北师大版高二年级上学期数学期中试卷文科
- 格式:doc
- 大小:201.50 KB
- 文档页数:4
2024-2025学年五年级上学期数学北师大版期中模拟检测(1~4单元)学校:___________姓名:___________班级:___________等级:___________一.填空题1.有一个四位数,它的最高位上是最小的质数,百位上是最大的一位数,十位上是最小的合数,个位上的数既是偶数又是质数。
这个四位数是 。
2.有74千克的油,每个油桶最多装6千克油,至少要 个油桶才能把油装完。
3.如果一个两位小数的近似数是7.9,那么这个两位小数最大是 ,最小是 。
4.7个3.4是 ,9.6是16的 倍。
5.等边三角形有 条对称轴, 三角形有一条对称轴。
6.一场演出9:00开始,12:00结束,会场时钟上的时针从演出开始到结束沿 方向旋转了 度。
7.511至少加上 才是3的倍数,至少减去 才是2和5的倍数.8.一块平行四边形麦田占地面积2公顷,已知它的高是50米,底是 米。
二.选择题9.在计算除法时,如果要求得数精确到十分位,通常商应除到( )A.十分位B.百分位C.千分位D.万分位10.图形的平移没有改变图形的( )。
A.形状和大小B.位置和大小C.位置和形状D.方向和位置11.20以内所有质数的和是( )A.76B.77C.78D.8012.下面各组数中,三个连续自然数都是合数的是( )A.13、14、15B.7、8、9C.14、15、1613.如图,两条平行线间的甲、乙两个梯形的面积相等,梯形乙的上底是( )cm。
A.3B.4C.4.514.自然数中,凡是17的倍数( )三.判断题15.平行四边形的底和高分别扩大到原来的2倍,面积也扩大到原来的2倍。
( )16.因为7×3=21,所以7和3都是因数,21是倍数。
( )17.循环小数都是无限小数,无限小数都是循环小数. .18.一个自然数(0除外)的倍数有无限个,其中最小的倍数是它本身. .19.直接写出得数。
0.1﹣0.03=0.6÷0.12=0.24×0.5=1﹣0.2÷0.2=0.32÷0.04=0×3.75=0.3+0.44= 2.5+0.5×0.7=1.111÷1.01= 1.8×1.01=2÷0.4=2.5×4×8=四.计算题20.直接写出得数。
高二数学(期中试卷) 宝鸡铁一中 孙敏一、选择题(本大题共12小题,每小题4分,共48分;每小题所给的四个选项中只有一个选项符合题意)1、在数列{}n a 中,111012,221,n n a a a a +==+则的值为( )A .49B .50C .51D .52 2、63x y -<不在4表示的平面区域内的点是() A .()00, B .()12, C .()21, D .()31,3、x y y =若1,,,z,25五个数成等比数列,则() A .5 B .5- C .5± D .24、已知a ,b ,c ,d ∈R ,则下列命题中必然成立的是()A .若a >b ,c >b ,则a >cB .若a >-b ,则c -a <c +bC .若a 2>b 2,则-a <-bD .若a >b ,c >d ,则>a bc d5、{}9n n a a n =数列的通项公式该数列的前项和等于,则n=( )A .98B .99C .96D .97 6、{}202,023axbax b x x x x ++>>>--不等式的解集为则不等式 的解集为( ) A.{}213x x x -<<->或 B .{}321x x x -<<->或 C.{}123x x x -<<>或 D .{}231x x x <<<-或7、222sin sin ,cos cos 0,ABC A B C b B c C ∆=+⋅-⋅=已知中,sin 则ABC ∆是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形 8、()()222240a x a x x R -+--<∈若不等式对一切恒成立,则a 的取值范围是( )A .(]2-∞,B .(]22-,C .[]22-,D .()2-∞, 9、4,ABC ABC a b ∆∆==已知中,,则S =( )A.19 BC .4819D.1910、{}138n n a a n S 在等差数列中,=-25,S =S ,则前项和的最小值为( )A .-75B .-80C .-76D . -7411、()()21x y xy x x ⊕=-⊕+定义运算,则的最大值是( )A .1B .12 C. D .1412、00,23x y x y x y x y y a -≤⎧⎪+≥+⎨⎪≤⎩若实数、满足且z=的最大值是,则a =( )A .1B .1-C .0D .2、填空题(本大题共4小题,每小题5分,共20分。
一、选择题:(每题4分,共40分)1、某体育馆第一排有5个座位,第二排有7个座位,第三排有9个座位,依次类推,那么第十五排有( )个座位。
A .27B .33C .45D .51 2、下列结论正确的是( )A .若ac>bc ,则a>bB .若a 2>b 2,则a>b C .若a>b,c<0,则 a+c<b+c D .若a <b,则a<b 3、设4321,,,a a a a 成等比数列,其公比为2,则432122a a a a ++的值为( )A .41 B .21 C .81D .1 X Kb1 .C om 4、设集合{}(,)|,,1A x y x y x y --=是三角形的三边长,则A 所表示的平面区域(不含边界的阴影部分)是( )121112oyx 121112oyx121112oyx121112oyxA B C D7、已知点P (x ,y )在不等式组⎩⎪⎨⎪⎧x -2≤0y -1≤0x +2y -2≥0表示的平面区域内运动,则z =x -y 的取值范围是( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]8、在△ABC 中,a= 3 +1, b= 3 -1, c=10 ,则△ABC 中最大角的度数为( )A .600B .900C .1200D .15009、已知不等式ax 2+bx +c >0的解集为{x |2<x <4},则不等式cx 2+bx +a <0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >12 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <14 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <14 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >12或x <14 10、若不等式012>-+-k kx x 对)2,1(∈x 恒成立,则实数k 的取值范围是( ) A )2,(-∞ B ]2,(-∞ C ),2(+∞ D [)+∞,2 二、填空题:(每题4分,共20分)11、已知数列{ a n }满足条件a 1 = –2 , a n + 1 =2 +nna 1a 2-, 则a 5 = 12、不等式13x x+<的解集为 13、设,x y R +∈且191x y+=,则x y +的最小值为________. 14、等差数列{}n a 中,01>a ,且13853a a =,则}{n S 中最大项为 15、一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60,行驶4h 后,船到达C 处,看到这个灯塔在北偏东15,这时船与灯塔的距离为__ km . 三、解答题:(共60分)18、(10分)某工厂家具车间造A 、B 型两类桌子,每张桌子需木工和漆工两道工序完成已知木工做一张A 、B 型桌子分别需要1小时和2小时,漆工油漆一张A 、B 型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A 、B 型桌子分别获利润2千元和3千元,试问工厂每天应生产A 、B 型桌子各多少张,才能获得利润最大? 19、(12分)已知△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等差数列,且2cos2B-8cosB+5=0,求角B 的大小并判断△ABC 的形状.20、(14分)设数列{}n a 的前项n 和为n S ,若对于任意的正整数n 都有n a S n n 32-=. (1)设3n n b a =+,求证:数列{}n b 是等比数列,并求出{}n a 的通项公式。
河南省青桐鸣2024-2025学年高二上学期10月联考数学试卷(北师大版)一、单选题1.在正三棱柱111ABC A B C -中,则平面ABC 内不可能存在一条直线与直线1AC ( ) A .平行B .垂直C .相交D .异面2.已知角θ∈R ,直线()1cos 12y x θ=-的倾斜角的取值范围是( ) A .3π,π4⎡⎫⎪⎢⎣⎭B .π0,4⎡⎤⎢⎥⎣⎦C .3π,π4⎡⎤⎢⎥⎣⎦D .{}3π,π04⎡⎫⎪⎢⎣⎭U3.已知tan 2α=-,则2sin cos 1cos sin cos ααααα+=+( )A .3B .-3C .2D .-24.已知直线l 过点()1,2,且直线l 与直线1y ax =-平行,与直线11y x a a ⎛⎫=++ ⎪⎝⎭垂直,0a ≠,则直线l 的方程为( ) A .20x y +-= B .240x y +-=C .20x y --=D .240x y --=5.已知在ABC V 中, D ,E 分别为AC ,AB 的中点, BD b =u u u r r ,CE c =r u u u r ,则AB u u u r可以用含b r ,c r的式子表示为( )A .1433b c --r rB .4233b c --r rC .2433b c +r rD .4233b c +r r6.将函数()2πsin 03y x ωω⎛⎫=+> ⎪⎝⎭的图象向左平移π6个单位长度后所得图象关于直线π12x =-对称,则ω的最小值为( )A .8B .9C .10D .127.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,a 45A =︒,则下列说法错误的是( )A .若60B =︒,则b =B .若120B =︒,则bC .若32b =,则B 有两解 D .若2b =,则B 有两解8.在正四棱柱1111ABCD A B C D -中, 2AB =,14AA =,M 是该正四棱柱表面上的一动点,且满足1DM BD ⊥,则点M 的运动轨迹的长度为( )A .8B .C .D .二、多选题9.已知复数()i ,,0z a b a b b =+∈≠R ,z 为z 的共轭复数,则下列说法正确的是( ) A .若2i1i z=+,则1i z =+ B .