ∠=.18.(17分)(1)5M =时,最大编号为5,另2辆坦克编号有24C种可能,故()2435355C P M C ===, 由Y M <,有2153X X −<⇔<,故总编号和小于9,除最大编号5外另2个编号只能是1,2, 仅1种可能,故()3511510P Y M M C <===且, 因此()()()51565P Y M M P Y M M P M <=<====且.(2)分布列如下:(3)直观上可判断()E M N <,证明:()()()NNk n k nE M kP M k NP M k N ====<==∑∑.19.(17分)(1)12c =,28c =,322c =,452=. (2)()11,10,2nn t n = =≥ ,对一般的i +∈N ,()1,0,i n n i t n i = = ≠. (3)法1:记{}n b 的前n 项和为n S ,由卷积运算的交换律有()11nkn k n k bc ==+−∑,故()11nn kn k n S kbc =+−=∑…①,因此()()111121nn n n k k n S kb n b c +++=+−−+=∑…②,②-①得11n n n S c c ++=−,故当3n ≥时,()()1112122n n n n n n n n n n b S S c c c c c c c −−−−−−=−=−−−=−+. 法2:记{}n b 的前n 项和为n S ,常数列()1n T n +=∀∈N ,注意 (Ⅰ)易证卷积关于数列加法有分配律,将(Ⅰ)中所有数列对应项相加,得{}{}{}*n n n T b S =,注意 (Ⅱ)注意{}n T 是(){}int 对所有i +∈N对应项相加所得的数列,{}n a 是(){}{}*nnit T 对所有i +∈N对应项相加所得的数列,易知卷积运算有结合律,因此将(Ⅱ)中所有数列对应项相加,得{}{}*n n n c a b =的通项即为1nn i i c S ==∑,故当3n ≥时,()()1112122n n n n n n n n n n b S S c c c c c c c −−−−−−=−=−−−=−+. 注:以上论证可用符号语言说明如下:定义数列加法:{}{}{}n n n z x y =+,其中nn n z x y =+.容易验证卷积运算满足结合律:{}{}(){}{}{}{}()****nnnnnnx y x y ωω=,数列加法关于卷积满足分配律:{}{}(){}{}{}{}{}***nnnnnnnx y x y ωωω+=+. 因此{}{}(){}(){}{}(){}(){}{}()11111*****n i n n n n n n n n j i j i i j i j i a b t t b t t b S ∞∞∞∞===== == ∑∑∑∑∑.。
2021学年浙江省高三“五校联考〞考试数学试题卷 命题学校:绍兴一中说明:本试题卷分选择题和非选择题两局部.全卷共4页,总分值150分,考试时间 120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.参考公式柱体的体公式:V=Sh ,其中S 表示柱体的底面,h 表示柱体的高;体的体公式:V=1Sh ,其中S 表示体的底面,h 表示体的高;3台体的体公式:V1 (S 1 S1S2S2)h ,其中S 1,S2分表示台体的上、下底面,h 表示台体的高;3球的外表公式: 2 ,球的体公式:V=4 3S=4πR πR ,其中R 表示球的半径;3假设事件A,B 互斥, P(A+B)=P(A)+P(B);假设事件A,B 相互独立, P(A·B)=P(A)·P (B);k假设事件A 在一次中生的概率是p,n 次独立重复中事件A 恰好生k 次的概率Pn(k)=Cn kpn-kn)⋯., (1-p)(k=0,1,2,选择题局部〔共一、选择题:本大题共 10目要求的.40分〕小题,每题4分,共40分,在每题给出的四个选项中,只有一项为哪一项符合题1.集合U 1,1,3,5,7,9,A{1,5},B1,5,7,那么C U (AB) 〔▲〕A.3,9B.1,5,7C.1,1,3,9D.1,1,3,7,92.如图,网格纸上的小正方形的边长为 1,粗线画出的是某几何体的三视图,那么该几何体的外表积为〔 ▲ 〕A.426B.46C.422D.423.数列{a },满足 an 1 3an,且aa a69,那么n2 4log 3a 5log 3a 7log 3a 9 〔▲〕〔第2〕A.5B.6C.8D.114.xy0 ,那么“x0 〞是“2|x| x 22|y|y 2〞的〔 ▲〕A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.函数y 1x e x的大致图象为〔▲〕1 xCy1,6.实数x,y满足y2x10,如果目标函数z x y的最小值为-1,那么实数m等于〔▲〕x y m0,A.7B.5C.4D.37.M tan sin cos,N tan(tan82),那么M和N的关系是〔▲〕28A.M NB.M NC.M ND.M和N无关8.函数f(x)|log2x|,x0,|2f(x)m|1,且mZ,假设函数g(x)存在5个零1x,x,函数g(x)0.点,那么m的值为〔▲〕9.设a,b,c为平面向量,|a||b|2,假设(2c a)(c b)0,那么cb的最大值为〔▲〕A.2B.9C.17D.5 4410.如图,在三棱锥S ABC中,SC AC,SCB,ACB,二面角S BC A的平面角为,那么〔▲〕A. B.SCA C.SBA D.SBA非选择题局部〔共110分〕二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11.复数z满足1+2iz2i,那么z=▲,|z|=▲.12.f(x)(x2x1)(2x1)5的展开式中各项系数的和为▲,该展开式中的常数项为▲.x13.函数f(x)cos(x)(0,||)象中两相的最高点和最低点分(,1),72121),函数f(x)的增区▲,将函数f(x)的象至少平移▲个位度后关于直(,12x称.414.一个正四面体的四个面上分有1,2,3,4,将正四面体抛两次,向下一面的数字和偶数的概率▲,两个数字和的数学期望▲.15.双曲x2y21(a0,b0)中,A1,A2是左、右点,F是右焦点,B是虚的上端点.假设在a2b2段BF上〔不含端点〕存在不同的两点P i(i1,2),使得PA i1PA i20,双曲离心率的取范是▲.16.从0,1,2,⋯,8九个数字中取五个不同的数成五位偶数,且奇数数字不能放在偶数位〔从万位到个位分是第一位,第二位⋯⋯〕,有▲个不同的数.〔用数字作答〕17.数x,y[1,1]a,a b,,max{a,b}b.b,amax{x2y21,|x2y|}的最小▲.三、解答:本大共5小,共74分,解答写出文字明、明程或演算步. 18.〔本分14分〕ABC中,角A,B,C所的分a,b,c,且cos AsinA2.222(Ⅰ)求角A的大小;(Ⅱ)当a7,sin(A C)21,求c的. 1419.〔本分15分〕如,ABC中,AB BC7,AC10,点A平面,点B,C在平面的同,且B,C在平面上的射影分E,D ,BE2CD2.(Ⅰ)求:平面ABE 平面BCDE;(Ⅱ)假设M是AD中点,求平面BMC 与平面所成二面角的余弦.20.〔此题总分值15分〕正项数列a n的前n项和为S n,满足2S n12a n2a n(nN).(Ⅰ)〔i〕求数列a n的通项公式;〔ii〕对于n 1111M的最小值;N,不等式S2S3M恒成立,求实数S1S n(Ⅱ)数列b n的前n项和为T n,满足42a n1T n2(n N),是否存在非零实数,使得数列b n 为等比数列?并说明理由.21.〔此题总分值15分〕x2y21,抛物线x22y的准线与椭圆交于A,B两点,过线段AB上的动点P作斜率椭圆4为正的直线l与抛物线相切,且交椭圆于M,N两点.(Ⅰ)求线段AB的长及直线l斜率的取值范围;1MNQ面积的最大值.(Ⅱ)假设Q〔0,〕,求422.〔此题总分值15分〕函数 f(x) e x ax(Ⅰ)假设f(x)0恒成立,求b.(其中e为自然对数的底数ab的最大值;)(Ⅱ)设g(x)lnx 1,假设F(x)g(x)f(x)存在唯一的零点,且对满足条件的a,b不等式m〔ae1)b恒成立,求实数m的取值集合.。
