河北省唐山市路北区2013年中考第二次数学模拟试题(扫描版)
- 格式:doc
- 大小:707.00 KB
- 文档页数:14
2013年河北省中考数学试卷参考答案与试题解析一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)(2013•河北)气温由﹣1℃上升2℃后是()A.﹣1℃B.1℃C.2℃D.3℃考点:有理数的加法.分析:根据上升2℃即是比原来的温度高了2℃,就是把原来的温度加上2℃即可.解答:解:∵气温由﹣1℃上升2℃,∴﹣1℃+2℃=1℃.故选B.点评:此题考查了有理数的加法,要先判断正负号的意义:上升为正,下降为负,再根据有理数加法运算法则进行计算.2.(2分)(2013•河北)截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为()A.0.423×107B.4.23×106C.42.3×105D.423×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将4 230 000用科学记数法表示为:4.23×106.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2分)(2013•河北)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形和轴对称图形定义求解即可.解答:解:A、是中心对称图形,不是轴对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误.故选C.点评:此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(2分)(2013•河北)下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2+2x+1=x(x+2)+1 C.(x+1)(x+3)=x2+4x+3 D.x3﹣x=x(x+1)(x﹣1)考点:因式分解的意义.分析:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.解答:解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确;故选D.点评:本题考查了因式分解的意义,解答本题的关键是掌握因式分解后右边是整式积的形式.5.(2分)(2013•河北)若x=1,则|x﹣4|=()A.3B.﹣3 C.5D.﹣5考点:绝对值.分析:把x的值代入,然后根据绝对值的性质解答.解答:解:∵x=1,∴|x﹣4|=|1﹣4|=|﹣3|=3.故选A.点评:本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.(2分)(2013•河北)下列运算中,正确的是()A.=±3 B.=2 C.(﹣2)0=0 D.2﹣1=考点:负整数指数幂;算术平方根;立方根;零指数幂.分析:根据算术平方根的定义,立方根的定义,任何数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数对各选项分析判断后利用排除法求解.解答:解:A、=3,故本选项错误;B、=﹣2,故本选项错误;C、(﹣2)0=1,故本选项错误;D、2﹣1=,故本选项正确.故选D.点评:本题考查了任何不等于零的数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数,算术平方根、立方根的定义,是基础题,熟记概念与性质是解题的关键.7.(3分)(2013•河北)甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是()A.=B.=C.=D.=考点:由实际问题抽象出分式方程.分析:设甲队每天修路xm,则乙队每天修(x﹣10)米,再根据关键语句“甲队修路120m与乙队修路100m所用天数相同”可得方程=.解答:解:设甲队每天修路xm,依题意得:=,故选:A.点评:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.8.(3分)(2013•河北)如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里考点:等腰三角形的判定与性质;方向角;平行线的性质.专题:应用题.分析:根据方向角的定义即可求得∠M=70°,∠N=40°,则在△MNP中利用内角和定理求得∠NPM的度数,证明三角形MNP是等腰三角形,即可求解.解答:解:MN=2×40=80(海里),∵∠M=70°,∠N=40°,∴∠NPM=180°﹣∠M﹣∠N=180°﹣70°﹣40°=70°,∴∠NPM=∠M,∴NP=MN=80(海里).