若2i z z =-,则1b = C .z z =D .若()2i z -为实数,则2a b =10.已知函数()()()()2sin 0,0,2πf x x ωϕωϕ=+>∈在π5π,36⎡⎤⎢⎥⎣⎦上单调,且π13f ⎛⎫= ⎪⎝⎭,5π26f ⎛⎫=- ⎪⎝⎭,则下列说法正确的是( ) A .1ω= B .43ω=C .29πϕ=D .718πϕ=11.已知圆M 过点()1,3A ,()2,4B -,且圆心M 在x 轴上,则下列说法正确的是( )A .圆心M 的坐标为5,03⎛⎫- ⎪⎝⎭B .圆M 的标准方程为22514539x y ⎛⎫++= ⎪⎝⎭C .圆M 与y 轴的交点坐标为0,⎛ ⎝⎭D .圆M 上一点到点10,03⎛⎫ ⎪⎝⎭距离的最大值为5三、填空题12.在平面直角坐标系中,向量()1,3a =r,()1,2b =-r ,且满足()()a b a b λλ+⊥-r r r r ,其中0λ>,则λ=.13.已知0θ360<<o o ,且角θ终边上有一点()tan200,1-o,则角θ=.14.已知角α,0,2πβ⎛⎫∈ ⎪⎝⎭,tan tan 2αβ=,()5sin 13αβ-=,则()cos αβ+=.四、解答题15.在平面直角坐标系中,点A 的坐标为()2,3-,直线l :()()22130x y λλλ++-+-=,R λ∈.(1)若直线l 过点A ,求λ的值; (2)求点A 到直线l 距离的最大值.16.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且s i n s i n s i n s i n a A b B a B c C +-=.(1)求角C 的值;(2)若2c =,求ABC V 周长的最大值.17.已知函数()22sin cos 3cos f x x x x x =++. (1)求()f x 的值域;(2)求()f x =[]0,2πx ∈上所有实数根的和.18.已知圆22:1O x y +=,M 为直线:34100l x y +-=上一动点,直线MA ,MB 分别切圆O 于点A ,B .(1)若AB M 的坐标; (2)求cos AMB ∠的最小值.19.如图,在正三棱台111ABC A B C -中, 1122AB A B ==,11AB BC ⊥.(1)求1AA 的长度;(2)求三棱台111ABC A B C -的体积.。
2024-2025学年九年级数学上学期期中模拟卷(陕西专用)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版九年级(九上全册)。
5.难度系数:0.69。
一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.下列函数不是反比例函数的是( )A.y=3x﹣1B.y=―x3C.xy=5D.y=12x2.如图是某个几何体的三视图,则该几何体是( )A.圆锥B.长方体C.三棱柱D.圆柱3.若双曲线y=k―1x的图象经过第二、四象限,则k的取值范围是( )A.k>1B.k<1C.k=1D.不存在4.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.7左右,则布袋中白球可能有( )A.15个B.20个C.30个D.35个5.如图,AD∥BE∥CF,若AB=2,AC=5,EF=4,则DE的长度是( )A .6B .23C .53D .836.在长为30m ,宽为20m 的长方形田地中开辟三条入口宽度相等的道路,已知剩余田地的面积为468m 2,求道路的宽度设道路的宽度为x (m ),则可列方程( )A .(30﹣2x )(20﹣x )=468B .(20﹣2x )(30﹣x )=468C .30×20﹣2×30x ﹣20x =468D .(30﹣x )(20﹣x )=4687.如图,正方形四个顶点分别位于两个反比例函数y =3x和y =n x 的图象的四个分支上,则实数n 的值为( )A .﹣3B .―13C .13D .38.如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE AE =34,BE =1,F 是BC 的中点.现有下列四个结论:①DE =3;②四边形DEBC 的面积等于9;③(AC +BD )(AC ﹣BD )=80;④DF =DE .其中正确结论的个数为( )A .1个B .2个C .3个D .4个二、填空题(共5小题,每小题3分,计15分)9.广场上,一个大型字母宣传牌垂直于地面放置,其投影如图所示,则该投影属于__________.(填“平行投影”或“中心投影”)10.反比例函数y =k x的图象经过点(1,6)和(m ,﹣3),则m =__________.11.已知等腰三角形的两边长是方程x 2﹣9x +18=0的两个根,则该等腰三角形的周长为__________.12.如图,在菱形ABCD 中,AC =24,BD =10.E 是CD 边上一动点,过点E 分别作EF ⊥OC 于点F ,EG⊥OD 于点G ,连接FG ,则FG 的最小值为__________.13.如图,在Rt △ABC 中,∠C =90°,AC =10cm ,BC =8cm .点P 从点C 出发,以2cm /s 的速度沿着CA向点A 匀速运动,同时点Q 从点B 出发,以1cm /s 的速度沿BC 向点C 匀速运动,当一个点到终点时,另一个点随之停止.经过__________秒后,△PCQ 与△ABC 相似.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)解方程:x 2﹣4x +1=0.15.(5分)已知:a 2=b 3=c 4≠0,且2a ﹣b +c =10.求a 、b 、c 的值.16.(5分)一个几何体由一些大小相同的小正方块儿搭建,如图是从上面看到的这个几何体的形状如图,小正方形的数字表示在该位置的小正方块儿的个数,请在网格中画出从正面和左面看到的几何体的形状图..17.(5分)如图所示,BE,CF是△ABC的高,D是BC边的中点,求证:DE=DF.18.(5分)已知矩形ABCD中,AB=2,在BC中取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,求AD的长.19.(5分)如图,小明用自制的直角三角形纸板DEF测量水平地面上树AB的高度,已知两直角边EF:DE=2:3,他调整自己的姿势和三角形纸板的位置,使斜边DF保持水平,并且边DE与点B在同一直线上,DM垂直于地面,测得AM=21m,边DF离地面的距离为1.6m,求树高AB.20.(5分)如图所示某地铁站有三个闸口.(1)一名乘客随机选择此地铁闸口通过时,选择A闸口通过的概率为 .(2)当两名乘客随机选择此地铁闸口通过时,请用树状图或列表法求两名乘客选择不同闸口通过的概率.21.(6分)如图,小亮利用所学的数学知识测量某旗杆AB的高度.(1)请你根据小亮在阳光下的投影,画出旗杆AB在阳光下的投影.(2)已知小亮的身高为1.72m,在同一时刻测得小亮和旗杆AB的投影长分别为0.86m和6m,求旗杆AB的高.22.(7分)如图,在平面直角坐标系中,每个小正方形的边长都是1个单位长度,△ABC的顶点都在格点上.(1)以原点O 为位似中心,在第三象限内画出将△ABC 放大为原来的2倍后的位似图形△A 1B 1C 1;(2)已知△ABC 的面积为72,则△A 1B 1C 1的面积是__________.23.(7分)实验数据显示,一般成人喝50毫升某品牌白酒后,血液中酒精含量y (毫克/百毫升)与时间x(时)变化的图象如图(图象由线段OA 与部分双曲线AB 组成)所示.国家规定,车辆驾驶人员血液中的酒精含量大于或等于20(毫克/百毫升)时属于“酒后驾驶”,不能驾车上路.(1)求部分双曲线AB的函数表达式;(2)参照上述数学模型,假设某驾驶员晚上22:00在家喝完50毫升该品牌白酒,第二天早上6:30能否驾车去上班?请说明理由.24.(8分)如图所示,A、B、C、D是矩形的四个顶点,AB=16cm,AD=6cm,动点P,Q分别从点A,C 同时出发,点P以3cm/s的速度向点B移动,一直到达点B为止,点Q以2cm/s的速度向点D移动(1)P,Q两点从出发开始到几秒时,四边形PBCQ的面积为33cm2?(2)P,Q P和点Q的距离第一次是10cm?25.(8分)如图,已知四边形ABCD为正方形,AB=E为对角线AC上一动点,连接DE,过点E 作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG 是正方形;(2)探究:CE +CG 的值是否为定值?若是,请求出这个定值;若不是,请说明理由.26.(10分)如图,12y kx =+的图象与反比例函数2y mx =图象相交于A 、B 两点,已知点B 坐标为(3,﹣1).(1)求一次函数和反比例函数的表达式;(2)求得另一个交点A(﹣1,3),观察图象,请直接写出不等式kx+2≤mx的解集;(3)P为y轴上的点,Q为反比例函数图象上的点,若以ABPQ为顶点的四边形是平行四边形,求出满足条件的点P的坐标.。
(新课标)最新北师大版高中数学必修五总分:150分 考试时间:120分钟 共21题注意事项:本卷为文理共用卷,若标明文科题,则仅文科生做,若标明理科题,则仅理科生做,未作标注的文理科均要做!!!一、选择题:(每题5 分共50分) 1.在直角坐标系中,直线的倾斜角是 ( )A .B .C .D .2.已知直线l 方程为2x-5y+10=0,且在x 轴上的截距为a,在y 轴上的截距为b ,则︱a+b ︱等于( )A 3B 7C 10D 5 3.圆1)1(22=+-y x 的圆心到直线x y 33=的距离是 ( ) A .21B .23C .1D .34.抛物线281x y -=的焦点坐标是 ( )A .(0,-4)B .(0,-2)C .)0,21(-D . ⎪⎭⎫⎝⎛-0,321 5.已知焦点在x 轴上的椭圆的离心率为21,它的长轴长等于圆x 2+y 2-2x -15=0的半径,则椭圆的标准方程是( ) A .1121622=+y x B. 1422=+y x C. 141622=+y x D.13422=+y x 6.R ∈θ,则方程4sin 22=+θy x 表示的曲线不可能是 ( ) A 、圆 B 、椭圆 C 、双曲线 D 、抛物线 7.(文科) 两条直线2x + 3y -k = 0和x -ky + 12 = 0的交点在y 轴上,那么k 的值是 ( )A -24B 6C ±6D 24(理科)直线L :y=kx-1与曲线y x --=2112不相交,则k 的取值范围是( )A .12或3B .12C .3D .[12,3]8.直线03=+y x 绕原点按顺时针方向旋转30°所得直线与圆3)2(22=+-y x 的位置关系是 ( ).(A)直线与圆相切 (B) 直线与圆相交但不过圆心 (C)直线与圆相离 (D) 直线过圆心9.直线143x y+=与椭圆221169x y +=相交于A 、B 两点,该椭圆上点P 使PAB ∆的面积 等于6,这样的点P 共有 ( )A.1个B.2个C.3个D.4个10.一束光线从点A(-1,1)出发经X 轴反射到圆C :1)3()2(22=-+-y x 上的最短路程是( )A. 4B. 5C. 123-D. 62二、填空题(每题5 分共25分)11、经过两点A(-m ,6)、B(1,3m)的直线的斜率是12,则m 的值为。