2012学年浙江省五校联考数学(文科)试题卷一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}1,2,3,4,5,6,7,8U =,集合{1,2,3,5}A =,{2,4,6}B =,则图中的阴影部分表示的集合为( )A .{}2B .{}4,6C .{}1,3,5D .{}4,6,7,82.已知复数122,34,z m i z i =+=-若12z z 为实数,则实数m 的值为( ) A .83 B .32 C .83- D . 32-3.程序框图如图所示,其输出结果是111,则判断框中所填的条件是( )A .5n ≥B .6n ≥C .7n ≥D .8n ≥4.已知等比数列{}n a 的公比为q ,则“01q <<”是“{}n a 为递减数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.关于直线l ,m 及平面,αβ,下列命题中正确的是( )A .若l ∥,m ααβ⋂=,则l ∥mB .若l ∥α,m ∥α,则l ∥mC .若l ⊥α,l ∥β,则αβ⊥D .若l ∥α,m ⊥l ,则m ⊥α6.已知|||||2|1a b a b ==-=,则|2|a b +=( )A .9B .3C .1D .2 7.若实数x y 、满足约束条件0124y x y x y ≥⎧⎪-≥⎨⎪+≤⎩,且目标函数z x y =+的最大值等于 ( )A .2B .3C .4D .18.设01a <<,则函数1()log 1a x f x x -=+( )A .在(,1)-∞-上单调递减,在(1,1)-上单调递增B .在(,1)-∞-上单调递增,在(1,1)-上单调递减C .在(,1)-∞-上单调递增,在(1,1)-上单调递增D .在(,1)-∞-上单调递减,在(1,1)-上单调递减9.函数2()tan (23)2f x x x x πππ=--≤≤-的所有零点之和等于( )A .πB . 2πC . 3πD . 4π10.已知,A B 是双曲线2214x y -=的两个顶点,点P 是双曲线上异于,A B 的一点,连接PO (O 为坐标原点)交椭圆2214x y +=于点Q ,如果设直线,,PA PB QA 的斜率分别为123,,k k k ,且12158k k +=-,假设30k >,则3k 的值为( )A .1B .12 C . 2 D .4二.填空题:本大题共7小题,每小题4分,共28分.11.如图是某几何体的三视图,其中正视图和侧视图是全等的矩形,底边长为2,高为3,俯视图是半径为1的圆,则该几何体的体积是_______.12.某校为了解高三同学寒假期间学习情况,抽查了100名同学,统计他们每天平均学习时间,绘成频率分布直方图(如图),则这100名同学中学习时间在6~8小时内的人数为 .13.若等差数列{}na的前n项和为)(*∈NnSn,若2:5:32=aa,则=53:SS_________.14.一个口袋中装有2个白球和3个红球,每次从袋中摸出两个球,若摸出的两个球颜色相同为中奖,否则为不中奖,则中奖的概率为_________.15.已知双曲线22221(0,0)x ya ba b-=>>的渐近线与圆22420x y x+-+=相切,则该双曲线的离心率为_________.16.设x为实数,[]x为不超过实数x的最大整数,记{}[]x x x=-,则{}x的取值范围为[0,1),现定义无穷数列{}na如下:{}1a a=,当0na≠时,11nnaa+⎧⎫=⎨⎬⎩⎭;当0na=时,1na+=.如果a=2013a=.17.已知正实数,x y满足ln ln0x y+=,且22(2)4k x y x y+≤+恒成立,则k的取值范围是________.三.解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(本题满分14分)已知函数2()cos2cosf x x x x t=+-.(Ⅰ)若方程()0f x=在[0,]2xπ∈上有解,求t的取值范围;(Ⅱ )在ABC∆中,,,a b c分别是A,B,C所对的边,若3t=,且()1,2f A b c=-+=,求a的最小值.19.(本题满分14分)已知正项数列}{na的首项11=a,前n项和n S满足1-+=nnnSSa)2(≥n.(Ⅰ)求证:为等差数列,并求数列}{na的通项公式;(Ⅱ)记数列11{}n na a+的前n项和为nT,若对任意的*n N∈,不等式24nT a a<-恒成立,求实数a的取值范围.20.(本题满分14分)四棱锥P -ABCD 中,PA ⊥平面ABCD ,E 为AD 的中点,ABCE 为菱形,∠BAD =120°,PA =AB ,G 、F 分别是线段CE 、PB 的中点.(Ⅰ) 求证:FG ∥平面PDC ;(Ⅱ) 求二面角F -CD -G 的正切值.21.(本题满分15分)1) 已知函数2()x x f x e =. 2) (Ⅰ)求函数()f x 的单调区间;3) (Ⅱ)设2(),()1x g x x mx h x e =+=-,若在(0,)+∞上至少存在一点0x ,使得00()()g x h x >成立,求m 的范围.22.(本题满分15分)已知抛物线22(0)y px p =>的焦点为F ,点P 是抛物线上的一点,且其纵坐标为4,4PF =.(Ⅰ)求抛物线的方程;(Ⅱ) 设点1122(,),(,)(0,1,2)i A x y B x y y i ≤=是抛物线上的两点,APB ∠的角平分线与x 轴垂直,求PAB ∆的面积最大时直线AB 的方程.。
浙江省五校2025届高三下学期联合考试数学试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.向量1,tan 3a α⎛⎫= ⎪⎝⎭,()cos ,1b α=,且//a b ,则cos 2πα⎛⎫+=⎪⎝⎭( ) A .13B .223-C .23-D .13-2.若复数z 满足2(13)(1)i z i +=+,则||z =( )A .54B .55C .102D .1053.一个封闭的棱长为2的正方体容器,当水平放置时,如图,水面的高度正好为棱长的一半.若将该正方体绕下底面(底面与水平面平行)的某条棱任意旋转,则容器里水面的最大高度为( )A .1B .2C .3D .224.已知1111143579π≈-+-+-,如图是求π的近似值的一个程序框图,则图中空白框中应填入A .121i n =-- B .12i i =-+ C .(1)21ni n -=+D .(1)2ni i -=+5.设m ,n 是空间两条不同的直线,α,β是空间两个不同的平面,给出下列四个命题: ①若//m α,//n β,//αβ,则//m n ; ②若αβ⊥,m β⊥,m α⊄,则//m α; ③若m n ⊥,m α⊥,//αβ,则//n β; ④若αβ⊥,l αβ=,//m α,m l ⊥,则m β⊥.其中正确的是( )A .①②B .②③C .②④D .③④6.