重庆市实验学校2019届九年级(上)第一次月考数学试题(含答案)
- 格式:doc
- 大小:1.09 MB
- 文档页数:6
2022-2023学年重庆市教科院巴蜀实验学校九年级(上)第一次月考历史试卷一、单选题(本大题共15小题,共15.0分)1.契约精神是西方文明社会的主流精神,而西方的契约精神源远流长,最早可追溯到古希腊。
以下内容涉及到契约关系的是()①亚历山大东征加强掠夺东方无数财富②中古西欧的封君与封臣③中世纪欧洲庄园里的领主和佃户④《罗马民法大全》A. ②④B. ②③C. ②③④D. ①②③④2.李明在整理历史资料时,收集到这样一些关键词:哈拉帕遗址、摩亨佐•达罗遗址、雅利安人、释迦牟尼等,请问他研究的历史专题是什么()A. 古代埃及B. 古代中国C. 古代印度D. 古巴比伦3.古希腊文学的主要成就是史诗、寓言和戏剧。
其中古希腊最早的一部史诗,也是目前保存的欧洲最早的文学巨著是()A. 《荷马史诗》B. 《俄狄浦斯王》C. 《被缚的普罗米修斯》D. 《天方夜谭》4.佛教、基督教、伊斯兰教并称为世界三大宗教,对世界文化的发展产生了深远影响。
下列有关世界三大宗教的表述错误的是()A. 佛教的创立者是释迦牟尼B. 4世纪末,罗马皇帝将基督教确定为国教,促进了基督教的传播C. 伊斯兰教诞生于阿拉伯半岛D. 世界三大宗教产生的先后顺序是伊斯兰教、基督教、佛教5.某同学正在学习研究“欧亚封建国家”主题,下列材料可以入选他学习主题的有()①法兰克王国②公民大会③封君与封臣④城市自治⑤幕府统治A. ①③④⑤B. ①②③⑤C. ②③④⑤D. ①②③④⑤6.某班同学为了研究古代罗马,准备查阅与下列图片有关的材料,其中不合适的是()A. 大竞技场B. 《汉谟拉比法典》C. 《十二铜表法》D. 《查士丁尼法典》7.2019年5月12日,中央广播电视总台推出亚洲文明对话大会主题纪录片《亚洲文明之光》,生动再现了亚洲在世界历史进程中悠久灿烂、多元共生、交流互鉴的文明图景。
以下文明成就可以在片中展现的是()①金字塔②《汉谟拉比法典》③佛教④长城A. ②③④B. ①②③④C. ①③④D. ②③8.欧洲文明长期以来吸引着世界的眼球。
初2025届九上开学数学定时作业(全卷共三个大题,满分150分,考试时间120分钟)参考公式:抛物线()20y ax bx c a ++≠的顶点坐标为24,24b ac b a a −− ,对称轴为2b x a =−. 一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.1.下列四个实数中,是无理数的是( )A .1.010010001B .237C .πD .2.下列四种图案是2024年巴黎奥运会中部分运动项目的示意图,其中是轴对称图形的是( )A .B .C .D .3.如果单项式42a x y −与单项式533b x y −−的和仍是一个单项式,则点(),a b −在( )A .第一象限B .第二象限C .第三象限D .第四象限4.估计 ) A .2到3之间B .3到4之间C .4到5之间D .5到6之间 5.一组图形按下列规律排序,其中第①个图形有5个圆球,第②个图形有8个圆球,第③个图形有13个圆球,…,按此规律排列下去,则第⑧个图形的圆球的个数是( )A .53B .55C .68D .696.如图,AB CD ,50EFB ∠=°,FM 平分BFG ∠,过点G 作GH FM ⊥于点H ,则HGM ∠的度数是( )A .25°B .30°C .40°D .20°7.为了让大家都能用上实惠药,医保局与药商多次谈判,将一种原价每盒100元的药品,经过两次降价后每盒64元,两次降价的百分率相同,则每次降价的百分率为( )A .20%B .22%C .25%D .80%8.如图,A 、B 、C 是O 的圆周上三点,DE 与O 相切于点C ,连接AB 、BC 、AC ,若AB AC =,40BCD ∠=°,则ACE ∠的度数为( )A .40°B .60°C .70°D .80°9.如图,在正方形ABCD 中,点E 在边BC 上,点F 在边CD 上,连接AE 、AF 、EF ,有EF BE DF =+,BAE EFC ∠=∠,若2DF =,求AB 的长为( )A .8B .4+C .4D .12−10.在多项式a b c d e −+−−(其中0a b c d e >>>>>)中,任选两个字母,在两侧加绝对值后再去掉绝对值化简可能得到的式子,称为第一轮“绝对操作”.例如,选择d ,e 进行“绝对操作”,得到a b c d e a b c d e −+−−=−+−+,…在第一轮“绝对操作”后的式子进行同样的操作,称为第二轮“绝对操作”,如:a b c d e a b c d e −+−+=−−+−,…按此方法,进行第()1n n ≥轮“绝对操作”.以下说法:①存在某种第一轮“绝对操作”的结果与原多项式相等;②对原多项式进行第一轮“绝对操作”后,共有8种不同结果;③存在第()1k k ≥轮“绝对操作”,使得结果与原多项式的和为0. 其中正确的个数为( )A .0个B .1个C .2个D .3个二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡...中对应的横线上.11.计算:22024112− −−=______________. 12.如果一个多边形的每一个外角都是30°,那么这个多边形的边数为______________.13x 的取值范围是______________. 14.2024年暑假重庆各旅游景区持续火热,小明和小亮相约来到重庆旅游,两人分别从洪崖洞,磁器口,解放碑,李子坝四个景点中随机选择一个景点游览,小明和小亮选择不同景点的概率为______________.15.如图,ABC △的面积为4,将ABC △沿AD 方向平移,使A 的对应点A ′满足14AA AD ′=,则平移前后两三角形重叠部分的面积是______________. 16.若关于x 的一元一次不等式组113232x x x a− +> +≥ 恰有2个偶数解,且关于y 的分式方程23122a y y y −−=+−−的解为非负整数,则所有满足条件的整数a 的值之和是______________.17.如图,AB 是O 的直径,BC 是O 的切线,连接AC 交O 于点D ,点E 为O 上一点,满足 DEDB =,连接BE 交AC 于点F ,若1CD=,BC =,则BF=______________,EF =______________.18.若一个四位自然数M 的千位数字、百位数字与十位数字的和恰好等于个位数字的平方,则称这个四位数M 为“方和数”.若“方和数”M abcd =且(19a b c d ≤≤、、、),将“方和数”M 的千位数字与十位数字对调、百位数字与个位数字对调得到新数N ,规定()()()2129d b c d a G M +−++−=,若()G M 为整数,M N +除以13余7,则b c +的值为______________,满足条件的M 的值为______________.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线)请将解答过程书写在答题卡...中对应的位置上. 19.计算:(1)()()222x y x x y −−+; (2)()22214424m m m m m m +−+−−−÷−. 20.为了解学生的暑期每日学习时间情况,学校开学进行了问卷调查.现从高二、高三的学生中各随机抽取20名学生的问卷调查进行收集、整理、描述、分析.所有学生的学习时长均高于2小时(时间用x 表示,共分成四组:A.25x <≤;B.58x <≤;C.811x <≤;D.11x <),下面给出了部分信息:高二年级20名学生的学习时长为:2.1,2.2,3,3,,5.2,7,8,8,8,8,8.5,9,10,12,12,12.5,13,13,14. 