2024-2025学年八年级数学上学期期中模拟卷(深圳专用)(考试时间:90分钟 试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大八上第一章勾股定理+第二章实数+第三章位置与坐标+第四章一次函数。
5.难度系数:0.70。
第一部分(选择题 共24分)一、选择题(本大题共8小题,每小题3分,满分24分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.在实数 3.14,0,2p ,227,0.1616616661¼(两个1之间依次多一个6)中,无理数的个数是( )A .5B .4C .3D .22.下列二次根式中,是最简二次根式的是( )A B C D 3.如图,根据尺规作图痕迹,图中标注在点A 处所表示的数为( )A .B .1C .1-+D .1-4.三角形ABC 中,A Ð,B Ð,C Ð的对边分别记为a ,b ,c ,由下列条件不能判定三角形ABC 为直角三角形的是( )A .AB C=+∠∠∠B .::1:1:2A B C ÐÐÐ=C .222b a c =+D .::1:1:2a b c =5.已知点P 的坐标为()2,36a a -+,且点P 到两坐标轴的距离相等,则点P 的坐标是( )A .()3,3B .()3,3-C .()6,6-D .()3,3或()6,6-6.在同一平面直角坐标系中,一次函数2y ax a =+与2y a x a =+的图像可能是( )A .B .C .D .7.某数学兴趣小组开展了笔记本电脑的张角大小的实践探究活动.如图,当张角为BAF Ð时,顶部边缘B 处离桌面的高度BC 为7cm ,此时底部边缘A 处与C 处间的距离AC 为24cm ,小组成员调整张角的大小继续探究,最后发现当张角为DAF Ð时(D 是B 的对应点),顶部边缘D 处到桌面的距离DE 为20cm ,则底部边缘A 处与E 之间的距离AE 为( )A .15cmB .18cmC .21cmD .24cm8.如图,直线483y x =-+分别与x ,y 轴交于点A ,B ,点C 在线段OA 上,将BOC V 沿BC 翻折,点O 恰好落在AB 边上的点D 处.则点C 的坐标为( )A .8,03æöç÷èøB .5,03æöç÷èøC .()20,D .()30,第二部分(非选择题 共76分)二、填空题(本大题共5小题,每小题3分,满分15分)9的算术平方根为 .10.已知x 的整数部分,y xy 的值 .11.如图是勾股树衍生图案,它由若干个正方形和直角三角形构成,1S ,2S ,3S ,S ₄分别表示其对应正方形的面积,若已知上方左右两端的两个正方形的面积分别是64,9,则1234S S S S -+-的值为12.如图,已知等边AOC △的边长为1,作OD AC ^于点D ,在x 轴上取点1C ,使1CC DC =,以1CC 为边作等边11A CC △;作111CD A C ^于点1D ,在x 轴上取点2C ,使1211C C D C =,以12C C 为边作等边212A C C V ;作1222C D A C ^于点2D ,在x 轴上取点3C ,使2322C C D C =,以23C C 为边作等边323A C C △;…,且点123,,,A A A A ,…都在第一象限,如此下去,则点2023D 的坐标为 .13.数形结合是数学的重要思想和解题方法,如:“当012x <<值”可看作两直角边分别为x 和2的Rt ACP V 12x -和3的Rt BDP V 的斜边长.于是将问题转化为求AP BP +的最小值,如图所示,当AP 与BP 共线时,AP BP +为最小.请你解决问题:当04x <<的最小值是 .三、解答题(本大题共7小题,满分61分.解答应写出文字说明,证明过程或演算步骤)14.(8分)计算:(1)0(2023)1|p -+-(2)+-.15.(7分)已知2x +的一个平方根是2-,21x y +-的立方根是3;(1)求x y 、的值;(2)的算术平方根.16.(7分)如图,在平面直角坐标系中,△ABC 顶点分别是()0,2A ,()2,2B -,()4,1C -.(1)在图中作出△ABC 关于y 轴对称的111A B C △;(2)直接写出对称点坐标1B ________,1C ________;(3)在图中第一象限格点中找出点D ,使AD =且同时CD (无需计算过程,请把点画清楚一些)17.(8分)如图,在三角形ABC 中,90ABC Ð=°,20AC =,12BC =.(1)设点P 在线段AB 上,连接PC ,若PAC PCA Ð=Ð,求AP 的长;(2)设点M 在线段AC 上,若MBC △是等腰三角形,求AM 的长.18.(10分)综合与实践【问题情境】在平面直角坐标系中,有不重合的两点()11,A x y 和点()22,B x y ,若12x x =,则AB y ∥轴,且线段AB 的长度为12y y -:若12y y =,则AB x ∥轴,且线段AB 的长度为12x x -.【知识应用】(1)若点()1,1A -,()2,1B ,则AB x ∥轴,AB 的长度为________;【拓展延伸】我们规定:平面直角坐标系中,任意不重合的两点()11,M x y ,()22,N x y 之间的折线距离为()1212,d M N x x y y =-+-.例如:图1中,点()1,1M -与点()1,2N -之间的折线距离为()(),1112235d M N =--+--=+=.【问题解决】(2)如图2,已知()2,0E ,若()1,1F --,则(),d E F =________;(3)如图2,已知()2,0E ,()1,G t ,若(),3d E G =,则t 的值为________;(4)如图3,已知()2,0E ,()0,2H ,点P 是EOH △的边上一点,若(),d E P =P 的坐标.19.(10分)问题情境:在学习了《勾股定理》和《实数》后,某班同学们以“已知三角形三边的长度,求三角形面积”为主题开展了数学活动,同学们想到借助曾经阅读的数学资料进行探究:材料1.古希腊的几何学家海伦(Heron ,约公元50年),在他的著作《度量》一书中,给出了求其面积的海伦公式S =(其中a b c ,,为三角形的三边长,2a b c p ++=,S 为三角形的面积).S a b c ,,,三角形的面积为S .(1)利用材料1解决下面的问题:当3a b c ===,(2)利用材料2解决下面的问题:已知ABC V 24-,记ABC V 的周长为ABC C V .①当2x =时,请直接写出ABC V 中最长边的长度;②若x 为整数,当ABC C V 取得最大值时,请用秦九韶公式求出△ABC 的面积.20.(11分)如图,点(0,)A a ,点(,0)B b 分别为y 轴正半轴、x 轴负半轴上的点,以点B 为直角顶点在第二象限作等腰Rt ABC △.(1)如图1,若a 、b 满足()230a -=,求点C 的坐标;(2)在x 轴上是否存在点P ,使PAB V 是以AB 为腰的等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.(3)如图2,点M 在AC 上,点N 在CA 的延长线上,45MBN Ð=°,探究线段CM 、AN 和MN 之间的关系,并加以证明.。
2023-2024学年安徽省A10联盟(北师大版)高二(上)期中数学试卷一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知直线l 的方程为√3x +y −1=0,则直线的倾斜角为( ) A .π6B .π3C .2π3D .5π62.若双曲线y 22−x 2m=1的焦点与椭圆x 24+y 29=1的焦点重合,则m 的值为( ) A .2B .3C .6D .73.以A (2,0),B (0,﹣4)两点为直径的两个端点的圆的方程为( ) A .(x +1)2+(y ﹣2)2=20 B .(x +1)2+(y ﹣2)2=5C .(x ﹣1)2+(y +2)2=20D .(x ﹣1)2+(y +2)2=54.已知圆(x ﹣1)2+y 2=4上有四个点到直线y =x +b 的距离等于1,则实数b 的值不可能为( ) A .1B .0C .−√2D .−√35.若圆x 2+y 2﹣2x +4y +1=0被直线ax ﹣2by ﹣2=0(a >0,b >0)平分,则1a+4b的最小值为( ) A .9+4√22B .16C .17D .2526.已知抛物线y 2=8x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作y 轴的垂线,垂足分别为C ,D ,则AC +BD 的最小值为( ) A .2B .4C .6D .87.已知在△ABC 中,顶点A (1,1),点B 在直线l :x ﹣y +2=0上,点C 在x 轴上,则△ABC 的周长的最小值为( ) A .√5B .2√5C .4√5D .5√528.已知底边BC 长为2的等腰直角三角形ABC ,D 是平面ABC 内一点,且满足DB :DC =√3:1,则△ABD 面积的最大值是( )A .3+√62B .3−√62C .3√2+2√32D .3√2−2√32二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求全部选对的得5分,部分选对的得2分,有选错的得0分.) 9.若方程x 25−t+y 2t−1=1所表示的曲线为C ,则( )A .曲线C 可能是圆B .若C 为椭圆,且焦点在x 轴上,则1<t <3 C .若1<t <5,则C 为椭圆D .若C 为双曲线,且焦点在y 轴上,则t >510.已知椭圆C :x 225+y 216=1的左、右焦点分别为F 1,F 2,A ,B 两点都在C 上,且A ,B 关于坐标原点对称,则( ) A .AB 的最大值为10 B .C 的焦距是短半轴长的34C .|AF 2|+|BF 2|为定值D .存在点A ,使得AF 1⊥AF 211.下列有关直线与圆的结论正确的是( )A .过点(3,4)且在x ,y 轴上的截距相等的直线方程为x ﹣y ﹣7=0B .若直线 kx ﹣y ﹣k ﹣1=0 和以M (2,1),N (3,2)为端点的线段相交,则实数k 的取值范围为[32,2]C .