故选D.点评:本题考查了方向角的定义,以及三角形内角和定理,等腰三角形的判定定理,理解方向角的定义是关键.9.(3分)(2013•河北)如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y=()A.2B.3C.6D.x+3考点:整式的加减.专题:图表型.分析:先用抽到牌的点数x乘以2再加上6,然后再除以2,最后减去x,列出式子,再根据整式的加减运算法则进行计算即可.解答:解:根据题意得:(x×2+6)÷2﹣x=x+3﹣x=3;故选B.点评:此题考查了整式的加减,解题的关键是根据题意列出式子,再根据整式加减的运算法则进行计算.10.(3分)(2013•河北)反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.其中正确的是()A.①②B.②③C.③④D.①④考点:反比例函数的性质.分析:根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.解答:解:∵反比例函数的图象位于一三象限,∴m>0故①错误;当反比例函数的图象位于一三象限时,在每一象限内,y随x的增大而减小,故②错误;将A(﹣1,h),B(2,k)代入y=得到h=﹣m,2k=m,∵m>0∴h<k故③正确;将P(x,y)代入y=得到m=xy,将P′(﹣x,﹣y)代入y=得到m=xy,故P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上故④正确,故选C点评:本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键.11.(3分)(2013•河北)如图,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM=2,ME=3,则AN=()A.3B.4C.5D.6考点:菱形的性质;相似三角形的判定与性质.分析:根据菱形的对角线平分一组对角可得∠1=∠2,然后求出△AFN和△AEM相似,再利用相似三角形对应边成比例列出求解即可.解答:解:在菱形ABCD中,∠1=∠2,又∵ME⊥AD,NF⊥AB,∴∠AEM=∠AFN=90°,∴△AFN∽△AEM,∴=,即=,解得AN=4.故选B.点评:本题考查了菱形的对角线平分一组对角的性质,相似三角形的判定与性质,关键在于得到△AFN和△AEM 相似.12.(3分)(2013•河北)已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:甲:1.以点C为圆心,AB长为半径画弧;2.以点A为圆心,BC长为半径画弧;3.两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1).乙:1.连接AC,作线段AC的垂直平分线,交AC于点M;2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对考点:作图—复杂作图;矩形的判定.分析:先由两组对边分别相等的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断甲的作业正确;先由对角线互相平分的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断乙的作业也正确.解答:解:由甲同学的作业可知,CD=AB,AD=BC,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以甲的作业正确;由乙同学的作业可知,CM=AM,MD=MB,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以乙的作业正确;故选A.点评:本题考查了作图﹣复杂作图的应用及矩形的判定,从两位同学的作图语句中获取正确信息及熟练掌握矩形的判定定理是解题的关键.13.(3分)(2013•河北)一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130°D.180°考点:三角形内角和定理.分析:设围成的小三角形为△ABC,分别用∠1、∠2、∠3表示出△ABC的三个内角,再利用三角形的内角和等于180°列式整理即可得解.解答:解:如图,∠BAC=180°﹣90°﹣∠1=90°﹣∠1,∠ABC=180°﹣60°﹣∠3=120°﹣∠3,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,在△ABC中,∠BAC+∠ABC+∠ACB=180°,∴90°﹣∠1+120°﹣∠3+120°﹣∠2=180°,∴∠1+∠2=150°﹣∠3,∵∠3=50°,∴∠1+∠2=150°﹣50°=100°.