高三年级20名学生的学习时长在C 组的数据是:8.2,8.6,9,9.4,9.6,10. 高二、高三所抽取学生的学习时长统计表年级高二年级 高三年级 平均数 8.15 8.15 中位数8 b 众数 a7.5 高三所抽取学生的学习时长统计图根据以上信息,解答下列问题:(1)上述图表中a =_____________,b =_____________,m =_____________;(2)根据以上数据分析,你认为该校高二、高三年级中哪个年级学生的学习时长较好?请说明理由(写出一条理由即可)(3)该校高二年级有2000名学生、高三年级有1800名学生参加了此次问卷调查,估计该校高二、高三年级参加此次问卷调查学习时长8x >的学生人数是多少?21.在学习了矩形与菱形的相关知识后,重外数学兴趣小组进行了更深入的研究,他们发现,过菱形的一条对角线的两个端点分别作一组对边的垂线,与菱形两边相交的两点和这条对角线的两个端点构成的四边形是矩形,可先证得到的图形是平行四边形继而得到此结论.根据他们的想法与思路,完成以下作图..和填空..: (1)如图,在菱形ABCD 中,DE AB ⊥于点E .用尺规过点B 作CD 的垂线交于点F (不写作法,保留作图痕迹).(2)已知:菱形ABCD 中,DE AB ⊥于点E ,BF CD ⊥于点F .求证:四边形DEBF 是矩形.证明: 四边形ABCD 是菱形,AD BC ∴=,AB CD =,___①_____又180BCF BCD DAE DAB ∠+∠=∠+∠=°BCF DAE ∴∠=∠.DE AB ⊥ ,___②_____90BFC DEA ∴∠=∠=°,()CFB AED AAS ∴≌△△∴____③____DF BE ∴=,又AB CD ,∴四边形DEBF 是平行四边形.DE AB ⊥ ,∴四边形DEBF 是矩形.进一步思考,如果“菱形ABCD ”改为“平行四边形ABCD ”还有相同的结论么?请你写出你猜想的结论: ______________________________④__________________________________22.经重庆市发改委统筹考虑重庆电力供需状况、电网负荷特性、居民用电习惯等,在保持价格总水平基本稳定的前提下,现制定分时电价标准,分成三个时段计费,即高峰时段、低谷时段和平段.1.高峰时段:11:00一17:00、20:00一22:00,在平段电价基础上提高0.10元/千瓦时.2.低谷时段:00:00一08:00,在平段电价基础上降低0.18元/千瓦时.3.平段:08:00一11:00、17:00-20:00、22:00一24:00,平段电价为国家规定的销售电价.(1)某家庭8月份总电量400千瓦时,其中平段电量为总电量30%.低谷电量占总电量14,根据相关政策,使用新方案计算电费与原来全部按照平段电价费用一样,则平段电价为多少元/千瓦时?(2)电力公司采用新能源节约成本,9月份将所有时段电费单价在(1)中的费用的情况下均降低相同费用,若该家庭9月份高峰时段费用与低谷时段费用一样,而低谷时段电量为高峰时段电量的2倍,则降价后高峰时段电价为多少元/千瓦时?23.如图1,在菱形ABCD 中,对角线AC 与BD 交于点O ,点P 沿着A B O A →→→的方向每秒1个单位运动,点Q 沿着A D O C →→→的方向每秒1个单位运动,连接PQ ,点P ,Q 的距离为y ,两动点同时出发,设运动时间为x 秒,当两动点到达终点时即12x =时,8y =.(1)请直接写出y 关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中,画出函数y 的图象,并写出函数y 的一条性质;(3)结合函数图象,请直接写出23y k =+有3个解时k 的取值范围.24.小明和小玲游览一处景点,如图,两人同时从景区大门A 出发,小明沿正东方向步行60米到一处小山B 处,再沿着BC 前往寺庙C 处,在B 处测得亭台D 在北偏东15°方向上,而寺庙C 在B 的北偏东30°方向上,小玲沿着A 的东北方向上步行一段时间到达亭台D 处,再步行至正东方向的寺庙C 处.(1)求小山B 与亭台D 之间的距离;(结果保留根号)(2)若两人步行速度一样,则谁先到达寺庙C 处.(结果精确到个位, 1.41≈ 1.73≈,2.45≈)25.如图1,已知抛物线2142y x x =+−的图象与x 轴交于A ,B 两点(A 在B 左侧),与y 轴交于点C . (1)抛物线顶点为D ,连接AD 、AC 、CD ,求点D 到AC 的距离;(2)如图2,在y 轴正半轴有一点E 满足2OC OE =,点P 为直线AC 下方抛物线上的一个动点,连接PA 、AE ,过点E 作EF AP 交x 轴于点F ,M 为y 轴上一个动点,N 为x 轴上一个动点,平面内有一点75,28G −−,连接PM 、MN 、NG ,当APF S △最大时,求PM MN NG ++的最小值;(3)如图3,连接AC 、BC ,将抛物线沿着射线BC 平移y ′,y ′上是否存在一点R ,使得45RAC BCO ∠+∠=°?若存在,直接写出点R 的坐标,若不存在,请说明理由.26.如图,在ABC △中,90BAC ∠=°,D 在AB 边上,E 在AC 边上,连接EB 、CD ,点G 为BE 上一点且满足GA GB =.(1)如图1,若BE 平分ABC ∠,10BC =,AG =,5CE =,求ABC △的面积;(2)如图2,若BD CE =,取CD 中点为F ,连接FG ,求证:CE =;(3)如图3,在(1)的条件下,点F 为直线AC 上一点,连接BF ,若2CF BD =,则12CD BF +最小时,直接写出ADG S △的值.重庆实验外国语学校2024-2025学年度(上)初2025届九上开学定时作业参考答案(全卷共三个大题,满分150分,考试时间120分钟)参考公式:抛物线()20y ax bx c a ++≠的顶点坐标为24,24b ac b a a −− ,对称轴为直线2b x a =−. 一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答卷上对应的方框涂黑.1.C 2.D 3.B 4.B 5.C 6.A 7.A 8.C 9.C 10.D10答案:①对ab “绝对操作”后结果与原多项式一样,所以①对;②依次取ab ,ac ,ad …结果有8种;③先对ac “绝对操作”后得到a b c d e a b c d e −+−−=−+−−−,再对刚刚式子进行ce “绝对操作”后得到a b c d e a b c d e −+−−−=−+−++,所以③对. 二、填空题:(本大题共8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.5 12.十二 13.1x > 14.3415.94 16.4− 17 18.10 655416.不等式解得243a x −≤<解得42a −<≤,解得302a y +=≥且2≠,解得3a =−,1−,整数a 的值之和4−.17.导角得BFC C ∠=∠,BF BC ∴==,连接AE ,则AEF BDF △△∽,3AF =,EF =18.解:由题意可得:2a b c d ++=, ()()()()2212121222999d b c d a b c d d d b c a G M +−++−−+++−−−−∴===,15b ≤≤ ,16c ≤≤,()G M 为整数,10b c ∴+=;210d a b c a =++=+ ,故4d =,6a =;设100010010M a b c d =+++,100010010N c d a b =+++,()71010101010111710110107M N a c b d a c b d ∴+−=+++−=+++−, ()()()()10110107101749710172919590957151313131313a c b d c c c M N +++−+−++++−∴====+,故5c =,5b =,6a ∴=,5b =,5c =,4d =;故答案为:10;6554.