若点P (a ,b )是圆x 2+y 2=r 2(r >0)外一点,直线l 的方程是ax +by =r 2,则直线l 与圆相离D .若圆C 1:x 2+y 2=1与圆C 2:(x −3)2+(y +4)2=a(a >0)恰有3条公切线,则a =1612.已知O 为坐标原点,F 1,F 2分别为双曲线C :x 2a 2−y 2b 2=1(a >0,b >0),的左、右焦点,C 的一条渐近线l 的方程为y =√3x ,且F 1到l 的距离为3√3,P 为C 在第一象限上的一点,点Q 的坐标为(2,0),PQ 为∠F 1PF 2的平分线,则下列说法正确的是( ) A .双曲线C 的方程为x 29−y 227=1 B .双曲线C 的离心率为2 C .|PF 1|=3|PF 2|D .点P 到x 轴的距离为3√152三、填空题(本题共4小题,每小题0分,共20分.)13.已知圆C :x 2+y 2=4,过点P (1,1)的直线被圆C 截得弦长最短时,直线的方程为 . 14.已知双曲线C :x 2a 2−y 2b 2=1的离心率是√5,F 1,F 2分别为双曲线C 的左、右焦点,过点F 2且垂直于x 轴的垂线在x 轴上方交双曲线C 于点M ,则tan ∠MF 1F 2的值为 .15.如图,探照灯反射镜由抛物线的一部分绕对称轴旋转而成,光源位于抛物线的焦点处,这样可以保证发出的光线经过反射之后平行射出.已知当灯口圆的直径为80cm 时,灯的深度为50cm .为了使反射的光更亮,增大反射镜的面积,将灯口圆的直径增大到88cm ,并且保持光源与顶点的距离不变,此时探照灯的深度为 cm .16.过直线l :x ﹣y +4=0上任意点P 作圆O :x 2+y 2=4的两条切线,切点分别为A ,B ,直线AB 过定点 ;记线段AB 的中点为Q ,则点Q 到直线l 的距离的最小值为 .四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(10分)已知△ABC 的三个顶点分别是A (4,0),B (6,7),C (0,3). (1)求边BC 的高所在的直线方程;(2)求平分△ABC 的面积且过点B 的直线的方程. 18.(12分)已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的一条渐近线与直线x +2y =0垂直,且右顶点A 到该条渐近线的距离为2√55. (1)求双曲线C 的方程;(2)若直线l 与双曲线C 交于A 、B 两点,线段AB 的中点为M (3,2),求直线l 的斜率. 19.(12分)已知点P (4,0),圆C 的圆心在直线x ﹣y ﹣4=0上,且圆C 与y 轴切于点M (0,﹣2). (1)求圆C 的方程;(2)若直线l 过点P 且被圆C 截得的弦长为2√2,求直线l 的方程.20.(12分)已知抛物线Γ的顶点在原点,对称轴为坐标轴,且过(1,﹣2),(14,1),(﹣2,﹣2)三点中的两点.(1)求抛物线Γ的方程;(2)已知F 是抛物线Γ的焦点,P 为抛物线Γ上任意一点,M 是线段PF 上的点,且PM →=3MF →,求直线OM 的斜率的最大值(O 为坐标原点).21.(12分)一动圆与圆C 1:x 2+y 2+6x +5=0外切,同时与圆C 2:x 2+y 2﹣6x ﹣91=0内切,动圆圆心的轨迹为曲线E .(1)求曲线E 的方程;(2)点P 为E 上一动点,点O 为坐标原点,曲线E 的右焦点为F ,求|PO |2+|PF |2的最小值. 22.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,该椭圆的离心率为12,且椭圆上动点M 与点F 1的最大距离为3. (1)求椭圆C 的方程;(2)如图,若直线l 与x 轴、椭圆C 顺次交于P ,Q ,R (点P 在椭圆左顶点的左侧),且∠PF 1Q +∠PF 1R =π,求△RQF 1面积的最大值.2023-2024学年安徽省A10联盟(北师大版)高二(上)期中数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知直线l 的方程为√3x +y −1=0,则直线的倾斜角为( ) A .π6B .π3C .2π3D .5π6解:因为直线l 的方程为√3x +y −1=0,即y =−√3x +1, 所以直线的斜率为k =−√3,所以直线的倾斜角为2π3.故选:C . 2.若双曲线y 22−x 2m=1的焦点与椭圆x 24+y 29=1的焦点重合,则m 的值为( ) A .2 B .3C .6D .7解:因为椭圆x 24+y 29=1的焦点为(0,√5),(0,−√5),所以双曲线y 22−x 2m=1的焦点为(0,√5),(0,−√5),故2+m =5,解得m =3.故选:B .3.以A (2,0),B (0,﹣4)两点为直径的两个端点的圆的方程为( ) A .(x +1)2+(y ﹣2)2=20 B .(x +1)2+(y ﹣2)2=5C .(x ﹣1)2+(y +2)2=20D .(x ﹣1)2+(y +2)2=5解:依题意,圆心坐标为AB 中点,即(1,﹣2),半径为12|AB|=12√(2−0)2+(0+4)2=√5,所以圆的方程为(x ﹣1)2+(y +2)2=5. 故选:D .4.已知圆(x ﹣1)2+y 2=4上有四个点到直线y =x +b 的距离等于1,则实数b 的值不可能为( ) A .1B .0C .−√2D .−√3解:由圆的方程(x ﹣1)2+y 2=4,可得圆心为原点O (1,0),半径为2, 若圆上有4个点到直线l 的距离等于1,则O 到直线y =x +b 的距离d 小于1, 又直线的一般方程为x ﹣y +b =0, 所以√1+11,所以|1+b |<√2,所以−√2−1<b <﹣1+√2,所以实数b 的取值范围为(−√2−1,﹣1+√2). 故选:A .5.若圆x 2+y 2﹣2x +4y +1=0被直线ax ﹣2by ﹣2=0(a >0,b >0)平分,则1a+4b的最小值为( )A .9+4√22B .16C .17D .252解:由题意知,圆x 2+y 2﹣2x +4y +1=0被直线ax ﹣2by ﹣2=0(a >0,b >0)平分, 即圆心(1,﹣2)在直线ax ﹣2by ﹣2=0(a >0,b >0)上,故a +4b ﹣2=0,即a +4b =2, 故1a +4b =(1a +4b )•12(a +4b )=12(1+16+4b a +4a b )≥12(17+2√4a b ×4b a )=252, 当且仅当4b a =4a b,结合a +4b =2,即a =b =25时取等号,所以1a+4b的最小值为252.故选:D .6.已知抛物线y 2=8x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作y 轴的垂线,垂足分别为C ,D ,则AC +BD 的最小值为( ) A .2 B .4C .6D .8解:如图,∵抛物线的方程为y 2=8x , ∴焦点F (2,0),准线x =﹣2,由抛物线的定义可知|AC |+|BD |=|AF |+|FB |﹣4=|AB |﹣4, 即当且仅当|AB |取得最小值,|AC |+|BD |取得最小值,依据抛物线的定义可知当|AB |为通径时,即|AB |=2p =8时为最小值, ∴|AC |+|BD |的最小值为4. 故选:B .7.已知在△ABC 中,顶点A (1,1),点B 在直线l :x ﹣y +2=0上,点C 在x 轴上,则△ABC 的周长的最小值为( ) A .√5B .2√5C .4√5D .5√52解:如图示:,设A (1,1)点关于直线x ﹣y +2=0的对称点为A ′(a ,b ),则{b−1a−1=−1a+12−b+12+2=0,解得:{a =−1b =3,故A ′(﹣1,3),点A 关于x 轴的对称点A ″(1,﹣1), 则|A ′A ″|=√4+16=2√5,故A ′A ″的长即△ABC 周长的最小值. 故选:B .8.已知底边BC 长为2的等腰直角三角形ABC ,D 是平面ABC 内一点,且满足DB :DC =√3:1,则△ABD 面积的最大值是( ) A .3+√62B .3−√62C .3√2+2√32D .3√2−2√32解:以BC 的中点O 为原点,以BC 所在直线为x 轴,BC 的垂直平分线为y 轴,建立直角坐标系,如图,则A (0,1),B (﹣1,0),C (1,0),设D (x ,y ),因为DB :DC =√3:1,所以2222=√3,化简整理得:(x +1)2+y 2=3(x ﹣1)2+3y 2,即(x ﹣2)2+y 2=3, 所以点D 的轨迹为以(2,0)为圆心,以√3为半径的圆, 当点D 与直线AB 距离最大时,△ABD 面积最大, 直线AB 的方程为x ﹣y +1=0,且|AB|=√2, 设圆心到直线的距离为d ,则点D 到直线AB 的最大距离为d +r =2+√3=3√2+2√32,所以△ABD 面积的最大值为12×√2×3√2+2√32=3+√62. 故选:A .二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求全部选对的得5分,部分选对的得2分,有选错的得0分.) 9.若方程x 25−t+y 2t−1=1所表示的曲线为C ,则( )A .曲线C 可能是圆B .若C 为椭圆,且焦点在x 轴上,则1<t <3 C .若1<t <5,则C 为椭圆D .若C 为双曲线,且焦点在y 轴上,则t >5解:对A 选项,当5﹣t =t ﹣1>0,即t =3时,曲线C 是圆,∴A 选项正确;对B 选项,若C 为椭圆,且焦点在x 轴上,则5﹣t >t ﹣1>0,∴1<t <3,∴B 选项正确; 对C 选项,若C 为椭圆,则{5−t >0t −1>05−t ≠t −1,∴1<t <5且t ≠3,∴C 选项错误;对D 选项,若C 为双曲线,且焦点在y 轴上,则{t −1>05−t <0,∴t >5,∴D 选项正确.故选:ABD . 10.已知椭圆C :x 225+y 216=1的左、右焦点分别为F 1,F 2,A ,B 两点都在C 上,且A ,B 关于坐标原点对称,则( ) A .AB 的最大值为10 B .C 的焦距是短半轴长的34C .|AF 2|+|BF 2|为定值D .存在点A ,使得AF 1⊥AF 2解:∵在椭圆C :x 225+y 216=1中,a =5,b =4,c =3, 又A ,B 两点都在C 上,且A ,B 关于坐标原点对称, ∴AB 的最大值为2a =10,∴选项正确;∴C 的焦距为2c =6,短半轴长为4,而6≠4×34,∴B 选项错误; 根据椭圆的对称性可知|BF 2|=|AF 1|,∴|AF 2|+|BF 2|=|AF 2|+|AF 1|=2a =10,∴C 选项正确; 根据椭圆的几何性质可得:当A 为短轴顶点时∠F 1AF 2最大,设∠F 1AF 2=2θ,而当∠F 1AF 2=2θ最大时,tan θ=cb =34<1,θ∈(0,π2),∴θ<π4,∴∠F 1AF 2=2θ的最大角小于π2,∴椭圆C 上不存在点A ,使得AF 1⊥AF 2,∴D 选项错误.