设a R ∈,0b >,则“32a b >”是“3log a b >”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件7.在等差数列{}n a 中,25a =-,5679a a a ++=,若3n nb a =(n *∈N ),则数列{}n b 的最大值是( ) A .3- B .13- C .1D .38.如果实数x y 、满足条件10{1010x y y x y -+≥+≥++≤,那么2x y -的最大值为( )A .2B .1C .2-D .3-9.已知ABC ∆的内角,,A B C 的对边分别是,,,a b c 且444222222a b c a b c a b+++=+,若c 为最大边,则a b c +的取值范围是( ) A.1⎛ ⎝⎭B.(C.1⎛ ⎝⎦ D.10.水平放置的ABC ,用斜二测画法作出的直观图是如图所示的A B C ''',其中2,O A O B ''''==O C ''=ABC 绕AB 所在直线旋转一周后形成的几何体的表面积为( )A .83πB .163πC .(833)π+D .(16312)π+11.定义在R 上函数()f x 满足()()f x f x -=,且对任意的不相等的实数[)12,0,x x ∈+∞有()()12120f x f x x x -<-成立,若关于x 的不等式()()()2ln 3232ln 3f mx x f f mx x --≥--++在[]1,3x ∈上恒成立,则实数m 的取值范围是( ) A .1ln6,126e ⎡⎤+⎢⎥⎣⎦B .1ln3,126e ⎡⎤+⎢⎥⎣⎦C .1ln3,23e ⎡⎤+⎢⎥⎣⎦D .1ln6,23e ⎡⎤+⎢⎥⎣⎦12.数列{}n a 满足()*212n n n a a a n +++=∈N ,且1239a a a ++=,48a =,则5a =( )A .212B .9C .172D .7二、填空题:本题共4小题,每小题5分,共20分。
浙江省五校联考高考数学二模试卷(理科)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项符合题目要求.)1.定义集合A={x|f(x)=},B={y|y=log2(2x+2)},则A∩∁R B=()A.(1,+∞)B.[0,1]C.[0,1)D.[0,2)2.△ABC的三内角A,B,C的对边分别是a,b,c,则“a2+b2<c2”是“△ABC为钝角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.对任意的θ∈(0,),不等式+≥|2x﹣1|恒成立,则实数x的取值范围是()A.[﹣3,4] B.[0,2]C.D.[﹣4,5]4.已知棱长为1的正方体ABCD﹣A1B1C1D1中,下列命题不正确的是()A.平面ACB1∥平面A1C1D,且两平面的距离为B.点P在线段AB上运动,则四面体PA1B1C1的体积不变C.与所有12条棱都相切的球的体积为πD.M是正方体的内切球的球面上任意一点,N是△AB1C外接圆的圆周上任意一点,则|MN|的最小值是5.设函数f(x)=,若函数g(x)=f(x)﹣m在[0,2π]内恰有4个不同的零点,则实数m的取值范围是()A.(0,1)B.[1,2]C.(0,1]D.(1,2)6.已知F1,F2是双曲线﹣=1(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线在第一象限的交点为P,过点P向x轴作垂线,垂足为H,若|PH|=a,则双曲线的离心率为()A.B.C.D.7.已知3tan+=1,sinβ=3sin(2α+β),则tan(α+β)=()A.B.﹣C.﹣D.﹣38.如图,棱长为4的正方体ABCD﹣A1B1C1D1,点A在平面α内,平面ABCD与平面α所成的二面角为30°,则顶点C1到平面α的距离的最大值是()A.2(2+)B.2(+)C.2(+1)D.2(+1)二、填空题(本大题共7小题,前4题每题6分,后3题每题4分,共36分)9.已知空间几何体的三视图如图所示,则该几何体的表面积是;几何体的体积是.10.若x=是函数f(x)=sin2x+acos2x的一条对称轴,则函数f(x)的最小正周期是;函数f(x)的最大值是.11.已知数列{a n}满足:a1=2,a n+1=,则a1a2a3…a15=;设b n=(﹣1)n a n,数列{b n}前n项的和为S n,则S2016=.12.已知整数x,y满足不等式,则2x+y的最大值是;x2+y2的最小值是.13.已知向量,满足:||=2,向量与﹣夹角为,则的取值范围是.14.若f(x+1)=2,其中x∈N*,且f(1)=10,则f(x)的表达式是.15.从抛物线y2=2x上的点A(x0,y0)(x0>2)向圆(x﹣1)2+y2=1引两条切线分别与y轴交B,C两点,则△ABC的面积的最小值是.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤)16.如图,四边形ABCD,∠DAB=60°,CD⊥AD,CB⊥AB.(Ⅰ)若2|CB|=|CD|=2,求△ABC的面积;(Ⅱ)若|CB|+|CD|=3,求|AC|的最小值.17.如图(1)E,F分别是AC,AB的中点,∠ACB=90°,∠CAB=30°,沿着EF将△AEF折起,记二面角A﹣EF﹣C的度数为θ.(Ⅰ)当θ=90°时,即得到图(2)求二面角A﹣BF﹣C的余弦值;(Ⅱ)如图(3)中,若AB⊥CF,求cosθ的值.18.设函数f(x)=ax2+bx+c,g(x)=c|x|+bx+a,对任意的x∈[﹣1,1]都有|f(x)|≤.(1)求|f(2)|的最大值;(2)求证:对任意的x∈[﹣1,1],都有|g(x)|≤1.19.已知椭圆C: +=1(a>b>0)的离心率为,焦点与短轴的两顶点的连线与圆x2+y2=相切.(Ⅰ)求椭圆C的方程;(Ⅱ)过点(1,0)的直线l与C相交于A,B两点,在x轴上是否存在点N,使得•为定值?如果有,求出点N的坐标及定值;如果没有,请说明理由.20.已知正项数列{a n}满足:S n2=a13+a23+…+a n3(n∈N*),其中S n为数列{a n}的前n项的和.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求证:<()+()+()+…+()<3.浙江省五校联考高考数学二模试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项符合题目要求.)1.定义集合A={x|f(x)=},B={y|y=log2(2x+2)},则A∩∁R B=()A.(1,+∞)B.[0,1]C.[0,1)D.[0,2)【考点】交、并、补集的混合运算.【分析】求出A中x的范围确定出A,求出B中y的范围确定出B,找出A与B补集的交集即可.【解答】解:由A中f(x)=,得到2x﹣1≥0,即2x≥1=20,解得:x≥0,即A=[0,+∞),由2x+2>2,得到y=log2(2x+2)>1,即B=(1,+∞),∵全集为R,∴∁R B=(﹣∞,1],则A∩∁R B=[0,1].故选:B.2.△ABC的三内角A,B,C的对边分别是a,b,c,则“a2+b2<c2”是“△ABC为钝角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】在△ABC中,由“a2+b2<c2”,利用余弦定理可得:C为钝角,因此“△ABC为钝角三角形”,反之不成立.【解答】解:在△ABC中,“a2+b2<c2”⇔cosC=<0⇒C为钝角⇒“△ABC为钝角三角形”,反之不一定成立,可能是A或B为钝角.∴△ABC的三内角A,B,C的对边分别是a,b,c,则“a2+b2<c2”是“△ABC为钝角三角形”的充分不必要条件.