三、解答题:(本大题8个小题,19小题8分,20-26题每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡...中对应的位置上. 19.(1)222442x xy y x xy −+−−264xy y =−+ 4分(2)21m m− 8分 20.(1)8,8.8,30;(2)高三年级学生学习时长较好,高三年级的中位数8.8高于高二年级的中位数8,整体上看高三年级学生学习时长较好;(3)96200030%180019802020 ×++×=(人), 答:该校高二、高三年级参加此次问卷调查学习时长8x >的学生人数是1980人. 10分21.(1)如图所示,即为所求作; 6分(2)①BCD DAB ∠=∠;②BF CD ⊥;③CF AE =;④过平行四边形的一条对角线的两端点分别作一组对边的垂线,与平行四边形两边相交的两点和这条对角线的两个端点构成的四边形是矩形. 10分22.(1)设平段电价为x 元/千瓦时,则高峰电价为()0.1x +元/千瓦时,低谷电价为()0.18x −元/千瓦时,则()()()114000.18400130%0.1400130%44x x x ×⋅−+×−−⋅+=×−解得0.5x = 答:平段电价为0.5元/千瓦时. 4分(2)高峰电价()0.10.6x +=元/千瓦时,低谷电价为()0.180.32x −=元/千瓦时, 设降价a 元/千瓦时,9月份高峰时段费用,费用为y 万元 则20.60.32y y a a×=−− 7分 解得0.04a = 经检验0.04a =是原方程的解 9分降价后高峰电价0.60.60.040.56a −=−=元/千瓦时,答:降价后高峰电价0.60.60.040.56a −=−=元/千瓦时, 10分23.解:(1)6,055162,58216,812x x y x x x x ≤≤ =−<< −≤≤;(y 解析式及范围均正确给1分) 3分 2.如图所示,即为所求: 6分 性质:05x <<时,y 随x 58x <<时,y 随x 增大而减小,812x <<时,y 随x 增大而增大;(y 的图象3分,性质2分,有1处错扣1分,全错0分) 8分 3. 1.5 1.5k −<<. 10分24.解:(1)作BE AD ⊥于点E ,60AB =,45A ∠=°,9015105ABD ∠=°+°=°,9030120CBA ∠=°+°=°,1801054530ADB ∠=°−°−°=°在Rt ABE △中,BE AE ==在Rt BDE △中,ED =DF =米 ∴小山B 与亭台D之间的距离米 4分(2)延长AB ,作DF BA ⊥于点F ,作CG BA ⊥于点G ,则18060CBG CBA ∠=°−∠=°, 则在Rt AFD △中,30DF AF ==+,30CG DF ==+米,在Rt BCG △中,30BG =+,260BC BG ==60CD FG AB BG AF ∴==+−=−60141.2S AD CD ∴+++−≈玲米,6060154.6S AB BC =+=++≈明米,141.2154.6< 且两人速度一致,∴小玲先到.答:小玲先到达寺庙C 处. 10分25.(1)当0x =时,4y =−,故()0,4C −,当0y =时,4x =−或2x =,故()4,0A −,()2,0B , 对称轴1x =−,当1x =−时,92y =−,故91,2D −−,易求得3ACD S =△,AC =, 132BCD S AC h ==⋅⋅△,得h =D ∴到AC2分 (2)设AE 解析式为y kx m =+,代入()0,2E ,()4,0A −,得042k m m =−+ = ,解得122k m = = , AE ∴的解析式为122y x =+; 连接PE ,作PQ y 轴交AE 于QEF AP12APF APE E A S S PQ x x ∴==⋅⋅−△△设21,42P m m m+− ,则1,22Q m m + ,即211622PQ m m =−−+, 21122APF APE E A S S PQ x x m m ==⋅⋅−=−−+△△ 当12m =−时,max 494APF S =△,此时P 的坐标为135,28 −− 6分 将P 的关于y 轴对称得到P ′坐标为135,28 − ,将G 的关于x 轴对称得到G ′坐标为75,28 − 连接P G ′′交于y 轴于点M ,交于x 轴于点N,则PM MN NG P M MN NG P G ′′′′++=++≥=(3)平移后的新抛物线21342y x x ′=+−,在y 轴上找点S 满足OS OB =,则OSA OBC ≌△△, 1122AS y x =−−,联立21221342y x y x x =−− =+−,解得x y = =x y = = (舍) 228AS y x =−−,联立2281342y x y x x =−− =+−,解得52x y =− =−或52x y =− =+ (舍)所以R(22R −− 26.(1)GA GB =12∴∠=∠90BAC ∠=°142390∴∠+∠=∠+∠=°43∴∠=∠GA GB GE ∴=== 设AB x =,AE y =在Rt ABE △中,222BE AB AE =+,(222x y ∴=+ 在Rt ABC △中,222BC AB AC =+,()()222105x y ∴=++3x ∴=,6y =即8AC AE EC =+=,6AB =11862422ABC S AC AB ∴=⋅=××=△ 3分 法二:过E 作EF BC ⊥于点F ,则ABC FEC △△∽,故设2AB a =,AE EF a ==在Rt ABE △中,222BE AB AE =+,(()2222a a ∴=+,3a ∴=下同(2)CE =简证如下: 倍长CG 至点Q ,连接DQ ,由(1)得GB GE =, BQG ECG ∴≌△△QB EC ∴=,ECG BQG ∠=∠ EC QB ∴90QBD BAC ∴∠=∠=°, BD CE =BD BQ ∴=BQD ∴△为等腰直角三角形QD ∴==CD 中点为F ,GB GE =2QD FF ∴=2FF =CE ∴(3)1211ADG S =△ 10分。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第一次月考(考试范围:第一、二章)(人教版)选拔卷(考试时间:90分钟试卷满分:120分)一、选择题:本题共10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2021·重庆市实验学校)下列由四舍五入得到的近似数说法正确的是()A.0.720精确到百分位B.4´精确到千分位5.07810C.3.6万精确到十分位D.2.90精确到0.01【答案】D【分析】根据近似数的精确度对各选项进行判断.【详解】解:A、0.720精确到千分位,故A选项错误;B、5.078×104精确到十位,故B选项错误;C、3.6万精确到千位,故C选项错误;D、2.90精确到0.01,故D选项正确.故选:D.【点睛】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.2.(2021·河南初一期中)如图,关于A、B、C这三部分数集的个数,下列说法正确的是()A.A、C两部分有无数个,B部分只有一个0B.A、B、C三部分有无数个C.A、B、C三部分都只有一个D.A部分只有一个,B、C两部分有无数个【答案】A【分析】根据有理数的分类可以看出A指的是负整数,B指的是整数中除了正整数与负整数外的部分整数,C指的是正整数,最后根据各数性质进一步判断即可.