故选:AC .11.下列有关直线与圆的结论正确的是( )A .过点(3,4)且在x ,y 轴上的截距相等的直线方程为x ﹣y ﹣7=0B .若直线 kx ﹣y ﹣k ﹣1=0 和以M (2,1),N (3,2)为端点的线段相交,则实数k 的取值范围为[32,2]C .若点P (a ,b )是圆x 2+y 2=r 2(r >0)外一点,直线l 的方程是ax +by =r 2,则直线l 与圆相离D .若圆C 1:x 2+y 2=1与圆C 2:(x −3)2+(y +4)2=a(a >0)恰有3条公切线,则a =16 解:当截距不为0时,设直线xa +y a=1,将点(3,4)代入得,3a+4a=1,∴a =7,则直线方程为x +y﹣7=0,当截距为0时,设直线y =kx ,将点(3,4)代入得,4=3k ,∴k =43,则直线方程为4x ﹣3y =0, 则直线方程为x +y ﹣7=0和4x ﹣3y =0,故A 错误; 对于B ,已知直线kx ﹣y ﹣k ﹣1=0过定点A (1,﹣1), 又直线AM ,AN 的斜率为k AM =1+12−1=2,k AN =2+13−1=32, 所以直线kx ﹣y ﹣k ﹣1=0和以M (2,1),N (3,2)为端点的线段相交, 实数k 的取值范围为[32,2],故B 正确;对于C ,点P (a ,b )是圆x 2+y 2=r 2外一点,所以a 2+b 2>r 2, 所以圆心(0,0)到直线的距离d =r 2√a 2+b r ,所以直线与圆相交,故C 不正确;圆C 1:x 2+y 2=1与圆C 2:(x −3)2+(y +4)2=a(a >0)恰有3条公切线, 所以圆C 1与圆C 2相外切,所以|C 1C 2|=1+√a ,又√(3−0)2+(4−0)2=5, 所以1+√a =5,解得a =16,故D 正确. 故选:BD .12.已知O 为坐标原点,F 1,F 2分别为双曲线C :x 2a 2−y 2b2=1(a >0,b >0),的左、右焦点,C 的一条渐近线l 的方程为y =√3x ,且F 1到l 的距离为3√3,P 为C 在第一象限上的一点,点Q 的坐标为(2,0),PQ 为∠F 1PF 2的平分线,则下列说法正确的是( ) A .双曲线C 的方程为x 29−y 227=1 B .双曲线C 的离心率为2 C .|PF 1|=3|PF 2|D .点P 到x 轴的距离为3√152解:对于A ,由F 1(﹣c ,0)到渐近线y =√3x 的距离为3√3,得√3c2=3√3,解得c =6,由渐近线方程为y =√3x ,得ba=√3,结合a 2+b 2=c 2可得a =3,b =3√3,则双曲线C 的方程为x 29−y 227=1,故A 正确.对于B ,e =ca=2,故B 正确. 对于C ,PQ 为∠F 1PF 2的平分线,则|PF 1||PF 2|=|QF 1||QF 2|=84=2,故C 错误.对于D ,由双曲线定义可得|PF 1|﹣|PF 2|=6,则可得|PF 1|=12,|PF 2|=6,在△PF 1F 2中,cos ∠F 1PF 2=122+62−1222×12×6=14,sin ∠F 1PF 2=√1−cos 2∠F 1PF 2=√154,设点P 到x 轴的距离为d ,则|PF 2|•sin ∠F 1PF 2 即12×12×d =12×12×6×√154,解得d =3√152,故D 正确.故选:ABD .三、填空题(本题共4小题,每小题0分,共20分.)13.已知圆C :x 2+y 2=4,过点P (1,1)的直线被圆C 截得弦长最短时,直线的方程为 x +y ﹣2=0 . 解:圆C :x 2+y 2=4的圆心为(0,0),半径为2,则依题意有k CP =1−01−0=1, 当直线与CP 垂直时,该直线被圆C 截得的弦长最短, 所以所求直线的斜率为k =﹣1,所以直线方程为y ﹣1=﹣(x ﹣1),即x +y ﹣2=0,所以过点P (1,1)的直线被圆C 截得弦长最短时,直线的方程为 x +y ﹣2=0. 故答案为:x +y ﹣2=0. 14.已知双曲线C :x 2a 2−y 2b 2=1的离心率是√5,F 1,F 2分别为双曲线C 的左、右焦点,过点F 2且垂直于x 轴的垂线在x 轴上方交双曲线C 于点M ,则tan ∠MF 1F 2的值为 2√55. 解:已知双曲线C :x 2a 2−y 2b 2=1的离心率是√5,则ca=√5,不妨令a =t ,t >0,则c =√5t ,b =2t ,又F 1,F 2分别为双曲线C 的左、右焦点,过点F 2且垂直于x 轴的垂线在x 轴上方交双曲线C 于点M ,由双曲线的性质可得:|MF 2|=b 2a ,则tan ∠MF 1F 2=|MF 2||F 1F 2|=4t 2t×2√5t =2√55.故答案为:2√55. 15.如图,探照灯反射镜由抛物线的一部分绕对称轴旋转而成,光源位于抛物线的焦点处,这样可以保证发出的光线经过反射之后平行射出.已知当灯口圆的直径为80cm 时,灯的深度为50cm .为了使反射的光更亮,增大反射镜的面积,将灯口圆的直径增大到88cm ,并且保持光源与顶点的距离不变,此时探照灯的深度为 60.5 cm .解:在反射镜的轴截面上建立平面直角坐标系,以抛物线的顶点为原点,以旋转轴为x 轴(抛物线开口方向是x 轴的正方向),则可设抛物线的标准方程为y 2=2px (p >0)灯口圆与轴截面在第一象限内的交点的坐标为(50,40), 代入抛物线方程得402=2p ×50,解得p =16,所以抛物线方程为y 2=32x ,光源应安置在与顶点相距16cm 处,当灯口圆的直径增大到88cm 时,灯口圆与轴截面在第一象限的交点的纵坐标变为882=44,故将y =44代入y 2=32x 中,求得x =1212=60.5, 此时,探照灯的深度为60.5cm .16.过直线l :x ﹣y +4=0上任意点P 作圆O :x 2+y 2=4的两条切线,切点分别为A ,B ,直线AB 过定点 (﹣1,1) ;记线段AB 的中点为Q ,则点Q 到直线l 的距离的最小值为 √2 . 解:设P (x 0,y 0),因为P 是直线l :x ﹣y +4=0上一点,所以y 0=x 0+4, 以OP 为直径的圆的方程为x (x ﹣x 0)+y (y ﹣y 0)=0,即x 2+y 2﹣x 0x ﹣y 0y =0, 所以x 0x +y 0y =4,即直线AB 的方程为x 0x +y 0y =4,又y 0=x 0+4,∴直线AB 的方程为x 0(x +y )+4y ﹣4=0,故直线AB 过定点(﹣1,1). 设Q (x ,y ),直线AB 过定点为M ,则M (﹣1,1),由MQ →⋅OQ →=0, 得(x +1)x +(y ﹣1)y =0,整理得点Q 的轨迹方程为(x +12)2+(y −12)2=12,因为点(−12,12)到直线l :x ﹣y +4=0的是距离d =|−12−12+4|√2=3√22>√22,所以直线l :x ﹣y +4=0与圆(x +12)2+(y −12)2=12相离, 所以点Q 到直线的距离的最小值为|−12−12+4|√2−√22=3√22−√22=√2.故答案为:(﹣1,1);√2.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(10分)已知△ABC 的三个顶点分别是A (4,0),B (6,7),C (0,3). (1)求边BC 的高所在的直线方程;(2)求平分△ABC 的面积且过点B 的直线的方程. 解:(1)由题意可得:直线BC 的斜率k BC =3−70−6=23, 则边BC 的高所在的直线的斜率k =−32,所求直线方程为y −0=−32(x −4),即3x +2y ﹣12=0. (2)由题意可知:所求直线即为边AC 的中线所在的直线,则线段AC 的中点为D(2,32),可得直线BD 的斜率k BD =7−326−2=118,所以直线BD 的方程为y −32=118(x −2),即11x ﹣8y ﹣10=0. 18.(12分)已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的一条渐近线与直线x +2y =0垂直,且右顶点A 到该条渐近线的距离为2√55. (1)求双曲线C 的方程;(2)若直线l 与双曲线C 交于A 、B 两点,线段AB 的中点为M (3,2),求直线l 的斜率. 解:(1)因为双曲线C 的一条渐近线与直线x +2y =0垂直,且直线x +2y =0的斜率为−12,因为双曲线C 的渐近线为y =±b a x ,所以−12⋅ba =−1,解得b a=2,则双曲线C 的渐近线方程为y =±2x ,即2x ±y =0,因为右顶点(a ,0)到该条渐近线的距离为2√55,所以√5=2√55,解得a =1,可得b =2, 所以双曲线C 的方程为x 2−y 24=1;(2)若直线l ⊥x 轴,此时A ,B 两点关于x 轴对称,可得线段AB 的中点在x 轴上,不符合题意; 若直线l 与x 轴不垂直,不妨设A (x 1,y 1)、B (x 2,y 2),直线l 的斜率为k ,此时{x 12−y 124=1x 22−y 224=1,即(x 12−x 22)−y 12−y 224=0, 此时(x 1+x 2)(x 1−x 2)−(y 1+y 2)(y 1−y 2)4=0,整理得y 1+y 2x 1+x 2⋅y 1−y 2x 1−x 2=4. 因为线段AB 的中点为M (3,2),所以x 1+x 2=6,y 1+y 2=4,则46⋅k =4,解得k =6, 故直线l 的斜率为6.19.(12分)已知点P (4,0),圆C 的圆心在直线x ﹣y ﹣4=0上,且圆C 与y 轴切于点M (0,﹣2). (1)求圆C 的方程;(2)若直线l 过点P 且被圆C 截得的弦长为2√2,求直线l 的方程. 解:(1)设圆心坐标为C (a ,b ),因为圆C 的圆心在直线x ﹣y ﹣4=0上,且圆C 与y 轴切于点M (0,﹣2), 所以{a −b −4=0b =−2,解得{a =2b =−2,所以C (2,﹣2),半径r =|MC |=2, 所以圆C 的方程为(x ﹣2)2+(y +2)2=4;(2)由题意得,圆心C (2,﹣2)到直线l 的距离为√4−2=√2, 若直线l 的斜率存在,设直线l 的方程为y =k (x ﹣4), 则√k 2+1=√2,解得k =2+√3或k =2−√3,当直线l 的斜率不存在,l 的方程为x =4,此时圆心C (2,﹣2)到直线l 的距离为2,不满足题意,舍去, 综上,直线l 的方程为y =(2+√3)(x −4)或y =(2−√3)(x −4).20.(12分)已知抛物线Γ的顶点在原点,对称轴为坐标轴,且过(1,﹣2),(14,1),(﹣2,﹣2)三点中的两点.