故选B.点评:本题考查了三角形的内角和定理,用∠1、∠2、∠3表示出△ABC的三个内角是解题的关键,也是本题的难点.14.(3分)(2013•河北)如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=2.则S阴影=()A.πB.2πC.D.π考点:扇形面积的计算;垂径定理;圆周角定理.分析:根据垂径定理求得CE=ED=;然后由圆周角定理知∠AOD=60°,然后通过解直角三角形求得线段AE、OE的长度;最后将相关线段的长度代入S阴影=S扇形OAD﹣S△OED+S△ACE.解答:解:∵CD⊥AB,CD=2∴CE=DE=CD=,在Rt△ACE中,∠C=30°,则AE=CEtan30°=1,在Rt△OED中,∠DOE=2∠C=60°,则OD==2,∴OE=OA﹣AE=OD﹣AE=1,S阴影=S扇形OAD﹣S△OED+S△ACE=﹣×1×﹣×1×=.故选D.点评:本题考查了垂径定理、扇形面积的计算.求得阴影部分的面积时,采用了“分割法”,关键是求出相关线段的长度.15.(3分)(2013•河北)如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图2.则下列说法正确的是()A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远考点:三角形三边关系.专题:压轴题.分析:根据钝角三角形中钝角所对的边最长可得AB>AC,取BC的中点E,求出AB+BE>AC+CE,再根据三角形的任意两边之和大于第三边得到AB<AD,从而判定AD的中点M在BE上.解答:解:∵∠C=100°,∴AB>AC,如图,取BC的中点E,则BE=CE,∴AB+BE>AC+CE,由三角形三边关系,AC+BC>AB,∴AB<AD,∴AD的中点M在BE上,即点M在BC上,且距点B较近,距点C较远.故选C.点评:本题考查了三角形的三边关系,作辅助线把△ABC的周长分成两个部分是解题的关键,本题需要注意判断AB的长度小于AD的一半,这也是容易忽视而导致求解不完整的地方.16.(3分)(2013•河北)如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12动点P 从点A出发,沿折线AD﹣DC ﹣CB以每秒1个单位长的速度运动到点B 停止.设运动时间为t秒,y=S△EPF,则y与t的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.专题:压轴题.分析:分三段考虑,①点P在AD上运动,②点P在DC上运动,③点P在BC上运动,分别求出y与t的函数表达式,继而可得出函数图象.解答:解:在Rt△ADE中,AD==13,在Rt△CFB中,BC==13,①点P在AD上运动:过点P作PM⊥AB于点M,则PM=APsin∠A=t,此时y=EF×PM=t,为一次函数;②点P在DC上运动,y=EF×DE=30;③点P在BC上运动,过点P作PN⊥AB于点N,则PN=BPsin∠B=(AD+CD+BC﹣t)=,则y=EF×PN=,为一次函数.综上可得选项A的图象符合.故选A.点评:本题考查了动点问题的函数图象,解答本题的关键是分段讨论y与t的函数关系式,当然在考试过程中,建议同学们直接判断是一次函数还是二次函数,不需要按部就班的解出解析式.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.(3分)(2013•河北)如图,A是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A与桌面接触的概率是.考点:概率公式.分析:由共有6个面,A与桌面接触的有3个面,直接利用概率公式求解即可求得答案.解答:解:∵共有6个面,A与桌面接触的有3个面,∴A与桌面接触的概率是:=.故答案为:.点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.18.(3分)(2013•河北)若x+y=1,且x≠0,则(x+)÷的值为1.考点:分式的化简求值.分析:先把括号里面的式子进行因式分解,再把除法转化成乘法,再进行约分,然后把x+y的值代入即可.解答:解:(x+)÷=×==x+y,把x+y=1代入上式得:原式=1;故答案为:1.点评:此题考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.19.(3分)(2013•河北)如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=95°.