【解析】由图可得:A指的是负整数,B指的是整数中除了正整数与负整数外的部分整数,C指的是正整数,∵整数中除了正整数与负整数外的部分整数只有0、负整数与正整数都有无数个,∴A、C两部分有无数个,B只有一个.故选:A.【点睛】本题主要考查了有理数的分类,熟练掌握相关概念是解题关键.)2015A答案.2)=【点睛】此题考查有理数的混合运算,掌握有理数乘方的逆运算是解题的关键.a,1B的正负,然后根据绝对值的意义去掉绝对值符号后可以得到答案.,.判断出式子的正负是解题关键.p,14C的值,代入原式计算即可求出值.,.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.210B积和即可.nB.形的面积等于总面积减去最后一个空白的小长方形的面积是解答此题的关键.1,2021C【分析】原式利用题中的新定义化简,约分即可得到结果..【点睛】此题考查有理数的混合运算,熟练掌握运算法则是解题的关键.)①②③……个D.个顶点;顶点,.【点睛】本题考查图形类规律,解题的关键是通过观察得出规律.)5B的意义,从而得出结论.距离之和.,.【点睛】本题考查绝对值的意义,解题的关键是学会利用数形结合的思想解决问题.,第三个数记2A.19900B.1991519934 C,从而可求得结果.C察并找出规律,这对学生的归纳能力提出了更高的要求.分。
江苏省无锡市锡山区江苏省天一中学(实验学校)2024-2025学年九年级上学期10月月考数学试题一、单选题1.下列方程中,是一元二次方程的有( )①21x x +=;②22340x xy -+=;③211x x -=;④20x =;⑤233x x +=. A .1个; B .2个; C .3个; D .4个. 2.若一元二次方程230x x a -+=的一个根为2x =,则a 的值为( )A .2B .2-C .4D .4-3.如图,若点D 是线段AB 的黄金分割点(AD BD >),6AB =,则AD 的长是( )A .3B .1C .9-D .3 4.方程2230x x --=配方后可化成()2x m n +=的形式,则m n +的值为( )A .5B .4C .3D .15.如图,已知12∠=∠,那么添加下列的一个条件后,仍无法判定ABC ADE △△∽的是( )A .AB AC AD AE = B .B D ∠=∠ C .AB BC AD DE = D .C AED ∠=∠6.若关于x 的一元二次方程()2110k x x -++=有实数根,则k 的取值范围是( )A .54k ≥B .54k >C .54k >且1k ≠D .54k ≤且1k ≠ 7.下列各组图形中,一定相似的是( )A .两个正方形B .两个矩形C .两个菱形D .两个平行四边形 8.如图,在ABC V 中,D 是AC 的中点,点F 在BD 上,连接AF 并延长交BC 于点E ,若31BF FD =::,=10BC ,则CE 的长为( )A .3B .4C .5D .1039.《算法统宗》是中国古代数学名著,作者是明代数学家程大位.书中记载了一道“荡秋千”问题:“平地秋千未起,踏板一尺离地;送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉;良工高士素好奇,算出索长有几?”译文:“秋千静止的时候,踏板离地1尺,将它往前推送两步(两步=10尺)时,此时踏板升高离地5尺,秋千的绳索始终拉得很直,试问秋千绳索有多长?”若设秋千绳索长为x 尺,则可列方程为( ).A .()222101x x +=+B .()222110x x ++= C .()222104x x +=- D .()222410x x -+= 10.如图,在边长为2的正方形ABCD 中,P 是BC 边上一动点(不含B 、C 两点),将ABP V 沿直线AP 翻折,点B 落在点E 处;在CD 上有一点M ,使得将CMP !沿直线MP 翻折后,点C 落在直线PE 上的点F 处,直线PE 交CD 于点N ,连接MA ,NA .则以下结论中正确的是.( )①CMP BPA ∽△△;②CNP V的周长始终不变: ③当P 为BC 中点时,AE 为线段NP 的中垂线;④线段AM :⑤当ABP ADN △△≌时,2BP =.A .2个B .3个C .4个D .5个二、填空题11.已知23a b =,则b a =. 12.关于x 的方程()222310m m x x --+-=是一元二次方程,则m 的值为.13.如果两个相似三角形的面积之比为4:9,这两个三角形的周长的和是100cm ,那么较小的三角形的周长为cm .14.若α,β为方程2x 2-5x-1=0的两个实数根,则2α2+3αβ+5β的值为.15.电脑病毒传播快,如果一台电脑被感染,经过两轮感染后就会有121台电脑被感染,若每轮感染中平均一台电脑会感染x 台电脑,则x =.16.已知关于x 的一元二次方程()()22121c x bx a x --=+,其中a 、b 、c 分别为ABC V 三边的长,如果方程有两个相等的实数根,则ABC V 的形状为.17.如图,ABC ADE ∽△△,90BAC DAE ∠=∠=︒,3AB =,4AC =,点 D 在线段BC 上运动,P 为线段DE 的中点,在点D 的运动过程中,CP 的最小值是.18.如图①②,在平面直角坐标系中,点P 的坐标为(),点(,0)M t 是横轴上的一点,点N 在y 轴上,且90MPN ∠=︒,0t ≤≤(1)如图①,当0t =时,PM PN=;(提示:过点P 作x 轴垂线,垂足为H ,交过点N 作y 轴的垂线于点G )(2)连接MN ,设MN 的中点为T ,在点M 从0t =这个时刻走到t =点T 所走过的路线长是.三、解答题19.按要求解下列方程:(1)23610x x +-=(配方法)(2)2650x x -+=(3)290x --=(公式法)(4)()()()2243225x x x x +--=+.20.化简再求值:2221111a a a a a --⎛⎫÷-- ⎪-+⎝⎭,其中a 是方程280x x --=的根. 21.已知关于x 的方程2(2)20x k x k -++=(1)求证:无论k 取任何实数,方程总有实数根;(2)若等腰ABC V 的一边3a =,另两边长b 、c 恰好是这个方程的两个根,求ABC V 的周长. 22.如图,在6×10的方格纸ABCD 中有一个格点△EFG ,请按要求画线段.(1)在图1中,过点O 画一条格点线段PQ (端点在格点上),使点P ,Q 分别落在边AD ,BC 上,且PQ 与FG 的一边垂直.(2)在图2中,仅用没有刻度的直尺找出EF 上一点M ,EG 上一点N ,连结MN ,使△EMN 和△EFG 的相似比为2:5.(保留作图痕迹)23.如图,在平行四边形ABCD 中,E 是边AD 的延长线上一点,连接BE 交CD 于点F ,交对角线AC 于点G .(1)若12DE AD ==,,求CF DF的值; (2)求证:BCF EAB ∽V V .24.济南市公安交警部门提醒市民:“出门戴头盔,放心平安归”.某商店统计了某品牌头盔的销售量,四月份售出375个,六月份售出540个,且从四月份到六月份月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)经市场调研发现,此种品牌头盔如果每个盈利10元,月销售量为500个,若在此基础上每个涨价1元,则月销售量将减少20个,现在既要使月销售利润达到6000元,又要尽可能让顾客得到实惠,那么该品牌头盔每个应涨价多少元?25.