故选:A.3.对任意的θ∈(0,),不等式+≥|2x﹣1|恒成立,则实数x的取值范围是()A.[﹣3,4] B.[0,2]C.D.[﹣4,5]【考点】基本不等式.【分析】对任意的θ∈(0,),sin2θ+cos2θ=1,可得+=(sin2θ+cos2θ)=5++,利用基本不等式的性质可得其最小值M.由不等式+≥|2x﹣1|恒成立,可得M≥|2x﹣1|,解出即可得出.【解答】解:∵对任意的θ∈(0,),sin2θ+cos2θ=1,∴+=(sin2θ+cos2θ)=5++≥5+2×2=9,当且仅当时取等号.∵不等式+≥|2x﹣1|恒成立,∴9≥|2x﹣1|,∴﹣9≤2x﹣1≤9,解得﹣4≤x≤5,则实数x的取值范围是[﹣4,5].故选:D.4.已知棱长为1的正方体ABCD﹣A1B1C1D1中,下列命题不正确的是()A.平面ACB1∥平面A1C1D,且两平面的距离为B.点P在线段AB上运动,则四面体PA1B1C1的体积不变C.与所有12条棱都相切的球的体积为πD.M是正方体的内切球的球面上任意一点,N是△AB1C外接圆的圆周上任意一点,则|MN|的最小值是【考点】命题的真假判断与应用.【分析】A.根据面面平行的判定定理以及平行平面的距离进行证明即可.B.研究四面体的底面积和高的变化进行判断即可.C.所有12条棱都相切的球的直径2R等于面的对角线B1C的长度,求出球半径进行计算即可.D.根据正方体内切球和三角形外接圆的关系进行判断即可.【解答】解:A.∵AB1∥DC1,AC∥A1C1,且AC∩AB1=A,∴平面ACB1∥平面A1C1D,长方体的体对角线BD1=,设B到平面ACB1的距离为h,则=×1=h,即h=,则平面ACB1与平面A1C1D的距离d=﹣2h==,故A正确,B.点P在线段AB上运动,则四面体PA1B1C1的高为1,底面积不变,则体积不变,故B正确,C.与所有12条棱都相切的球的直径2R等于面的对角线B1C=,则2R=,R=,则球的体积V==×π×()3=π,故C正确,D.设与正方体的内切球的球心为O,正方体的外接球为O′,则三角形ACB1的外接圆是正方体的外接球为O′的一个小圆,∵点M在与正方体的内切球的球面上运动,点N在三角形ACB1的外接圆上运动,∴线段MN长度的最小值是正方体的外接球的半径减去正方体的内切球相切的球的半径,∵正方体ABCD﹣A1B1C1D1的棱长为1,∴线段MN长度的最小值是﹣.故D错误,故选:D.5.设函数f(x)=,若函数g(x)=f(x)﹣m在[0,2π]内恰有4个不同的零点,则实数m的取值范围是()A.(0,1)B.[1,2]C.(0,1]D.(1,2)【考点】函数零点的判定定理.【分析】画出函数f(x)的图象,问题转化为f(x)和y=m在[0,2π]内恰有4个不同的交点,结合图象读出即可.【解答】解:画出函数f(x)在[0,2π]的图象,如图示:,若函数g(x)=f(x)﹣m在[0,2π]内恰有4个不同的零点,即f(x)和y=m在[0,2π]内恰有4个不同的交点,结合图象,0<m<1,故选:A.6.已知F1,F2是双曲线﹣=1(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线在第一象限的交点为P,过点P向x轴作垂线,垂足为H,若|PH|=a,则双曲线的离心率为()A.B.C.D.【考点】双曲线的简单性质.【分析】运用双曲线的定义和直径所对的圆周角为直角,运用勾股定理,化简可得|PF1|•|PF2|=2c2﹣2a2,再由三角形的等积法,结合离心率公式,计算即可得到所求值.【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,①由直径所对的圆周角为直角,可得PF1⊥PF2,可得|PF1|2+|PF2|2=|F1F2|2=4c2,②②﹣①2,可得2|PF1|•|PF2|=4c2﹣4a2,即有|PF1|•|PF2|=2c2﹣2a2,由三角形的面积公式可得, |PF1|•|PF2|=|PH|•|F1F2|,即有2c2﹣2a2=2ac,由e=可得,e2﹣e﹣1=0,解得e=(负的舍去).故选:C.7.已知3tan+=1,sinβ=3sin(2α+β),则tan(α+β)=()A.B.﹣C.﹣D.﹣3【考点】两角和与差的正切函数.【分析】由已知式子可得sin[(α+β)﹣α]=3sin[(α+β)+α],保持整体展开变形可得tan(α+β)=2tanα,再由3tan+=1和二倍角的正切公式可得tanα的值,代入计算可得.【解答】解:∵sinβ=3sin(2α+β),∴sin[(α+β)﹣α]=3sin[(α+β)+α],∴sin(α+β)cosα﹣cos(α+β)sinα=3sin(α+β)cosα+3cos(α+β)sinα,∴2sin(α+β)cosα=4cos(α+β)sinα,∴tan(α+β)===2tanα,又∵3tan+=1,∴3tan=1﹣,∴tanα==,∴tan(α+β)=2tanα=,故选:A.8.如图,棱长为4的正方体ABCD﹣A1B1C1D1,点A在平面α内,平面ABCD与平面α所成的二面角为30°,则顶点C1到平面α的距离的最大值是()A.2(2+)B.2(+)C.2(+1)D.2(+1)【考点】点、线、面间的距离计算.【分析】如图所示,O在AC上,C1O⊥α,垂足为E,则C1E为所求,∠OAE=30°,由题意,设CO=x,则AO=4﹣x,由此可得顶点C1到平面α的距离的最大值.【解答】解:如图所示,AC的中点为O,C1O⊥α,垂足为E,则C1E为所求,∠AOE=30°由题意,设CO=x,则AO=4﹣x,C1O=,OE=OA=2﹣x,∴C1E=+2﹣x,令y=+2﹣x,则y′=﹣=0,可得x=,∴x=,顶点C1到平面α的距离的最大值是2(+).故选:B.二、填空题(本大题共7小题,前4题每题6分,后3题每题4分,共36分)9.已知空间几何体的三视图如图所示,则该几何体的表面积是8π;几何体的体积是.【考点】由三视图求面积、体积.【分析】根据三视图可知几何体是组合体:中间是圆柱上下是半球,由三视图求出几何元素的长度,利用柱体、球体的体积公式计算出几何体的体积,由面积公式求出几何体的表面积.【解答】解:根据三视图可知几何体是组合体:中间是圆柱上下是半球,球和底面圆的半径是1,圆柱的母线长是2,∴几何体的表面积S=4π×12+2π×1×2=8π,几何体的体积是V==,故答案为:.10.若x=是函数f(x)=sin2x+acos2x的一条对称轴,则函数f(x)的最小正周期是π;函数f(x)的最大值是.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】利用辅助角公式化f(x)=sin2x+acos2x=(tanθ=a),由已知求出θ得到a值,则函数的周期及最值可求.【解答】解:∵f(x)=sin2x+acos2x=(tanθ=a),又x=是函数的一条对称轴,∴,即.则f(x)=.T=;由a=tanθ=tan()=tan=,得.∴函数f(x)的最大值是.故答案为:.11.已知数列{a n}满足:a1=2,a n+1=,则a1a2a3…a15=3;设b n=(﹣1)n a n,数列{b n}前n项的和为S n,则S2016=﹣2100.【考点】数列的求和.【分析】利用递推式计算前5项即可发现{a n}为周期为4的数列,同理{b n}也是周期为4的数列,将每4项看做一个整体得出答案.【解答】解:∵a1=2,a n+1=,∴a2==﹣3,a3==﹣,a4==,a5==2.∴a4n+1=2,a4n+2=﹣3,a4n+3=﹣,a4n=.∴a4n+1•a4n+2•a4n+3•a4n=2×=1.