(1)求抛物线Γ的方程;(2)已知F 是抛物线Γ的焦点,P 为抛物线Γ上任意一点,M 是线段PF 上的点,且PM →=3MF →,求直线OM 的斜率的最大值(O 为坐标原点).解:(1)若抛物线Γ经过A (1,﹣2)、B (14,1),则抛物线开口向右,设抛物线Γ方程为y 2=2px (p >0),代入A 点坐标,得(﹣2)2=2p ×1,解得p =2, 故抛物线Γ方程为y 2=4x ,恰好经过点B (14,1),符合题意; 若抛物线Γ经过A (1,﹣2)、C (﹣2,﹣2),则抛物线开口向下,设抛物线Γ方程为x 2=﹣2py (p >0),找不到p 值,使A 、C 两点都满足该方程;而B (14,1)在第一象限,C (﹣2,﹣2)在第三象限,不存在抛物线,使B 、C 两点都在抛物线上. 综上所述,抛物线Γ经过A (1,﹣2)、B (14,1)两点,方程为y 2=4x .(2)作出示意图,设点P (x 0,y 0)为抛物线Γ上任意一点,点M 是线段PF 上的点,且PM →=3MF →,①若P 点在第四象限,则直线OM 的斜率为负数,不能达到最大值;②若P 点在第一象限,则F (1,0),x 0=y 024,y 0>0,设M (s ,t ),由OM →=OF →+FM →=OF →−14PF →=OF →−14(OF →−OP →)=14OP →+34OF →,得{s =14x 0+34×1=y 0216+34t =14y 0+34×0=14y 0, 所以M 的坐标为(y 0216+34,14y 0),可得直线OM 的斜率k =14y 0y 0216+34=y 0y 024+3≤02√y 04×3=√33,当且仅当y 024=3,即x 0=3,y 0=2√3时,直线OM 的斜率有最大值√33.综上所述,当抛物线Γ上的点P 坐标为(3,2√3)时,直线OM 的斜率有最大值√33. 21.(12分)一动圆与圆C 1:x 2+y 2+6x +5=0外切,同时与圆C 2:x 2+y 2﹣6x ﹣91=0内切,动圆圆心的轨迹为曲线E .(1)求曲线E 的方程;(2)点P 为E 上一动点,点O 为坐标原点,曲线E 的右焦点为F ,求|PO |2+|PF |2的最小值. 解:(1)不妨设动圆圆心为M (x ,y ),半径为R ,易知圆C 1:(x +3)2+y 2=4,圆C 2:(x −3)2+y 2=100, 当动圆M 与圆C 1外切时,|C 1M |=R +2; 当动圆M 与圆C 2内切时,|C 2M |=10﹣R , 所以|C 1M |+|C 2M |=12>|C 1C 2|,则点M 的轨迹是焦点为C 1(﹣3,0),C 2(3,0),长轴长为12的椭圆, 不妨设该椭圆的长轴为2a ,短轴为2b ,焦距为2c , 此时2c =6,2a =12,解得c =3,a =6,则b 2=36﹣9=27, 故动圆圆心轨迹方程为x 236+y 227=1;(2)由(1)知F (3,0),不妨设P (x ,y ), 此时|PO |2+|PF |2=x 2+y 2+(x ﹣3)2+y 2=2x 2﹣6x +9+2y 2, 因为点P 在椭圆上,所以x ∈[﹣6,6],y 2=27−34x 2, 此时|PO|2+|PF|2=12x 2−6x +63=12(x −6)2+45, 易知当x =6时,|PO |2+|PF |2取得最小值,最小值为45. 22.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,该椭圆的离心率为12,且椭圆上动点M 与点F 1的最大距离为3. (1)求椭圆C 的方程;(2)如图,若直线l 与x 轴、椭圆C 顺次交于P ,Q ,R (点P 在椭圆左顶点的左侧),且∠PF 1Q +∠PF 1R =π,求△RQF 1面积的最大值.解:(1)因为椭圆C 的离心率为12,所以e =c a =12,即a =2c ,①因为椭圆上动点M 与点F 1的最大距离为3, 所以a +c =3,② 又b =√a 2−c 2,③联立①②③,解得a =2,c =1,b =√3, 则椭圆C 的方程为x 24+y 23=1;(2)不妨设Q (x 1,y 1),R (x 2,y 2), 由(1)知F 1(﹣1,0), 因为∠PF 1Q +∠PF 1R =π, 所以k QF 1+k RF 1=0, 即y 1x 1+1+y 2x 2+1=0,整理得x 1y 2+y 2+x 2y 1+y 1=0,不妨设直线PQ 的方程为x =my +n (m ≠0),联立{x =my +n x 24+y 23=1,消去x 并整理得(3m 2+4)y 2+6mny +3n 2﹣12=0,此时Δ=36m 2n 2﹣4(3m 2+4)(3n 2﹣12)>0, 解得n 2<3m 2+4,由韦达定理得y 1+y 2=−6mn 3m 2+4,y 1y 2=3n 2−123m 2+4,又x 1=my 1+n ,x 2=my 2+n ,所以x 1y 2+y 2+x 2y 1+y 1=2my 1y 2+(n +1)(y 1+y 2)=0,即2m ⋅3n 2−123m 2+4+(n +1)(−6mn3m 2+4)=0, 因为m ≠0,所以n =﹣4,则直线PQ 的方程为x =my ﹣4(m ≠0), 此时点F 1(﹣1,0)到直线PQ 的距离d =|−1+4|√1+m 2=3√1+m 2,所以S △F 1QR=12|QR|d =12√1+m 2⋅√(y 1+y 2)2−4y 1y 2⋅3√1+m 2=18√m 2−43m 2+4, 因为n 2<3m 2+4,n =﹣4, 所以3m 2+4>16,即m 2>4, 不妨令√m 2−4=t ,t >0, 此时m 2=t 2+4,所以√m 2−43m 2+4=t 3(t 2+4)+4=t 3t 2+16=13t+16t≤2√3t⋅t=8√3,当且仅当3t =16t 时,等号成立, 此时m 2=t 2+4=283,直线l 存在, 综上,△RQF 1面积的最大值为18×183=3√34.。
2024-2025学年八年级上学期北师大版数学期中考试模拟试卷一、单选题1π,131.626626662……中,无理数的个数是()A .1个B .2个C .3个D .4个2.一次函数73y x =-的图象不经过的象限是()A .第一象限B .第二象限C .第三象限D .第四象限3.一等腰三角形,腰长10cm ,底长16cm ,则底边上的高是()A .8cmB .6cmC .10cmD .12cm4.已知a ,b ,c 是三角形的三边长,如果满足()26|10|0a c --=,则三角形的形状是()A .等腰三角形B .等边三角形C .钝角三角形D .直角三角形5.下列计算正确的是()A=B .3-=C =D .2=6.△ABC 的三边长分别为a ,b ,c ,由下列条件不能判断△ABC 是直角三角形的是()A .∠A =2∠B =3∠C B .∠A =∠C ﹣∠B C .a :b :c =12D .a 2=(b +c )(b ﹣c )7.一个正比例函数的图象经过()2,4A -,(),2B m -两点,则m 的值为()A .2-B .1-C .2D .18.在平面直角坐标系中,若点(231)P a +-,与点(51)Q b -,关于x 轴对称,则a b +的值是()A .1B .2C .3D .49.如图,Rt ABC △中,90ACB ∠=︒,以Rt ABC △的三边为边向外作正方形,其面积分别是1S ,2S ,3S ,且14S =,216S =,则3S =()A .20B .12C .D .10.如图,在平面直角坐标系xOy 中,O 为坐标原点,(4,0)A ,(4,2)B ,(0,2)C ,将OAB △沿直线OB 折叠,使得点A 落在点D 处,OD 与BC 交于点E ,则点D 的纵坐标为()A .165B .125C .95D .4二、填空题1115(填“>、<、或=”)12.若点(x 1,y 1)和(x 2,y 2)都在直线y =−3x +b 上,且x 1<x 2,则y 1、y 2的大小关系是.13.将直线y =﹣12x +6向下平移2个单位,平移后的直线分别交x 轴、y 轴于A 、B 两点,点O 为坐标原点,则S △ABO =.14.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.下图是3世纪我国汉代的数学家赵爽在注解《周髀算经》时给出的图案,人们称它为“赵爽弦图”.此图中四个全等的直角三角形可以围成一个大正方形,中空的部分是一个小正方形.如果大正方形的面积是25,小正方形的面积是1,则()2a b +的值是.15.实数a b ,||a b +化简结果为.16.已知-2<x<1化简的结果是.三、解答题17.计算:|4|+18.求下列各式中x 的值(1)()2419x +=;(2)()31342x +=-.19.已知2x -的平方根是2±,27x y ++的立方根是3,求22x y +的平方根.20.已知1x =-,1y =.()1求22x xy y ++;()2若a 是x 的小数部分,b 是y 的整数部分,求1ba b a-+的值.21.已知:在四边形ABCD 中,连接AC ,BC AB =,2222CD AD AB +=,AD CD ⊥.(1)试判断AB 与BC 的位置关系,并说明理由;(2)当13CD AB =,17AD =,求四边形ABCD 的周长.22.如图,一架云梯AB 斜靠在一竖直的墙AO 上,这时20AO =米,云梯AB 的长度比OB 的长度(云梯底端离墙的距离)大10米,AO BO ⊥,设OB 的长度为x 米.(1)求OB 的长度;(2)若云梯的顶端A 沿墙下滑了5米到达点C 处,通过计算说明云梯的底部B 往外移动多少米.23.学校首届海棠文化节启动暨原创校园歌曲《京广路86号》现场发布仪式于4月2日在京广校区举行,海棠文化节系列活动也伴随启动仪式同步开展.为奖励积极参与活动的班级与个人,学校计划购买A 、B 两种奖品,若购买A 种奖品3个和B 种奖品2个共需要130元;若购买A 种奖品5个和B 种奖品4个共需要230元.(1)A 、B 两种奖品的单价;(2)按照学校计划,准备购买A 、B 两种奖品共20个,且A 种奖品的数量不少于B 种奖品的数量的2倍,请你设计出最省钱的购买方案,并说明理由.24.如图,直线24y x =-+交x 轴和y 轴于点A 和点B ,点(0,2)C -在y 轴上,连接AC .(1)求直线AC 的解析式;(2)若点P 是直线AB 上一点,若BPC 的面积为3,求点P 的坐标;(3)在x 轴上是否存在一点D ,使得ABD △是等腰三角形,若存在,请直接写出点D 坐标,若不存在,请说明理由.25.如图1,已知直线24y x =+与y 轴,x 轴分别交于A ,B 两点,以B 为直角顶点在第二象限作等腰Rt ABC △.(1)求点C 的坐标,并求出直线AC 的关系式;(2)如图2,直线CB 交y 轴于E ,在直线CB 上取一点D ,连接AD ,若AD AC =,求证:BE DE =;(3)如图3,在(1)的条件下,直线AC 交x 轴于点M ,7,2P a ⎛⎫- ⎪⎝⎭是线段BC 上一点,在x轴上是否存在一点N ,使BPN △面积等于BCM 面积的一半?若存在,请求出点N 的坐标;若不存在,请说明理由.。