材料1:法国数学家弗朗索瓦・韦达在著作《论方程的识别与订正》中提出一元二次方程()2200,40ax bx c a b ac ++=≠-≥的两根1x ,2x 有如下的关系(韦达定理):12b x x a +=,12c x x a⋅=; 材料2:如果实数m 、n 满足210m m --=、210n n --=,且m n ≠,则可利用根的定义构造一元二次方程210x x --=,将m 、n 看作是此方程的两个不相等实数根.请根据上述材料解决下面问题:(1)①已知一元二次方程22350x x --=的两根分别为1x ,2x ,则12x x +=_______,12x x ⋅=_______.②已知实数a ,b 满足:2430a a +-=,2430b b +-=(a b ≠),则11a b+=_______. (2)已知实数m 、n 、t 满足:2411m m t -=+,2411n n t -=+,且0m n <<,求(1)(1)m n ++的取值范围.26.每到三月就会让人想起那句:“西湖美景,三月天哪”,雷峰塔是杭州西湖的标志性景点,为了测出雷峰塔的高度,初三学生小白设计出了下面的测量方法:已知塔前有一4米高的小树CD ,发现水平地面上点E 、树顶C 和塔顶A 恰好在一条直线上,测得57BD =米,D E 、之间有一个花圃无法测量,然后在E 处放置一个平面镜,沿BE 后退.退到G 处恰好在平面中看到树顶C 的像,此时 2.4EG =米,测量者眼睛到地面的距离FG 为1.6米,求出塔高AB .27.阅读感悟:已知方程2210x x +-=,求一个一元二次方程,使它的根分别是已知方程根的2倍. 解:设所求方程的根为y ,则2y x =.所以2y x =. 把2y x =代入已知方程,得221022y y ⎛⎫+⋅-= ⎪⎝⎭. 化简,得2440y y +-=,故所求方程为2440y y +-=.这种利用方程的代换求新方程的方法,我们称为“换元法”.请用阅读材料提供的“换元法”求新方程(要求:把所求方程化为一般形式.解决问题:(1)已知方程230x x --=,求一个一元二次方程,使它的根分别比已知方程的根大1.则所求方程为:______;(2)方程20ax bx c ++=()20040a c b ac ≠≠-≥,,的两个根与方程______的两个根互为倒数.(3)已知关于x 的一元二次方程()200ax bx c a ++=≠的两个实数根分别为1和12-,求关于y 的一元二次方程()()()22024420200c y b y b a c -+-=-≠的两个实数根.28.如图,在平面直角坐标系中,直线AB 与x 轴、y 轴分别交于点A 、点B ,直线CD 与x 轴、y 轴分别交于点C 、点D ,AB 与CD 相交于点E ,线段OA ,OC 的长是一元二次方程218720x x -+=的两根(OA OC >),5BE =,43OB OA =. (1)求点A 、点C 的坐标; (2)求直线CD 的解析式; (3)在x 轴上是否存在一点P ,使以点C 、E 、P 为顶点的三角形与DCO ∆相似?若存在,请求出点P 的坐标;若不存在,请说明理由.。
重庆市巴蜀高2027届高一(上)月考物理试卷(答案在最后)(命题人:)注意事项:1.答题前,考生务必将自己的姓名、准考证号、班级、学校在答题卡上填写清楚。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效。
3.考试结束后,请将答题卡交回,试卷自行保存。
满分100分,考试用时75分钟。
一、单项选择题:共7题,每题4分,共28分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在下列研究中可将运动员视为质点的是()A.研究跳水运动员的入水动作B.研究体操运动员的空中转体姿态C.研究网球运动员发球时的的动作D.研究短跑运动员在百米比赛中的平均速度2.以下选项中涉及到的物理观念理解正确的是()A.物体做直线运动,位移大小一定等于路程B.通过平均速度能准确描述物体的运动情况C.加速度是描述物体速度变化快慢的物理量D.位移-时间图像是一条倾斜直线,则物体做匀变速直线运动3.2024年9月23日上午8时30分,重庆巴蜀中学高一新生军训正式开始。
某次队列训练中,一列同学用时2分钟沿直道走过120m,又沿弯道走过30m的距离。
下列说法正确的是()A.8时30分和2分钟都是指时刻B.该列同学在直道上的平均速度大小为1m/sC.该列同学进入弯道时的瞬时速度大小为1m/sD.该列同学此次训练的总位移大小为150m4.飞机在水平地面由静止开始匀加速直线滑行1500m后起飞离地,离地时速度为50m/s。
则飞机的滑行时间为()A.30sB.40sC.50sD.60s5.汽车刹车后4.5s停下,则刹车后1s内、2s内、3s内位移之比为()A.4:7:9B.9:7:4C.4:3:2D.2:3:46.一质点做匀变速直线运动,其运动规律用题6图所绘图像表示,下列说法正确的是()题6图A.该质点做匀加速直线运动B.该质点运动的初速度大小为5m /sC.该质点运动的加速度大小为20.2m /sD.该质点在前3秒的位移是6.25m7.如题7图所示,汽车沿平直公路做匀加速直线运动,依次经过A 、B 、C 、D 四点。
重庆市九龙坡区重庆实验外国语学校2023-2024学年九年级上学期期末数学模拟试题一、单选题1.6的倒数是( )A .16-B .0.6-C .16D .62.由五个大小相同的正方体搭成的几何体如图所示,从左面看该几何体的形状图是( )A .B .C .D . 3.如图,点A 为反比例函数k y x=图象上一点,过A 作AB x ⊥轴于点B ,连接OA ,若ABO V 的面积为4,则k 的值为( )A .8B .4C .4-D .8-4.已知两个相似三角形的对应边之比为1:3,则它们的周长比为( ) A .1:9 B .9:1 C .1:6 D .1:35.将含45︒角的一个直角三角板和一把直尺如图放置,若260∠=︒,则1∠的度数是( )A .60︒B .70︒C .75︒D .80︒6.估计( ) A .3和4之间 B .4和5之间 C .5和6之间 D .6和7之间 7.如图,第①个图形中有1个正方形,按照如图所示的方式连接对边中点得到第②个图形,图中共有5个正方形;连接第②个图形中右下角正方形的对边中点得到第③个图形,图中共有9个正方形;按照同样的规律得到第④个图形、第⑤个图形……,则第⑥个图形中正方形的个数是( )① ② ③ ④A .17B .21C .25D .298.如图,AB 为O e 的切线,切点为A ,连接OA 、OB ,OB 交O e 于点C ,点D 在O e 上,连接CD 、AD ,若301ADC OC ∠=︒=,,则AB 的长为( ).A.1 B C .2 D .49.如图,在正方形ABCD 中,对角线AC ,BD 相交于点O ,E 为OB 上一点,过点E 作EF BC ∥交OC 于点 F ,连接CE ,DF . 若115DFE ∠=︒,则BCE ∠的度数为( )A .35︒B .30︒C .25︒D .20︒10.依次排列的两个整式,a b ,将第1个整式乘以2再减去第2个整式,称为第1次操作,得到第3个整式2a b -;将第2个整式乘以2再减去第3个整式,称为第2次操作,得到第4个整式32b a -;将第3个整式乘以2再减去第4个整式,称为第3次操作,得到第5个整式65;a b -L L ,以此类推,下列4个说法,其中正确的结论有( )①第7个整式为2221a b -②第34个整式中a 系数的绝对值比b 系数的绝对值大1③第11个整式与12个整式所有系数的绝对值之和为1024④若1a b ==,则第2023次操作完成后,所有整式之和为2025A .1个B .2个C .3个D .4个二、填空题11.计算()()302122π-⎛⎫-+---= ⎪⎝⎭.12.函数y =x 的取值范围是. 13.已知一个正多边形的内角是135o ,它是边形.14.