∴a1a2a3…a15=a13a14a15=a1a2a3=2×(﹣3)×(﹣)=3.∵b n=(﹣1)n a n,∴b4n+1=﹣2,b4n+2=﹣3,b4n+3=,b4n=.∴b4n+1+b4n+2+b4n+3+b4n=﹣2﹣3++=﹣.∴S2016=﹣×=﹣2100.故答案为:3,﹣2100.12.已知整数x,y满足不等式,则2x+y的最大值是24;x2+y2的最小值是8.【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,代入最优解的坐标得答案.第二问,转化为点到原点的距离的平方,求出B的坐标代入求解即可.【解答】解:由约束条件作出可行域如图,由z=2x+y,得y=﹣2x+z,由图可知,当直线y=﹣2x+z过A时,直线在y轴上的截距最大,由可得,A(8,8)z最大等于2×8+8=24.x2+y2的最小值是可行域的B到原点距离的平方,由可得B(2,2).可得22+22=8.故答案为:24;8.13.已知向量,满足:||=2,向量与﹣夹角为,则的取值范围是.【考点】平面向量数量积的运算.【分析】不妨设=(x,0)(x≥0),=θ,=,=,=.由于向量与﹣夹角为,可得:∠AOB=θ∈.∈[﹣1,1].在△OAB中,由正弦定理可得:==,化简整理可得:=2+﹣=+2,即可得出.【解答】解:不妨设=(x,0)(x≥0),=θ,=,=,=.∵向量与﹣夹角为,∴∠AOB=θ∈.∴∈,∈[﹣1,1].在△OAB中,由正弦定理可得:==,∴=,=sinθ=,∴=2+﹣=+2=+2=+2∈.∴的取值范围是.故答案为:.14.若f(x+1)=2,其中x∈N*,且f(1)=10,则f(x)的表达式是f(x)=4•()(x∈N*).【考点】数列与函数的综合.【分析】由题意可得f(x)>0恒成立,可对等式两边取2为底的对数,整理为log2f(x+1)﹣2=(log2f (x)﹣2),由x∈N*,可得数列{log2f(x)﹣2)}为首项为log2f(1)﹣2=log210﹣2,公比为的等比数列,运用等比数列的通项公式,整理即可得到f(x)的解析式.【解答】解:由题意可得f(x)>0恒成立,由f(x+1)=2,可得:log2f(x+1)=1+log2,即为log2f(x+1)=1+log2f(x),可得log2f(x+1)﹣2=(log2f(x)﹣2),由x∈N*,可得数列{log2f(x)﹣2)}是首项为log2f(1)﹣2=log210﹣2,公比为的等比数列,可得log2f(x)﹣2=(log210﹣2)•()x﹣1,即为log2f(x)=2+log2•()x﹣1,即有f(x)=22•2=4•().故答案为:f(x)=4•()(x∈N*).15.从抛物线y2=2x上的点A(x0,y0)(x0>2)向圆(x﹣1)2+y2=1引两条切线分别与y轴交B,C两点,则△ABC的面积的最小值是8.【考点】抛物线的简单性质.【分析】设B(0,y B),C(0,y C),A(x0,y0),其中x0>2,写出直线AB的方程为(y0﹣y B)x﹣x0y+x0y B=0,由直线AB与圆相切可得(x0﹣2)y B2+2y0y B﹣x0=0,同理:(x0﹣2)y A2+2y0y A﹣x0=0,故y A,y B是方程(x0﹣2)y2+2y0y﹣x0=0的两个不同的实根,因为S=|y C﹣y B|x0,再结合韦达定理即可求出三角形的最小值.【解答】解:设B(0,y B),C(0,y C),A(x0,y0),其中x0>2,所以直线AB的方程,化简得(y0﹣y B)x﹣x0y+x0y B=0直线AB与圆相切,圆心到直线的距离等于半径,两边平方化简得(x0﹣2)y B2+2y0y B﹣x0=0同理可得:(x0﹣2)y A2+2y0y A﹣x0=0,故y C,y B是方程(x0﹣2)y2+2y0y﹣x0=0的两个不同的实根,所以y C+y B=,y C y B=,所以S=|y C﹣y B|x0==(x0﹣2)++4≥8,所以当且仅当x0=4时,S取到最小值8,所以△ABC的面积的最小值为8.故答案为:8.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤)16.如图,四边形ABCD,∠DAB=60°,CD⊥AD,CB⊥AB.(Ⅰ)若2|CB|=|CD|=2,求△ABC的面积;(Ⅱ)若|CB|+|CD|=3,求|AC|的最小值.【考点】余弦定理.【分析】(Ⅰ)由已知可求∠DCB,利用余弦定理可求BD,进而求得AC,AB,利用三角形面积公式即可得解.(Ⅱ)设|BC|=x>0,|CD|=y>0,由已知及基本不等式可求BD的最小值,进而可求AC的最小值.【解答】(本题满分为15分)解:(Ⅰ)∵∠DAB=60°,CD⊥AD,CB⊥AB,可得A,B,C,D四点共圆,∴∠DCB=120°,∴BD2=BC2+CD2﹣2CD•CB•cos120°=1+4+2=7,即BD=,∴,∴,∴.…(Ⅱ)设|BC|=x>0,|CD|=y>0,则:x+y=3,BD2=x2+y2+xy=(x+y)2﹣xy,∴,当时取到.…17.如图(1)E,F分别是AC,AB的中点,∠ACB=90°,∠CAB=30°,沿着EF将△AEF折起,记二面角A﹣EF﹣C的度数为θ.(Ⅰ)当θ=90°时,即得到图(2)求二面角A﹣BF﹣C的余弦值;(Ⅱ)如图(3)中,若AB⊥CF,求cosθ的值.【考点】二面角的平面角及求法.【分析】(Ⅰ)推导出AE⊥平面CEFB,过点E向BF作垂线交BF延长线于H,连接AH,则∠AHE为二面角A﹣BF﹣C的平面角,由此能求出二面角A﹣BF﹣C的余弦值.(Ⅱ)过点A向CE作垂线,垂足为G,由AB⊥CF,得GB⊥CF,由此能求出cosθ的值.【解答】解:(Ⅰ)∵平面AEF⊥平面CEFB,且EF⊥EC,∴AE⊥平面CEFB,过点E向BF作垂线交BF延长线于H,连接AH,则∠AHE为二面角A﹣BF﹣C的平面角设,,,∴,∴二面角A﹣BF﹣C的余弦值为.(Ⅱ)过点A向CE作垂线,垂足为G,如果AB⊥CF,则根据三垂线定理有GB⊥CF,∵△BCF为正三角形,∴,则,∵,∴,∴cosθ的值为.18.设函数f(x)=ax2+bx+c,g(x)=c|x|+bx+a,对任意的x∈[﹣1,1]都有|f(x)|≤.(1)求|f(2)|的最大值;(2)求证:对任意的x∈[﹣1,1],都有|g(x)|≤1.【考点】二次函数的性质;绝对值三角不等式.【分析】(1)由|f(x)|≤得|f(0)|≤,|f(1)|≤,|f(﹣1)|≤,代入解析式即可得出a,b,c的关系,使用放缩法求出|f(2)|的最值;(2)由(1)得出|g(±1)|,故g(x)单调时结论成立,当g(x)不单调时,g(x)=a,利用不等式的性质求出a的范围即可.【解答】解:(1)∵对任意的x∈[﹣1,1]都有|f(x)|≤.|f(0)|≤,|f(1)|≤,|f(﹣1)|≤,∴|c|≤,|a+b+c|≤,|a﹣b+c|≤;∴|f(2)|=|4a+2b+c|=|3(a+b+c)+(a﹣b+c)﹣3c|≤|3(a+b+c)|+|(a﹣b+c)|+|﹣3c|≤=.∴|f(2)|的最大值为.(2)∵﹣≤a+b+c≤,﹣≤a﹣b+c≤,﹣≤c≤,∴﹣1≤a+b≤1,﹣1≤a﹣b≤1,∴﹣1≤a≤1,若c|x|+bx=0,则|g(x)|=|a|,∴|g(x)|≤1,若c|x|+bx≠0,则g(x)为单调函数,|g(﹣1)|=|a﹣b+c|≤,|g(1)|=|a+b+c|≤,∴|g(x)|.综上,|g(x)|≤1.19.已知椭圆C: +=1(a>b>0)的离心率为,焦点与短轴的两顶点的连线与圆x2+y2=相切.(Ⅰ)求椭圆C的方程;(Ⅱ)过点(1,0)的直线l与C相交于A,B两点,在x轴上是否存在点N,使得•为定值?如果有,求出点N的坐标及定值;如果没有,请说明理由.