考点:平行线的性质;三角形内角和定理;翻折变换(折叠问题).专题:压轴题.分析:根据两直线平行,同位角相等求出∠BMF,∠BNF,再根据翻折的性质求出∠BMN和∠BNM,然后利用三角形的内角和定理列式计算即可得解.解答:解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°.故答案为:95.点评:本题考查了两直线平行,同位角相等的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.20.(3分)(2013•河北)如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=2.考点:二次函数图象与几何变换.专题:压轴题.分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值.解答:解:∵一段抛物线:y=﹣x(x﹣3)(0≤x≤3),∴图象与x轴交点坐标为:(0,0),(3,0),∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.∴C13的与x轴的交点横坐标为(36,0),(39,0),且图象在x轴上方,∴C13的解析式为:y13=﹣(x﹣36)(x﹣39),当x=37时,y=﹣(37﹣36)×(37﹣39)=2.故答案为:2.点评:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(9分)(2013•河北)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5(1)求(﹣2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.考点:解一元一次不等式;有理数的混合运算;在数轴上表示不等式的解集.专题:新定义.分析:(1)按照定义新运算a⊕b=a(a﹣b)+1,求解即可;(2)先按照定义新运算a⊕b=a(a﹣b)+1,得出3⊕x,再令其小于13,得到一元一次不等式,解不等式求出x的取值范围,即可在数轴上表示.解答:解:(1)∵a⊕b=a(a﹣b)+1,∴(﹣2)⊕3=﹣2(﹣2﹣3)+1=10+1=11;(2)∵3⊕x<13,∴3(3﹣x)+1<13,9﹣3x+1<13,﹣3x<3,x>﹣1.在数轴上表示如下:点评:本题考查了有理数的混合运算及一元一次不等式的解法,属于基础题,理解新定义法则是解题的关键.22.(10分)(2013•河北)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.考点:条形统计图;用样本估计总体;扇形统计图;加权平均数.专题:计算题.分析:(1)条形统计图中D的人数错误,应为20×10%;(2)根据条形统计图及扇形统计图得出众数与中位数即可;(3)①小宇的分析是从第二步开始出现错误的;②求出正确的平均数,乘以260即可得到结果.解答:解:(1)D错误,理由为:20×10%=2≠3;(2)众数为5,中位数为5;(3)①第二步;②==5.3,估计260名学生共植树5.3×260=1378(颗).点评:此题考查了条形统计图,扇形统计图,加权平均数,以及用样本估计总体,弄清题意是解本题的关键.23.(10分)(2013•河北)如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.考点:一次函数综合题.专题:探究型.分析:(1)利用一次函数图象上点的坐标特征,求出一次函数的解析式;(2)分别求出直线l经过点M、点N时的t值,即可得到t的取值范围;(3)找出点M关于直线l在坐标轴上的对称点E、F,如解答图所示.求出点E、F的坐标,然后分别求出ME、MF中点坐标,最后分别求出时间t的值.解答:解:(1)直线y=﹣x+b交y轴于点P(0,b),由题意,得b>0,t≥0,b=1+t.当t=3时,b=4,故y=﹣x+4.(2)当直线y=﹣x+b过点M(3,2)时,2=﹣3+b,解得:b=5,5=1+t,解得t=4.当直线y=﹣x+b过点N(4,4)时,4=﹣4+b,解得:b=8,8=1+t,解得t=7.故若点M,N位于l的异侧,t的取值范围是:4<t<7.(3)如右图,过点M作MF⊥直线l,交y轴于点F,交x轴于点E,则点E、F为点M在坐标轴上的对称点.过点M作MD⊥x轴于点D,则OD=3,MD=2.已知∠MED=∠OEF=45°,则△MDE与△OEF均为等腰直角三角形,∴DE=MD=2,OE=OF=1,∴E(1,0),F(0,﹣1).∵M(3,2),F(0,﹣1),∴线段MF中点坐标为(,).直线y=﹣x+b过点(,),则=﹣+b,解得:b=2,2=1+t,解得t=1.∵M(3,2),E(1,0),∴线段ME中点坐标为(2,1).