在A B C D Y 中,现有以下四个条件:①AC BD =,②AC BD ⊥,③90ABC ∠=︒,④AB BC =,小马准备从以上四个条件中,随机选出两个,可以得出ABCD Y 为正方形的概率为. 15.如图,在扇形AOB 中,90AOB ∠=︒,点C 为OA 的中点,CE OA ⊥交弧AB 于点E ,以点O 为圆心,OC 的长为半径作弧CD 交OB 于点D ,若6OA =,则阴影部分的面积为.16.四边形ABCD 中,45ABC CAB ADC ∠=∠=∠=︒,ACD V 面积为48且CD 的长为12,则BCD V 的面积为.17.已知关于x 的不等式组14225x x a +⎧≤⎪⎨⎪->⎩至少有3个整数解,且关于y 的分式方程8122ay y y-=---有整数解,那么满足条件的所有整数a 的和是. 18.如果一个四位自然数M 各数位上的数字均不为0,将M 的千位和个位上的数字对调,同时将M 的百位和十位上的数字对调,得到新的四位数N ,称N 为M 的“一对称数”,并规定()9M N F M -=.例如:3412的“对称数”为2143,()3412214334121419F -==,则()2176F =;若6500201s m =++(m 为整数,14m ≤≤),320107t n =++(n 为整数,19n ≤≤),且29m n +>,s 和t 的各数位数字均不为0,且s 的“对称数”与t 的“对称数”之和能被9整除,规定()()k F s F t =-,则k 最大值为.三、解答题19.计算:(1)(x +3y )(x ﹣y )﹣(x +y )2(2)(a ﹣1﹣81a +)22691a a a -+÷- 20.如图,已知平行四边形ABCD .(1)用尺规完成以下基本作图:在CB的延长线上取点E,使CE=CD,连接DE交AB于点F,作∠ABC的平分线BG交CD于点G.(保留作图痕迹,不写作法)(2)在第(1)问所作的图形中,求证:四边形BFDG为平行四边形.证明:∵BG平分∠ABC∴∠ABG=∠CBG∵四边形ABCD为平行四边形∴AB∥CD∴∠ABG=∠CGB,∠CDE=∠BFE∴∠CGB=①∴CB=CG.∵CE=CD,CB=CG∴CE﹣CB=CD﹣CG,即BE=②∵CD=CE∴∠CDE=③∵∠CDE=∠BFE,∠CDE=∠BEF∴∠BFE=④∴BE=BF∵BE=DG,BE=BF∴DG=⑤∵AB∥CD,DG=BF∴四边形BFDG为平行四边形.(推理根据:⑥)21.受到“新型肺炎”影响,全国中小学未能按时开学,为响应国家“停课不停学”的号召,重庆某重点中学组织全校师生开展线上教学活动,体育备课组也为同学们提出了每日锻炼建议.疫情过去开学后,体育组彭老师为检测同学们在家锻炼情况,在甲、乙两班同学中各随机抽取20名学生进行检测,并对数据进行了整理、分析.下面给出了部分信息:甲班:33,35,38,39,39,41,42,43,43,44,45,46,46,47,48,49,49,49,50,50乙班成绩在4045x ≤<中的数据是41,43,41,44,42,40,43整理数据:分析数据:根据以上信息,回答下列问题:()1a =b =c =()2根据以上数据,你认为哪个班级在家体育锻炼的效果比较好,请说明理由(1条理由即可).()3已知九年级共有2000名学生,请估计全年级体育成绩大于等于45分的学生有多少人? 22.请列方程解决下面的问题:小明自主创业开了一家服装店,因为进货时没有进行市场调查,在换季时积压了一类服装.为了缓解资金压力,小张决定将这类服装打折销售.若每件服装按标价的五折出售将亏90元,而按标价的九折出售将赚30元.(1)请你算一算每件服装的标价和进价各是多少元?(2)该服装改款后,小张又以同样的进价进货50件,若标价不变,按标价销售了30件后,剩下的服装进行甩卖,为了保证这批服装总利润率达到10%,小张最低能打几折? 23.如图,在矩形ABCD 中,6AB =,4=AD ,点E 为CD 的中点,动点P ,Q 同时从点E 出发,点P 以每秒1个单位长度沿折线E D A →→方向运动到点A 停止,点Q 也以每秒1个单位长度沿折线E C B →→方向运动到点B 停止.设运动时间为x 秒,APQ △的面积为y .(1)请直接写出y 关于x 的函数表达式并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)若直线1y x m =+与y 的图象有且只有一个交点,请直接写出m 的取值范围________. 24.在公园里,同一平面内的五处景点的道路分布如图所示,经测量,点D 、E 均在点C 的正北方向且600CE =米,点B 在点C 的正西方向,且BC =点B 在点A 的南偏东60°方向且400AB =米,点D 在点A 的东北方向.( 1.414≈ 1.732≈,2.449≈)(1)求道路AD 的长度(精确到个位);(2)若甲从A 点出发沿——A D E 的路径去点E ,与此同时乙从点B 出发,沿——B A E 的路径去点E ,其速度为40米/分钟.若两人同时到达点E ,请比较谁的速度更快?快多少?(精确到十分位)25.如图,在平面直角坐标系中,抛物线()20y ax bx c a =++≠与x 轴交于()4,0A 、B −2,0 两点,与y 轴交于点()0,4C .(1)求抛物线的函数表达式;(2)点P 是抛物线上位于直线AC 上方一动点,且在抛物线的对称轴右侧,过点P 作y 轴的平行线交直线AC 于点E ,过点P 作x 轴的平行线与抛物线的对称轴交于点F ,求PE PF +的最大值及此时点P 的坐标;(3)在(2)中PE PF +取得最大值的条件下,将该抛物线沿x 轴向右平移6个单位长度,平移后的抛物线与平移前的抛物线交于点H ,点M 为平移前抛物线对称轴上一点.在平面直角坐标系中确定一点N ,使以点H ,P ,M ,N 为顶点的四边形是菱形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程. 26.如图,ABC V 是等腰直角三角形,45ABC ∠=︒,AB AC =,点D 是AC 上任意一点,点H 是射线BC 上一点,连接BD ,AH .(1)如图1,当点H 在线段BC 上时,若AH BD ⊥,AB =AH =HC 的长;(2)如图2,将ABD △绕点D 顺时针旋转90︒得到△FED ,连接CE ,连接AF ,CE 和AF 相交于点M .求证:AD ;(3)如图3,连接DH ,将A D H V 沿AH 翻折得到AD H '△,连接BD ',若点F 是BD '的中点,且30ABD ∠=︒,2AD =,当CF 取最小值时,求BH CH的值.。
重庆市巴蜀高2026届高二(上)学月考试物理试卷(答案在最后)注意事项:1.答题前,考生务必将自己的姓名、准考证号、班级、学校在答题卡上填写清楚。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试卷上作答无效。
3.考试结束后,请将答题卡交回,试卷自行保存。
满分100分,考试用时90分钟。
一、单项选择题(共7个小题,每题3分,共21分)1.关于动量和动量守恒的条件,下列说法正确的是()A.只要系统所受合外力为零,系统就一定动量守恒B.物体的动量不变,其动能可能变化C.只要系统所受外力做的功为零,系统就动量守恒D.只要系统内存在摩擦力,系统动量就不可能守恒【答案】A【解析】【详解】AC.只要系统所受合外力为零,系统就一定动量守恒,故A正确,C错误;B.物体的动量不变,其动能一定不变,故B错误;D.若系统内存在摩擦力,但系统所受合外力为零,系统动量就一定守恒,故D错误。
故选A。