【考点】椭圆的简单性质.【分析】(Ⅰ)由椭圆的离心率为,焦点与短轴的两顶点的连线与圆x2+y2=相切,列出方程组,求出a,b,由此能求出椭圆方程.(Ⅱ)当直线l的斜率存在时,设其方程为y=k(x﹣1),A(x1,y1),B(x2,y2),直线方程与椭圆立,利用韦达定理、根的判别式、向量的数量积,结合已知条件能求出存在点满足.【解答】解:(Ⅰ)∵椭圆C: +=1(a>b>0)的离心率为,焦点与短轴的两顶点的连线与圆x2+y2=相切,∴,解得c 2=1,a 2=4,b 2=3 ∴椭圆方程为(Ⅱ)当直线l 的斜率存在时,设其方程为y=k (x ﹣1),A (x 1,y 1),B (x 2,y 2),则△>0,,若存在定点N (m ,0)满足条件,则有=(x 1﹣m )(x 2﹣m )+y 1y 2 =如果要上式为定值,则必须有验证当直线l 斜率不存在时,也符合. 故存在点满足20.已知正项数列{a n }满足:S n 2=a 13+a 23+…+a n 3(n ∈N *),其中S n 为数列{a n }的前n 项的和. (Ⅰ)求数列{a n }的通项公式; (Ⅱ)求证:<()+()+()+…+()<3.【考点】数列与不等式的综合;数列递推式. 【分析】(Ⅰ)通过S n 2=a 13+a 23+…+a n 3(n ∈N *)与S n ﹣12=a 13+a 23+…+a n ﹣13(n ≥2,n ∈N *)作差、计算可知S n +S n ﹣1=,并与S n ﹣1﹣S n ﹣2=作差、整理即得结论;(Ⅱ)通过(Ⅰ)可知,一方面利用不等式的性质、累加可知()+()+()+…+()>,另一方面通过放缩、利用裂项相消法计算可知++…+<2,进而整理即得结论.【解答】解:(Ⅰ)∵S n 2=a 13+a 23+…+a n 3(n ∈N *), ∴S n ﹣12=a 13+a 23+…+a n ﹣13(n ≥2,n ∈N *),两式相减得:﹣=,∴a n(S n+S n﹣1)=,∵数列{a n}中每一项均为正数,∴S n+S n﹣1=,又∵S n﹣1﹣S n﹣2=,两式相减得:a n﹣a n﹣1=1,又∵a1=1,∴a n=n;证明:(Ⅱ)由(Ⅰ)知,,∵,∴,即,令k=1,2,3,…,n,累加后再加得:()+()+()+...+()>2+2+ (2)=(2n+1)=,又∵+++…+<3等价于++…+<2,而=<=(﹣)=(﹣)<(﹣)=2(﹣),令k=2,3,4,…,2n+1,累加得:++…+<2(1﹣)+2(﹣)+…+2(﹣)=2(1﹣)<2,∴.。
2025届浙江杭州地区重点中学高三第二次联考数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}1A x x =<,{}1xB x e =<,则( ) A .{}1A B x x ⋂=< B .{}A B x x e ⋃=< C .{}1A B x x ⋃=<D .{}01A B x x ⋂=<<2.已知函数()cos f x x =与()sin(2)(0)g x x ϕϕπ=+<的图象有一个横坐标为3π的交点,若函数()g x 的图象的纵坐标不变,横坐标变为原来的1ω倍后,得到的函数在[0,2]π有且仅有5个零点,则ω的取值范围是( )A .2935,2424⎡⎫⎪⎢⎣⎭B .2935,2424⎡⎤⎢⎥⎣⎦ C .2935,2424⎛⎫⎪⎝⎭ D .2935,2424⎛⎤⎥⎝⎦ 3.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数(即质数)的和”,如16511=+,30723=+.在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是( ) A .114B .112C .328D .以上都不对4.已知命题p :直线a ∥b ,且b ⊂平面α,则a ∥α;命题q :直线l ⊥平面α,任意直线m ⊂α,则l ⊥m .下列命题为真命题的是( ) A .p ∧qB .p ∨(非q )C .(非p )∧qD .p ∧(非q )5.党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是( )A .B .C .D .6.如图,在平行四边形ABCD 中,O 为对角线的交点,点P 为平行四边形外一点,且AP OB ,BP OA ,则DP =( )A .2DA DC +B .32DA DC + C .2DA DC +D .3122DA DC +7.设x ∈R ,则“|1|2x -< “是“2x x <”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必条件8.对于任意x ∈R ,函数()f x 满足(2)()f x f x -=-,且当1x 时,函数()1f x x =-.若111,,223⎛⎫⎛⎫⎛⎫==-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭a fb fc f ,则,,a b c 大小关系是( )A .b c a <<B .b a c <<C .c a b <<D .c b a <<9.已知双曲线C :22221x y a b-=(0a >,0b >)的焦距为2c .点A 为双曲线C 的右顶点,若点A 到双曲线C 的渐近线的距离为12c ,则双曲线C 的离心率是( ) A 2B 3C .2D .310.已知{}n a 为等比数列,583a a +=-,4918a a =-,则211a a +=( ) A .9B .-9C .212D .214-11.若0a b <<,则下列不等式不能成立的是( ) A .11a b> B .11a b a>- C .|a|>|b|D .22a b >12.下列命题为真命题的个数是( )(其中π,e 为无理数)32>;②2ln 3π<;③3ln 3e<. A .0B .1C .2D .3二、填空题:本题共4小题,每小题5分,共20分。
浙江省2015届高三数学第二次考试五校联考试题 文(含解析)第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在ABC ∆中,“0=⋅AC AB ”是“ABC ∆为直角三角形”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A考点:充分条件、必要条件的判断. 2.已知数列{}n a 满足:21n a n n=+,且910n S =,则n 的值为( ) A .7 B .8 C .9 D .10 【答案】C 【解析】 试题分析:11112+-=+=n n n n a n ,n n a a a S +++= 21⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=1113121211n n111+-=n 109=,解得9=n ,故答案为C. 考点:裂项求和.3.要得到函数sin 2y x =的图象,只需将函数πcos(2)3y x =-的图象( )A .向右平移π6个单位长度 B .向左平移π6个单位长度 C .向右平移π12个单位长度 D .向左平移π12个单位长度【答案】C 【解析】试题分析:函数⎪⎭⎫⎝⎛-==22cos 2sin πx x y ,将函数πcos(2)3y x =-的图象向右平移π12个单位长度得到⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=3122cos ππx y x x 2sin 22cos =⎪⎭⎫ ⎝⎛-=π,故答案为C.考点:函数图象的平移.4.