2024-2025学年七年级数学上学期期中测试卷(一)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:新北师版(2024)七年级上册第一章~第三章。
5.难度系数:0.85。
一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.如果收入10元记作+10元,那么支出5元记作()A.+5元B.−5元C.+10元D.−10元【答案】B【分析】本题主要考查了正负数的意义,掌握正负数的意义是解题的关键.根据正负数的意义,收入为正,那么支出为负进行选择即可.【详解】解:由题意可知:收入为正,那么支出为负,支出5元记作−5元.故选:B2.如图是一个正方体展开图,将其围成一个正方体后,与“罩”字相对的是().A.勤B.洗C.手D.戴【答案】C【分析】本题要有一定的空间想象能力,可通过折纸或记口诀的方式找到“罩”的对面应该是“手”.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“罩”相对的面是“手”;故选:C.【点睛】可以通过折一个正方体再给它展开,通过结合立体图形与平面图形的转化,建立空间观念,解决此类问题.还可以直接记口诀找对面:"跳一跳找对面;找不到,拐个弯".3.2024年春节小长假期间旅游创新高,达到474000000人次,同比上涨34.3%,将474000000用科学记数法表示为()A.0.474×109B.474×106C.4.74×108D.47.4×107【答案】C【分析】本题考查科学记数法,解题的关键是熟记科学记数法的定义:将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n是正整数;当原数的绝对值小于1时,n是负整数.【详解】解:将474000000用科学记数法表示为4.74×108.故选:C.4.下列运算正确的是()A.3a+4a=7a B.−2x+6x=8x C.9x−7x=2D.m+n=mn【答案】A【分析】根据合并同类项法则逐个进行判断即可.【详解】解:A、3a+4a=7a,故A正确,符合题意;B、−2x+6x=4x,故B不正确,不符合题意;C、9x−7x=2x,故C不正确,不符合题意;D、m与n不是同类项,不能合并,故D不正确,不符合题意;故选:A.【点睛】本题主要考查了合并同类项法则,解题的关键是掌握相关运算法则并熟练运用.5.已知代数式3m−2n的值是3,则代数式6m−4n−2的值是()A.1B.4C.−8D.不能确定【答案】B【分析】把原式化为:2(3m−2n)−2,再整体代入求值即可.【详解】解:∵3m−2n=3,∴6m−4n−2=2(3m−2n)−2=2×3−2=4,故选B【点睛】本题考查的是代数式的求值,掌握整体代入法求解代数式的值是解题的关键.6.有理数a,b在数轴上的对应点的位置如图所示,则下列各式成立的是()A.a+b>0B.b−a<0C.ab>0D.|a+b|<|a|+|b|【答案】D【分析】根据a,b在数轴上的对应点的位置得到−2<a<−1<0<b<1,进行逐一判断即可.【详解】解:由数轴可得:−2<a<−1<0<b<1,则|a|>|b|,∴a+b<0,b−a>0,ab<0,|a+b|<|a|+|b|,故A、B、C错误,D正确,故选D.【点睛】本题考查了有理数的乘法、数轴、绝对值、有理数的加法,解决本题的关键是掌握有理数的乘法、数轴、绝对值、有理数的加法.7.若x m y3与9x2y n是同类项,则m+n的值是( )A.5B.6C.4D.3【答案】A【分析】把字母相同,且相同字母的指数也相同的几个项叫做同类项,由同类项的定义可得m与n的值,则可得m+n的值.【详解】由于x m y3与9x2y n是同类项,则m=2,n=3,所以m+n=2+3=5.故选:A.【点睛】本题考查了同类项的概念及求代数式值,关键是掌握同类项的概念.8.下列说法正确的是()A.−3xy25系数是−35,次数是2B.−2π2a3b是六次单项式C.3与π是同类项D.x2+1x−3是二次三项式【答案】C【分析】此题主要考查了同类项、多项式与单项式,正确把握多项式的次数确定方法是解题关键.9.若|x|=5,|y|=2且|x−y|=x−y,则x+y=()A.3或−7B.−7或−3C.7或3D.−3或7【答案】C【分析】首先根据绝对值的性质可得x=±5,y=±2,然后由x>y,求出x和y的值,分别代入x+y 即可求解.【详解】解:∵|x|=5,|y|=2,∴x=±5,y=±2,又∵|x−y|=x−y∴x>y,∴x=5,y=2,或x=5,y=−2,当x=5,y=2时,x+y=5+2=7;当x=5,y=−2时,x+y=5−2=3;∴x+y的值为7或3.故选:C.【点睛】本题主要考查代数式求值、有理数的加法和绝对值的计算,根据题意分情况计算是解题的关键.10.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,根据这个规律,则21+22+23+24+ (22018)末位数字是A.6B.4C.2D.0【答案】A【分析】根据题目中的式子可以知道,末位数字出现的2、4、8、6的顺序出现,从而可以求得21+22 +23+24+...+22018的末位数字,本题得以解决.【详解】∵21=2,22=4,23=8,24=16,25=32,26=64,...,∴2018÷4=504...2,∵(2+4+8+6)×504+2+4=10086,∴21+22+23+24+...+22018末位数字是6,故选A.【点睛】本题考查尾数特征,解答本题的关键是发现题目中的尾数的变化规律,求出相应的式子的末尾数字.二、填空题(本题共6小题,每小题3分,共18分.)11.比较大小:−38−49.(填“>”、“=”或“<”)12.当x=时,式子2x+1与3x−6的值互为相反数.【答案】1【分析】利用相反数的性质列出方程,求出方程的解即可得到x的值.【详解】解:根据题意得:2x+1+3x﹣6=0,移项得:2x+3x=6﹣1,合并同类项得:5x=5,解得:x=1.故答案为:1.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,把未知数系数化为1,熟练掌握解一元一次方程的步骤是解题的关键.13.把5.296精确到百分位的近似数是.【答案】5.30【分析】本题主要考查了求一个数的近似数.精确到百分位只需要对千分位上的数字6进行四舍五入即可.【详解】解:5.296精确到百分位的近似数是5.30,故答案为:5.30.14.单项式−3x2y3的系数是.515.九宫格起源于中国古代的神秘图案河图和洛书.如图,将3,2,1,0,−1,−2,−3,−4,−5填入九宫格内,使每行、每列、每条对角线上三个数的和都相等,则a的值为.16.你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示.这样捏合到第次后可拉出2048根细面条.【答案】11【分析】本题考查了数字类规律探究,有理数的乘方,先探究规律:第n 次捏合可拉出2n 根细面条,然后根据规律列式计算,理解乘方的意义是解题的关键.【详解】解:根据题意有,第一次捏合可拉出21=2根细面条,第二次捏合可拉出22=4根细面条,第三次捏合可拉出23=8根细面条,…,第n 次捏合可拉出2n 根细面条,令:2n =2048,解得:n =11,故答案为:11.三.解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)计算:(1)(−5)+10−2+(−1);(2)−22+[12−(−3)×2]÷2;(3)−112+13÷|−124|;(4)112×57−−×212+−÷125.18.(6分)化简求值:(2x2y−3xy2)−3(x2y−2xy2)+2(x2y−4xy2),其中x=−1,y=2.【答案】xy(x−5y);22【分析】先去括号,合并同类项化简原式,再将x,y代入求值即可.【详解】原式=(2x2y−3xy2)−(3x2y−6xy2)+(2x2y−8xy2)=2x2y−3x y2−3x2y+6x y2+2x2y−8x y2=x2y−5x y2=xy(x−5y)当x=−1,y=2时,原式=(−1)×2×(−1−5×2)=(−1)×2×(−11)=22【点睛】本题主要考查代数式的化简求值,掌握去括号,合并同类项的法则是解题的关键.19.(6分)如图是一个几何体从三个方向看所得到的形状图.(1)写出这个几何体的名称;(2)若从正面看的长为10cm,从上面看到的圆的直径为4cm,求这个几何体的表面积(结果保留π).【答案】(1)圆柱;(2)48πcm2.【分析】(1)根据该几何体的主视图与左视图是矩形,俯视图是圆可以确定该几何体是圆柱;(2)根据告诉的几何体的尺寸确定该几何体的表面积即可;【详解】(1)由三视图判断出该几何体是圆柱.(2)∵从正面看的长为10cm,从上面看的圆的直径为4cm,∴该圆柱的底面半径径为2cm,高为10cm,∴该几何体的侧面积为2πrh=2π×2×10=40πcm2,底面积为:2πr2=8πcm2.∴该几何体的表面积为40π+8π=48πcm2.【点睛】本题考查了由三视图判断几何体及几何体的表面积问题,解题的关键是了解圆柱的表面积的计算方法.20.(8分)小虫从某点O出发在一条直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘来):−5,+8,−14,+5,+6,−9,+10.问:(1)小虫是否回到出发点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励2粒芝麻,则小虫共可得到多少粒芝麻?【答案】(1)小虫没有回到出发点O(2)小虫离开出发点O最远是11厘米(3)小虫共可得到114粒芝麻【分析】本题考查了正负数的意义,有理数的四则运算等知识;(1)向左、向右爬行的距离相加即可作出判断;(2)依次计算出前2个、前3个、前4个、…、前6个、7个数的和,其中最大的数即是小虫离开出发点O最远的距离;(3)所有路程绝对值的和与2的积即可奖励的芝麻数.【详解】(1)解:−5+8+(−14)+5+6+(−9)+10=+1所以小虫没有回到出发点O.(2)解:−5+8=+3,+3+(−14)=−11,−11+5=−6,−6+6=0,0+(−9)=−9,−9+10=+1所以小虫离开出发点O最远是11厘米.(3)解:(|−5|+|+8|+|−14|+|+5|+|+6|+|−9|+|+10|)×2=57×2=114所以小虫共可得到114粒芝麻.21.