2.以下说法正确的是()A.简谐运动的质点是做匀变速直线运动B.弹簧振子做简谐运动时,经过同一位置时的速度总是相同C.驱动力的频率等于系统固有频率时,就会发生共振D.当存在摩擦和空气阻力时,物体在振动过程中机械能将减小,振幅减小,周期也减小【答案】C【解析】【详解】A.简谐运动的质点的加速度不断变化,做非匀变速直线运动,选项A错误;B.弹簧振子做简谐运动时,经过同一位置时的速度大小总是相同,但是方向不一定相同,选项B错误;C.驱动力的频率等于系统固有频率时,就会发生共振,选项C正确;D.当摩擦力和空气阻力大小恒定时,物体在振动过程中机械能将减小,振幅减小,周期不变,选项D错误。
3.学习了反冲原理之后,同学们利用饮料瓶制作的“水火箭”。
如图所示,瓶中装有一定量的水,其发射原理是通过打气使瓶内空气压强增大,当橡皮塞与瓶口脱离时,瓶内水向后喷出。
静置于地面上的质量为M (含水)的“水火箭”释放升空,在极短的时间内,质量为m 的水以相对地面为v 0的速度竖直向下喷出。
吉林省第二实验学校高新校区2024-2025学年九年级上学期(六三制)第一次月考数学试题一、单选题1.下列关于x 的方程中,一定是一元二次方程的为( )A .2220x xy y ++=B .2230x x -+=C .21x x -= D .20ax bx c ++=2.小明利用如图所示的量角器量出AOB ∠的度数,cos AOB ∠的值为( )A B C .12 D 3.下列方程中,有两个相等实数根的是( )A .()221x -=-B .()220x -=C .()221x -=D .()222x -=4.如图,直线123l l l ∥∥,632AC DE EF ===,,,则AB 的长为( )A .3B .125C .165 D .1855.二次函数()20y ax bx c a =++≠在2x =时有最小值3,则这个函数的图象可以是()A .B .C .D . 6.如图,四边形ABCD 中,90,12,5A AB AD ∠=︒==,点M 、N 分别为线段BC AB 、上的动点,点E 、F 分别为DM MN 、的中点,则EF 长度的可能为( )A .2B .2.3C .4D .77.如图,P 是ABCD Y 内一点,连结P 与ABCD Y 各顶点,EFGH Y 各顶点分别在边AP 、BP 、CP 、DP 上,且2HD PH =,HG CD ∥.若PEF !与PGH △的面积和为6,则ABCD Y 的面积为( )A .108B .54C .18D .128.在“探索二次函数()20y ax bx c a =++≠的系数a ,b ,c 与图象的关系”活动中,老师给出了坐标系中的四个点:()()()()01,21,41,32A B C D ,,,,.同学们分别画出了经过这四个点中的三个点的二次函数图象,并得到对应的函数表达式2y ax bx c =++,则a b c ++的最大值等于( )A .5-B .23C .2D .5二、填空题9.已知23a b =,则a b= 10.若抛物线2y x x c =-+(c 是常数)与x 轴没有交点,则c 的取值范围是.11.如图,在平面直角坐标系中,ABC V 与111A B C △位似,原点O 是位似中心,且113AB A B =.若()9,3A ,则1A 点的坐标是.12.如图,在平面直角坐标系中,抛物线23(0)y ax a =+<与y 轴交于点A ,过点A 作x 轴的平行线交抛物线212y x =于点B 、C ,则线段BC 的长为.13.如图1是装了液体的长方体容器的主视图(数据如图),将该容器绕地面一棱进行旋转倾斜后,水面恰好接触到容器口边缘,如图2所示,此时液面宽度AB =.14.在平面直角坐标系xOy 中,抛物线()20y ax bx c a =++≠的顶点为()1,P k -,且经过点()3,0A -,其部分图象如图所示,下面四个结论中,①0a <;②2b a =;③若点()2,M m 在此抛物线上,则0m <;④若点(),N t n 在此抛物线上且n c <,则0t >.所有正确结论的序号是.三、解答题15.解下列方程:(1)()()22232x x -=-(2)223x x +=16.社区利用一块矩形空地ABCD 建了一个小型停车场,其布局如图所示,已知52m AD =,28m AB =,阴影部分设计为停车位,要铺花砖,其余部分均为宽度为x 米的道路.已知铺花砖的面积为2640m .求道路的宽是多少米?17.图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin370.60︒=,cos370.80︒=,tan370.75=°)18.图①、图②、图③均是8×8的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,ABC V 的三个顶点均在格点上,点D 为线段AC 的中点.仅用无刻度的直尺在给定网格中按要求画图,保留作图痕迹.(1)在图①中,在线段BC 上作点M ,连结DM ,使12DM AB =; (2)在图②中,在线段BC 上作点E ,连结DE ,使12DE AC =; (3)在图③中,在线段AB 上作点F ,连结DF ,使12DF AC =. 19.如图,在矩形ABCO 中,点A 在x 轴上,点C 在y 轴上,且点B 的坐标为()3,1-,将此矩形绕点O 顺时针旋转90︒得矩形DEFO ,抛物线24y ax bx =++经过B ,E 两点.(1)求此抛物线的函数关系式;(2)将矩形ABCO 向上平移,使得此抛物线平分线段BC ,则平移的距离为________. 20.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD AF AE 的长.21.2024年巴黎奥运会顺利闭幕,吉祥物“弗里热”深受奥运迷的喜爱,一商场以20元的进价进一批“弗里热”纪念品,以30元每个的价格售出,每周可以卖出500个,经过市场调查发现,价格每涨10元,就少卖100个.(1)若商场计划一周的利润达到8000元,并且更大优惠让利消费者,售价应定为多少钱?(2)商场改变销售策略,在不改变(1)的销售价格基础上,销售量稳步提升,两周后销售量达到了484个,求这两周的平均增长率.22.如图,在平面直角坐标系中,O 为坐标原点,抛物线2y x bx =-+经过()4,0A ,点M 是该抛物线的顶点,将线段OA 绕着点A 顺时针旋转90︒得到AB ,取线段AB 中点C ,过点C 作y 轴的垂线,交该抛物线从左到右依次为点D 、E ,连接DM 、MB 、BE .(1)求此抛物线的函数解析式;(2)求DE 的长;(3)直接写出四边形DEBM 的面积=______.23.【课本再现】(1)正方形ABCD 的对角线相交于点O ,正方形A B C O '''与正方形ABCD 的边长都等于6,都等于,如图①摆放时,重叠部分的面积是______;(2)(知识在探究)在正方形A B C O '''绕点O 旋转的过程中(如图②),上述重叠部分的面积有没有变化?请说明理由.【拓展延伸】如图③,四边ABCD 中,90,ABC ADC AB BC ∠=∠=︒=,边9,5AD DC ==,直接写出BD 的长______.24.在ABC V 中,90,30,18ACB AB BC ∠=︒==,点D 为AB 边的中点,点M 在线段CD 上,且2CM MD =,过点M 作MQ CB ⊥,交CB 于点Q ,连接MB .(1)线段CD 的长为______;(2)求出MQB △的面积;(3)将MQB △以每秒一个单位的速度向右平移,当点M 在DCB △的内部时,设点M 的运动时间为t 秒①点M 到DCB △任意两边的距离相等时,求出t 的值. ②当MQB △被AB 边分成两部分的面积的比为1∶2时,直接写出t 的值.。