若αβ、是两个相交平面,则在下列命题中,真命题的序号为( ) ①若直线m α⊥,则在平面β内,一定不存在与直线m 平行的直线. ②若直线m α⊥,则在平面β内,一定存在无数条直线与直线m 垂直. ③若直线m α⊂,则在平面β内,不一定存在与直线m 垂直的直线. ④若直线m α⊂,则在平面β内,一定存在与直线m 垂直的直线. A .①③ B.②③ C.②④ D.①④ 【答案】C考点:空间中直线与平面的位置关系.5.已知菱形ABCD 的对角线AC 长为1,则AD AC =( ) A .4 B .2 C .1 D .21【答案】D 【解析】试题分析:设AC 的中点为O ,CAD AC AD ∠=⋅21==AO AC ,故答案为D.考点:平面向量的数量积.6.设x R ∈, 对于使22x x M -+≤成立的所有常数M 中,我们把M 的最小值1叫做22x x -+ 的上确界. 若,a b R +∈,且1a b +=,则122ab--的上确界为( )A .5-B .4-C .92D .92-【答案】D 【解析】 试题分析:⎪⎭⎫ ⎝⎛+++-=--b b a a b a b a 222221⎪⎭⎫⎝⎛++-=b a a b 2225,由基本不等式得b a a b 22+b aa b 222⋅≥ 29225221-≤⎪⎭⎫⎝⎛+-≤--∴b a ,故答案为D. 考点:基本不等式的应用.7.如图,已知椭圆C 1:112x +y 2=1,双曲线C 2:22a x —22by =1(a >0,b >0),若以C 1的长轴为直径的圆与C 2的一条渐近线交于A 、B 两点,且C 1与该渐近线的两交点将线段AB 三等分,则C 2的离心率为 ( )A .5B .5C .17D .7142 【答案】A 【解析】试题分析:双曲线12222=-b y a x 的一条渐近线方程x aby =,代入椭圆11122=+y x ,可得221111ba a x +±=,渐近线与椭圆相交的弦长2222111121ba aa b +⋅+,1C 与渐近线的两交点将线段AB 三等分,∴2222111121b a aa b +⋅+11231⋅⋅=,整理得a b 2=,a b a c 522=+=∴,离心率5=e ,故答案为A.考点:1、双曲线的简单几何性质;2、椭圆的应用.8.如图,正ABC ∆的中心位于点G (0,1),A (0,2),动点P 从A 点出发沿ABC ∆的边界按逆时针方向运动,设旋转的角度(02)AGP x x π∠=≤≤,向量OP 在(1,0)a =方向的投影为y (O 为坐标原点),则y 关于x 的函数()y f x =的图像是( )【答案】C 【解析】试题分析:设BC 与y 轴的交点为M ,已知得5.0=GM ,故5.1=AM ,正三角形的边长是3,连接BG ,32123tan ==∠BGM ,因此3π=∠BGM ,32π=∠BGA ,由图可知,当32π=x 时,射影y 取到最小值,其大小为23-,由此可排除A ,B 两个选项;又当点P 从点B 向点M 运动时,x 变化相同的值,此时射影长的变化变小,即图象趋于平缓,由此排除D ,故答案为C. 考点:函数的图象.第Ⅱ卷(共110分)二、填空题(每题4分,满分28分,将答案填在答题纸上)9.设全集U R =,集合2{|340}A x x x =--<,2{|log (1)2}B x x =-<, 则AB = ,A B = ,RC A = .【答案】()4,1,()5,1-,(][)+∞-∞-,41, 【解析】试题分析:{}{}41|043|2<<-=<--=x x x x x A ,由()21log 2<-x 得⎩⎨⎧<->-4101x x ,得51<<x ,{}51|<<=x x B ,()4,1=∴B A ,()5,1-=B A ,{}41|≥-≤=x x x A C R 或(][)+∞-∞-=,41, .考点:集合的基本运算.10.若变量,x y 满足202300x y x y x -≤⎧⎪-+≥⎨⎪≥⎩,则2x y+的最大值为 ,_____21的取值范围-+x y . 【答案】8;⎥⎦⎤⎢⎣⎡--21,3.【解析】试题分析:不等组表示的平面区域如图所示,令y x z +=,则z x y +-=表示的是斜率是1-,截距为z 的平形直线系,当截距最大时,z 最大,当直线过点C 时,截距最大,由⎩⎨⎧=+-=-03202y x y x ,得⎩⎨⎧==21y x ,3max =z ,y x +2的最大值为823=,21-+x y 表示的是点()y x ,与点()1,2-连线的斜率,设()1,2-D ,21-=AD k , 313-=-=CDk , 因此21-+x y 的取值范围⎥⎦⎤⎢⎣⎡--21,3.考点:线性规划的应用.11.已知命题p :R x ∈∃,x x ln 1>-.命题q :R x ∈∀,0>x ,则:P ⌝ ,命题()q p ⌝∧是 (填真命题或假命题)【答案】R x ∈∀,x x ln 1≤-;真命题. 【解析】试题分析:对于命题P ,当e x =时,1ln 1=>-e e ,命题P 是真命题;对于命题q R x ∈∀,0≥x ,命题q 是假命题,则q ⌝是真命题,命题()q p ⌝∧是真命题.考点:命题真假性的判断.12. 若某多面体的三视图如右图所示,则此多面体的体积是 ,此多面体外接球的表面积是 .【答案】32;π3. 【解析】试题分析:该几何体的正方体内接正四面体,如图中红色,此四面体的所有棱长为2,因此底面积为()232432==S ,顶点在底面上射影是底面的中心,高()3322632222=⎪⎪⎭⎫ ⎝⎛⋅-=h , 多面体的体积31332233131=⋅⋅==Sh V ; 多面体的外接球的直径是正方体的对角线3,表面积ππ32342=⎪⎪⎭⎫⎝⎛.考点:由三视图求表面积和体积.13.已知函数22cos ,0()sin(),0x x x f x x x x α⎧+>=⎨-++<⎩是奇函数,则sin α= .【答案】1- 【解析】试题分析:由于函数()x f 是奇函数,()()ππf f -=-,()()ππαππcos sin 22+-=+-+-∴,整理得1sin -=α.考点:奇函数的应用. 14. 已知点0,2A 为圆22:2200M xy ax ay a 外一点,圆M 上存在点T 使得045=∠MAT ,则实数a 的取值范围是 . 【答案】113<≤-a. 【解析】试题分析:圆的方程()()2222a a y a x =-+-,圆心()a a M ,,半径a r 2=,()222-+=∴a a AM ,a TM 2=,由于TM AM ,长度固定,当T 是切点时,MAT ∠最大,由题意圆M 上存在点T 使得045=∠MAT ,因此最大角度大于045,()02245sin sin 22=∠≥-+=∴MAT a a aAM TM 22=,整理得0222≥-+a a ,由于0>a ,解得13-≥a又()12222≤-+=a a aAM TM,解得1≤a ,又点()2,0A 为圆M 外一点,042022>-+∴a ,解得1<a ,综上可得113<≤-a .考点:圆的方程的应用.15.已知O 是ABC ∆内心,若2155AO AB AC =+,则cos BAC ∠= .【答案】46. 【解析】试题分析:取AB 的中点D ,AC 的中点E ,连接OE OD ,,则AOABAOAD BAO 2cos ==∠,AOAC AOAE CAO 2cos ==∠,BAO AB AO AB AO ∠=⋅∴cos 221AB =,221AC AC AO =⋅,在AC AB AO 5152+=两边同乘以AB ,得BAC AC AB AB AB ∠⋅+=cos 51522122BAC AC AB ∠=∴cos 51101① 同理在AC AB AO 5152+=同乘以AC 得BAC AB AC ∠⋅=cos 52103②,由①得BAC AC AB ∠=cos 2,代入②得83cos 2=∠BAC ,由①知0cos >∠BAC ,46cos =∠∴BAC .