(10分)阅读材料:我们知道,4x−2x+x=(4−2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)−2(a+b) +(a+b)=(4−2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a−b)2看成一个整体,合并6(a−b)2−2(a−b)2+3(a−b)2=;(2)已知x2−2y=4,求3x2−6y−21的值;(3)拓广探索:已知a−5b=3,5b−3c=−5,3c−d=10,求(a−3c)+(5b−d)−(5b−3c)的值.【答案】(1)7(a−b)2(2)−9(3)8【分析】(1)利用整体的思想进行合并即可;(2)先对3x2−6y−21进行变形,然后整体代入即可;(3)首先根据题意将原式进行变形,然后整体代入即可.【详解】(1)解:6(a−b)2−2(a−b)2+3(a−b)2=(6−2+3)(a−b)2=7(a−b)2;故答案为:7(a−b)2;(2)解:∵x2−2y=4,∴3x2−6y−21=3(x2−2y)−21=12−21=−9;(3)∵a−5b=3,5b−3c=−5,3c−d=10,∴(a−3c)+(5b−d)−(5b−3c)=a−3c+5b−d−5b+3c=(a−5b)+(5b−3c)+(3c−d)=3−5+10=8.【点睛】本题主要考查代数式求值和整式的加减运算,掌握整体代入法是解题的关键.22.(10分)11×2=1−12,12×3=12−13,13×4=13−14,14×5=14−15=⋯,(1)第5个式子是_____;第n个式子是_____;(2)从计算结果中找规律,利用规律计算:11×2+12×3+13×4+14×5+⋯+12023×2024;(3)计算:(由此拓展写出具体过程):11×3+13×5+15×7+⋯+199×101.23.(10分)甲乙两家体育用品店出售同款羽毛球拍和羽毛球.每副羽毛球拍定价80元,每个羽毛球2元.甲商店推出的优惠方案是:买一副球拍赠送5个羽毛球;乙商店的优惠方案是:按总价的九折优惠.某学校想购买20副羽毛球拍和x个羽毛球(其中x≥100).(1)若到甲商店购买,应付多少元?(用含x的代数式表示)(2)若到乙商店购买,应付多少元?(用含x的代数式表示)(3)当x=200时,应选择去哪家商店购买更合算?为什么?【答案】(1)(2x+1400)元(2)(1.8x+1440)元(3)去任意一家商店购买即可,理由见解析【分析】本题考查列代数式,代数式求值:(1)根据甲商店的优惠方法,列出代数式即可;(2)根据乙商店的优惠方案,列出代数式即可;(3)求出x=200时,两家需花费的费用,进行比较即可.【详解】(1)解:20×80+2(x−20×5)=(2x+1400)元;(2)(80×20+2x)×0.9=(1.8x+1440)元(3)去任意一家商店购买即可,理由如下:当x=200时,2x+1400=400+1400=1800元;1.8x+1440=1.8×200+1440=1800元;故选择甲、乙商店购买的费用相同.24.(10分)若点A在数轴上对应的数为a,点B在数轴上对应的数为b,我们把A、B两点之间的距离表示为AB,记AB=|a−b|,且a,b满足|a−1|+(b+2)2=0.(1)a=;b=;线段AB的长=;(2)点C在数轴上对应的数是c,且c与b互为相反数,在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点B以每秒1个单位长度的速度向左运动,同时点A和点C分别以每秒4个单位长度和9个单位长度的速度向右运动,t秒钟后,若点A和点C之间的距离表示为AC,点A和点B之间的距离表示为AB,那么AB−AC的值是否随着时间t的变化而变化?若变化,请说明理由;若不变,请求出AB−AC的值.【答案】(1)1,−2,3;(2)−3或−1;(3)AB−AC的值不随着时间t的变化而变化,值为2.【分析】(1)根据绝对值及平方的非负性,求出a,b的值,从而求出线段AB的长;(2)设P对应的数为y,再由PA+PB=PC,可得出点P对应的数;(3)根据A,B,C的运动情况即可确定AB,AC的变化情况,即可确定AB−AC的值.【详解】(1)∵|a−1|+(b+2)2=0,∴a−1=0,b+2=0,解得:a=1,b=−2,∴线段AB的长为:1−(−2)=3,故答案为:1,−2,3;(2)由(1)得:b=−2,∴c=2,设P对应的数为y,由图知:①P在A右侧时,不可能存在P点;②P在B左侧时,1−y−2−y=2−y,解得: y=−3,③当P在A、B中间时,3=2−y,解得: y=−1,故点P对应的数是−3或−1;(3)AB−AC的值不随着时间t的变化而变化,理由如下:t秒钟后,A点位置为:1+4t,∴B点的位置为: −2−t,C点的位置为: 2+9t,∴AB=1+4t−(−2−t)=5t+3AC=2+9t−(1+4t)=5t+1,∴AB–AC=5t+3−(5t+1)=2,∴AB−AC的值不随着时间t的变化而变化,值为2.【点睛】此题考查了非负数的应用,数轴的应用,数轴上的距离,理解数轴上点的距离是解题的关键.。
A
2013~2014学年赣州市开发区潭口中学高二年级期中考试
数 学 试 卷
(2013-11-4)
(满分:150分 时间: 120分钟)
第Ⅰ卷(选择题 共50分)
一、选择题(本大题共有10个小题,每小题5分,共50分)
1.要了解某市高三学生身高在某一范围的学生所占比例..
的大小,需知道相应样本的( )
A .平均数
B .众数
C .样本数
D .频率分布 2.右图是一组数据的茎叶图,则它们的 平均数、众数为( ) A .25、8 B .24、8 C .25、10 D .24、10
3.水平放置的△ABC ,有一边在水平线上,用斜二测画法作出的直观图是正三角形A ′B ′C ′,则△ABC 是( ).
A .锐角三角形
B .直角三角形
C .钝角三角形
D .任意三角形
4.垂直于同一条直线的两条直线一定( )
A .平行
B .相交
C .异面
D .以上都有可能 5.下列命题:
①在平面外的直线与平面不相交必平行; ②过平面外一点只有一条直线和这个平面平行;
③如果一条直线与另一条直线平行,则它和经过另一条直线的任何平面平行; ④若直线上有两点到平面的距离相等,则直线平行于该平面.
其中正确命题的个数为( ).
A .1
B .2
C .3
D .4
6.如图,某几何体的正视图与侧视图都是边长
为1的正方形,且体积为 1
2,则该几何体的俯视
图可以是( )
7.棱长都是1的三棱锥的表面积为
( )
A
B
.
C .
D .8.如右图所示,正三棱锥V ABC (顶点在底面的射影是底面正 三角形的中心)中,,,D
E
F 分别是 ,,VC VA AC 的中点,P 为VB 上任意一点,则直线DE 与PF 所成的角的大小是( )
A .0
30
B .0
90
C .060
D .随P 点的变化而变化。
9.甲、乙、丙三名射箭运动员在某次测试中各射20次,
S1,S2,S3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( )
A 、S3>S1>S2 B
、S2>S1>S3 C 、S1>S2>S3 D 、S2>S3>S1
10.正方体的内切球和外接球的半径之比为
( )
A
B 2
C .
D
第Ⅱ卷(非选择题 共100分)
二、填空题(本大题共5小题,每小题5分,共25分)
11.240与 70的最大公约数为__________;
12.某校有在校高中生共1600人,其中高一学生520人,高二学生500人,高三学生580人,如抽查其中的80人,则高三学生中应抽查________人.
13.已知总体的各个个体的值由小到大依次为2,3,3.5,7,A,B,12,13.7,18.3,20,且总体的中位数为10.5,若要使该总体的方差最小,则A=_______,B=_______.
14.已知正三棱锥P -ABC 的底面是边长为1的正三角形,其三条侧棱与底面所成
角相等且都等于45°,则这个正三棱锥的体积为________.
15.圆柱形容器内原.有.高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后.,水恰好淹没最上面的球(如图所示),则球的半径是________cm.
1 2 3 0 0 2 8 8 7 8 9
三、解答题(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤)
16、(本小题12分)为了从甲、乙两名同学中选拔一人参加数学竞赛,调阅了这
(1(2)你认为应该选拔哪位同学参加数学竞赛?为什么?
17、(本小题12分)如图,在四棱锥P ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,
AP =AB ,BP =BC =2,E ,F 分别是PB ,PC 的中点. (1)证明:EF ∥平面PAD ; (2)求三棱锥E ABC 的体积V .
18、(本小题12分)为了解农民年收入情况,某乡镇对本镇10000户农民按10%的比例进行了抽样调查,测得户年收入10000~50000元的情况统计图如下:
(1)估计该镇1万元~2万元的农户数. (2)估计该镇农户收入在2~4.5万元之间的频率.
(3)如果规定户年收入达不到2.5万元的比例低于25%时,则需要国家政策扶持,请问该乡镇需不需要国家政策扶持?为什么?
19、如图,已知三棱锥A -BPC 中,AP ⊥PC ,AC ⊥BC ,M 为AB 中点,D 为PB 中
点,且△PMB 为正三角形.
(1)求证:DM ∥平面APC ;
(2)求证:平面ABC ⊥平面
APC ;
20、(本小题13分)某连锁经营公司所属5个零售店某月的销售额和利润额资料
(1(2)判断销售额和利润额是是否相关?若相关,计算利润额y 对销售额x 的线性回归方程;
(3)当销售额为10千万元时,试估计其利润额。
21、(本小题14分)如图所示,在四棱锥P ABCD 中,底面是边长为a 的正方形,侧棱PD =a ,PA =PC =2a ,求证: (1)PD ⊥平面ABCD ; (2)平面PAC ⊥平面PBD ;
(3)∠PCD 为二面角P BC D 的平面角.
2013~2014学年赣州市开发区潭口中学高二年级期中考试
数学答题卷(2013-11-4)
(满分:150分时间: 120分钟)
第Ⅰ卷(选择题共50分)
一、选择题(本大题共有10个小题,每小题5分,共50分。
在每一小题给出的四个选项中,有且仅有一个选项是正确的。
请将你认为正确的选项
第Ⅱ卷(非选择题共100分)
二、填空题(本大题共有5个小题,每小题5分,共25分)
11、; 12、;
13、A= B= ; 14、;
15、。
三、解答题(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤)
16、
17、
18、
Page 3 of 4
Page 4 of 4
21、
19、
20、。