2022-2023学年重庆市教科院巴蜀实验中学九年级(上)第一次月考物理试卷1.下列物理量的估计最接近实际的是( )A. 人的正常体温约为25℃B. 教室的日光灯管通电时的电流约为0.2AC. 我国家庭照明电路的电压为36VD. 体育考试中所用实心球质量约为10kg2.刚从冰箱冷冻室里拿出的冰糕,表面会生成一些白色颗粒上,这是发生了( )A. 熔化B. 凝固C. 蒸发D. 凝华3.学校的路灯,早晨8点时同时熄灭,晚上7点时,所有路灯同时亮,则它们是( )A. 一定串联B. 一定并联C. 可能并联,也可能串联D. 无法确定4.关于温度、热量、内能,以下说法正确的是( )A. 0℃的冰没有内能B. 物体的温度越高,所含的热量越多C. 对物体做功,物体的温度一定升高D. 一个物体吸收热量时,温度不一定升高5.下面是某同学“物理学习笔记”中的摘录,其中错误的是( )A. 燃料的热值与燃料的多少无关B. 改变物体内能的方式有做功和热传递C. 单缸四冲程汽油机的飞轮每转一转,汽油机就对外做功一次D. 尽量减少工作过程中各种能量的损失是提高热机效率的主要途径6.教室内气温为25℃,小江同学在温度计的玻璃泡上涂抹少量与室温相同的酒精。
如图中能比较正确地反映温度计示数随时间变化的图象是( )A. B.C. D.7.九年级的志愿者想为敬老院的老人设计一个呼叫电路。
他们的设想是:同一房间内两位老人都能单独控制同一只电铃,且能让值班室的工作人员区分出是哪位老人按铃呼叫的。
下图中的四个电路,符合设想的是( )A. B.C. D.8.如图所示,电源电压不变,闭合开关S,电路各元件工作正常。
一段时间后,若其中一只电压表示数变大,则( )A. 灯L2可能短路B. 其中有一盏灯亮度不变C. 灯L2可能断路D. 另一个电压表示数变小9.一节干电池的电压为______V,生活用电的电压为______V;家里电视机、电冰箱、电灯之间是______联的。
重庆市实验学校2018-2019学年度上九年级第一次月考
数学试题
满分:150分 时间:120分钟
一、选择题(每题4分,共40分)
1.下列方程中是一元二次方程的是( )
A .012=+x
B .12=+x y
C .012=+x
D .012
2=++x x
2.抛物线2(1)2y x =-+的顶点坐标是( )
A .(﹣1,2)
B .(﹣1,﹣2)
C .(1,﹣2)
D .(1,2)
3.方程23x ﹣8x ﹣10=0的二次项系数和一次项系数分别为( )
A .3和8
B .3和﹣8
C .3和﹣10
D .3和10
4.方程x (x -1)=0的根是( )
A .x =0
B .x =1
C .x 1=0,x 2=1
D .x 1=0,x 2=-1 5.若将抛物线y =x 2向右平移2个单位,再向上平移3个单位,则所得抛物线的解析式为( )
A.y =(x +2)2+3
B.y =(x -2)2+3
C.y =(x +2)2-3
D.y =(x -2)2-3
6.一元二次方程2x ﹣5x +9=0的根的情况是( )
A .有两个不相等的实数根
B .有两个相等的实数根
C .有一个实数根
D .没有实数根
7.方程2460x x +-=配方后变形为( )
A .2(2)10x +=
B .2(2)10x -=
C .2(2)2x +=
D .2(2)2x -=
8.已知抛物线2)1(+-=x y 上的两点)()(2211y x B y x A ,和,,如果121-<<x x ,那么下列结论一定成立的是( )
A.021<<y y
B.210y y <<
C.120y y <<
D.012<<y y .
9.关于x 的一元二次方程(m -2)x 2+x +m 2-4=0的一个根是0,则m 的值为( ) A .2或-2 B .12 C .-2 D .2. 10.若抛物线y =(x ﹣m )2+(m +1)的顶点在第一象限,则m 的取值范围为( ) A. m >1
B. m >0
C. m >﹣1
D.﹣1<m <0 11.一次函数与二次函数在同一坐标系中的图象可能是( ) 12.如图,二次函数y =ax 2+bx +c (a ≠0)图象的一部分,对称轴为直线x =21,且经过点(2,0).下列说法:①abc <0;②a +b =0;③4a +2b +c <0;④若(-2,y 1),(25,y 2)是抛物线上的两点,则y 1<y 2,其中说法正确的是( )
B.③④
C.①③④
D.①② 二、填空题(每题4分,共24分) 13.某地2005年外贸收入为2.5亿元,2007年外贸收入达到了4亿元,若平均每年的增长率为x ,则可以列出方程为 . 14.如果抛物线2(2)y a x =-的开口方向向上,那么a 的取值范围是 . 15.方程()229x -=的解是____________. 16.若一元二次方程(m -1)x ²-4x -5=0没有实数根,则m 的取值范围是___________. 17.如图,在平面直角坐标系中,抛物线y =221x 经过平移得到抛物线
y =x x 2212-,其对称轴与两段抛物线所围成的阴影部分的面积为 .
第17题图
18.如图,平行于x 轴的直线AC 分别交抛物线
2
1x y =(x ≥0)与32
2x y =(x ≥0)于B 、C 两点,过点C 作y 轴的平行线交1y 于点D ,直线DE ∥AC ,
交2y 于点E ,则
AB DE = _______.
三、解答题(每题8分,共16分) 19.解方程:(1)23410x x --= (2)()33x x x -=-+
20.如图,已知点A (-4,8)和点B (2,n )在抛物线2y ax =上.求a 的值及点B 的坐标.
四、解答题(21-25题,每题10分,26题12分,共52分) 20.地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元. (1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率; (2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款? 22.已知二次函数342
+-=x x y (1)求函数的顶点C 的坐标,并描述该函数的函数值随自变量的增减而增减的情况; (2)求函数图象与x 轴的交点A ,B 的坐标及△ABC 的面积. 23.已知关于x 的方程22220x mx m m -++-=有两个不相等的实数根. (1)求m 的取值范围;(2)当m 为正整数时,求方程的根. 24.如图,已知抛物线y =x 2+bx +c 经过矩形ABCD 的两个顶点
A 、
B ,AB 平行于x 轴,对角线BD 与抛物线交于点P ,点A
的坐标为(0,2),AB =4.
(1)求抛物线的解析式;
(2)若S △APO =,求矩形ABCD 的面积.
25. 俗话说“一铺养三代”。
曾经,在市区繁华地段租一间门面,做点小生意,是不少人的生存之道。
如今,这样的传统致富门道正在不断受到挑战。
某服装店主,顺应时
代潮流,在实体店销售的同时,开始网上销售。
(1)该店主某月线上线下共销售某款童装200件,其中网上销售量不低于实体销售量
的4倍,求该店主该月实体销售量最多为多少?
(2)已知该店主5月实体销售该童装100件,每件获利18元;网上销售200件,每件获利12元。
6月店主加大网上销售力度,网上销售每件获利较5月减少m %,但销售量比5月增加了2m %,实体店每件获利不变,销售量比5月减少了m %。
结果该店主5月、6月线上线下获利总金额相同,求m 的值。
26. 如图,直线y =x +2与抛物线y =ax 2+bx +6(a ≠0)相交于A (,)和B (4,m ),点P
是线段AB 上异于A 、B 的动点,过点P 作PC ⊥x 轴于点D ,交抛物线于点C . (1)求抛物线的解析式;
(2)是否存在这样的P 点,使线段PC 的长有最大值?若存在,求出这个最大值;若不存在,请说明理由; 第18题图
(3)假若△P AC为直角三角形,直接写出点P坐标。