考点:平面向量数量积的应用.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16. 已知函数1()3cos cos 2().2f x x x x x R =⋅-∈(1)求函数()f x 的最小值和最小正周期;(2)设ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且︒=30B ,3,()1c f C ==,判断△ABC 的形状,并求三角形ABC 的面积.【答案】(1)()1min -=x f ,π=T ;(2)ABC ∆是直角三角形,23=S . 【解析】试题分析:(1)熟悉三角公式的整体结构,灵活变换,要熟悉三角公式的代数结构,更要掌握公式中角和函数名称的特征,要体会公式间的联系,掌握常见的公式变形,倍角公式应用是重点,涉及倍角或半角的都可以利用倍角公式及其变形,把形如x b x a y cos sin +=化为()ϕ++=x b a y sin 22,研究函数的性质;(2)在解决三角形的问题中,面积公式B ac A bc C ab S sin 21sin 21sin 21===最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来,在求范围时,注意根据题中条件限制角的范围. 试题解析:(1)x x x x f 2cos 21cos sin 3)(-⋅==x x 2cos 212sin 23-=sin(2)6x π-1sin(2)16x R x π∈∴-≤-≤()x f ∴的最小值1- 22T ππ∴==,故其最小正周期是π (2)∵1)(=C f 1)62sin(=-∴πC又∵0<2C <2π,∴6116-26πππ<<-C ∴26-2ππ=C ,3C π∴=∵B=6π,∴A=2π,∴△ABC 是直角三角形 由正弦定理得到:B bsin=2sin c C ==,∴1=b 设三角形ABC 的面积为S, ∴S=23考点:1、求三角函数的最值和最小正周期;2、求三角形的面积.17.已知数列{}n a (*N n ∈,146n ≤≤)满足1a a =, 1,115,1,1630,1,3145,n n d n a a n n d+⎧⎪⎪-=⎨⎪⎪⎩≤≤≤≤≤≤其中0d ≠,*N n ∈.(1)当1a =时,求46a 关于d 的表达式,并求46a 的取值范围; (2)设集合{|,,,,116}i j k M b b a a a i j k i j k *==++∈<<N ≤≤.若13a =,14d =,求证:2M ∈.【答案】(1)(][)+∞-∞-,4614, ;(2)证明略. 【解析】试题分析:(1)等差数列基本量的求解是等差数列的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用,对于xbax +的形式求最值,利用基本不等式,注意讨论0>x 及0<x 两种形式;(2)证明时根据题意由题中的条件逐渐过渡到结论,求出k j i ,,的值要符合题中的限制范围,掌握数列的基本知识.试题解析:(1)当1a =时,16115a d =+,311615a d =+,4611615()a d d =++.因为0d ≠,21d d+≥,或21d d -+≤,所以46(,14][46,)a ∈-∞-+∞.(2)由题意1134n n a -=+,116n ≤≤,314i j k b ++-=+.令3124i j k ++-+=,得7i j k ++=. 因为,,i j k *∈N ,116i j k <<≤≤, 所以令1,2,4i j k ===,则2M ∈. 考点:等差数列的通项公式及应用.18.在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,AB BC ⊥侧面PAB ⊥底面ABCD ,2PA AD AB ===,4BC =.(1)若PB 中点为E .求证://AE PCD 平面;(2)若060PAB ∠=,求直线BD 与平面PCD 所成角的正弦值.【答案】(1)证明略;(2)510. 【解析】试题分析:(1)解决立体几何的有关问题,空间想象能力是非常重要的,但新旧知识的迁移融合也很重要,在平面几何的基础上,把某些空间问题转化为平面问题来解决,有时很方便;(2)证明线面平行常用方法:一是利用线面平行的判定定理,二是利用面面平行的性质定理,三是利用面面平行的性质;(3)证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化;(4)在求三棱柱体积时,选择适当的底作为底面,这样体积容易计算. 试题解析:(1)取PC 的中点F ,连结DF ,EF 由于F E ,分别是PC PB ,的中点,BC EF //∴,BC EF 21= 又由于BC AD //,BC AD 21=//AD EF ,且AD EF =,所以ADFE 为平行四边形. //AE DF ∴,且AE 不在平面PCD 内,DF 在平面PCD 内,所以//AE PCD 平面 (2)等体积法令点B 到平面PCD 的距离为hP BCD V -=B PCD V -ABC433P BCD V -=,13B PCD PCD V S h -∆= 又15PCD S ∆=5h ∴=直线BD 与平面PCD 所成角θ的正弦值105sin 22h BD θ===. 考点:1、直线与平面平行的判定;2、直线与平面所成的角.19.已知抛物线x y 22=上有四点),(),(2211y x B y x A 、、),(),(4433y x D y x C 、,点M (3,0),直线AB 、CD 都过点M ,且都不垂直于x 轴,直线PQ 过点M 且垂直于x 轴,交AC 于点P ,交BD 于点Q.(1)求21y y 的值; (2)求证:MQ MP =.【答案】(1)6-;(2)证明略. 【解析】试题分析:(1)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置,开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程;(2)在解决与抛物线性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此;(3)解决直线和抛物线的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与抛物线的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式∆:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论. 试题解析:(1)设直线AB 的方程为3+=my x ,与抛物线联立得:0622=--my y ∴621-=y y(2) 直线AC 的斜率为3131312y y x x y y +=--∴直线AC 的方程为1131)(2y x x y y y +-+= ∴点P 的纵坐标为31316y y y y y P ++=6)(66)6(632323232--=+--+=y y y y y y y y同理:点Q 的纵坐标为=Q y 6)(63223--y y y y∴0=+Q P y y ,又PQ⊥x 轴∴MQ MP =考点:1、抛物线的几何性质;2、直线与抛物线的综合问题. 20.已知函数22(),(04)f x x a x kx a a =-++<<为常数且。