直线y=﹣x+b过点(2,1),则1=﹣2+b,解得:b=3,3=1+t,解得t=2.故点M关于l的对称点,当t=1时,落在y轴上,当t=2时,落在x轴上.点评:本题是动线型问题,考查了坐标平面内一次函数的图象与性质.难点在于第(3)问,首先注意在x轴、y 轴上均有点M的对称点,不要漏解;其次注意点E、F坐标以及线段中点坐标的求法.24.(11分)(2013•河北)如图,△OAB中,OA=OB=10,∠AOB=80°,以点O为圆心,6为半径的优弧分别交OA,OB于点M,N.(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转80°得OP′.求证:AP=BP′;(2)点T在左半弧上,若AT与弧相切,求点T到OA的距离;(3)设点Q在优弧上,当△AOQ的面积最大时,直接写出∠BOQ的度数.考点:圆的综合题.分析:(1)首先根据已知得出∠AOP=∠BOP′,进而得出△AOP≌△BOP′,即可得出答案;(2)利用切线的性质得出∠ATO=90°,再利用勾股定理求出AT的长,进而得出TH的长即可得出答案;(3)当OQ⊥OA时,△AOQ面积最大,且左右两半弧上各存在一点分别求出即可.解答:(1)证明:如图1,∵∠AOP=∠AOB+∠BOP=80°+∠BOP,∠BOP′=∠POP′+∠BOP=80°+∠BOP,∴∠AOP=∠BOP′,∵在△AOP和△BOP′中∴△AOP≌△BOP′(SAS),∴AP=BP′;(2)解:如图1,连接OT,过点T作TH⊥OA于点H,∵AT与相切,∴∠A TO=90°,∴A T===8,∵×OA×TH=×AT×OT,即×10×TH=×8×6,解得:TH=,即点T到OA的距离为;(3)解:如图2,当OQ⊥OA时,△AOQ的面积最大;理由:∵OQ⊥OA,∴QO是△AOQ中最长的高,则△AOQ的面积最大,∴∠BOQ=∠AOQ+∠AOB=90°+80°=170°,当Q点在优弧右侧上,∵OQ⊥OA,∴QO是△AOQ中最长的高,则△AOQ的面积最大,∴∠BOQ=∠AOQ﹣∠AOB=90°﹣80°=10°,综上所述:当∠BOQ的度数为10°或170°时,△AOQ的面积最大.点评:此题主要考查了圆的综合应用以及切线的判定与性质以及全等三角形的判定与性质等知识,根据数形结合进行分类讨论得出是解题关键.25.(12分)(2013•河北)某公司在固定线路上运输,拟用运营指数Q量化考核司机的工作业绩.Q=W+100,而W 的大小与运输次数n及平均速度x(km/h)有关(不考虑其他因素),W由两部分的和组成:一部分与x的平方成正比,另一部分与x的n倍成正比.试行中得到了表中的数据.次数n 2 1速度x 40 60指数Q 420 100(1)用含x和n的式子表示Q;(2)当x=70,Q=450时,求n的值;(3)若n=3,要使Q最大,确定x的值;(4)设n=2,x=40,能否在n增加m%(m>0)同时x减少m%的情况下,而Q的值仍为420?若能,求出m的值;若不能,请说明理由.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,)考点:二次函数的应用.专题:压轴题.分析:(1)根据题目所给的信息,设W=k1x2+k2nx,然后根据Q=W+100,列出用Q的解析式;(2)将x=70,Q=450,代入求n的值即可;(3)把n=3代入,确定函数关系式,然后求Q最大值时x的值即可;(4)根据题意列出关系式,求出当Q=420时m的值即可.解答:解:(1)设W=k1x2+k2nx,则Q=k1x2+k2nx+100,由表中数据,得,解得:,∴Q=﹣x2+6nx+100;(2)将x=70,Q=450代入Q得,450=﹣702+6×70n+100,解得:n=2;(3)当n=3时,Q=﹣x2+18x+100=﹣(x﹣90)2+910,∵﹣<0,∴函数图象开口向下,有最大值,则当x=90时,Q有最大值,即要使Q最大,x=90;(4)由题意得,420=﹣[40(1﹣m%)]2+6×2(1+m%)×40(1﹣m%)+100,即2(m%)2﹣m%=0,解得:m%=或m%=0(舍去),∴m=50.点评:本题考查了二次函数的应用,难度较大,解答本题的关键是根据题目中所给的信息,读懂题意列出函数关系式,要求同学们掌握求二次函数最值的方法,此题较麻烦,考查学生利用数学知识解决实际问题的能力.26.(14分)(2013•河北)一透明的敞口正方体容器ABCD﹣A′B′C′D′装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE=α,如图1所示).探究如图1,液面刚好过棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.解决问题:(1)CQ与BE的位置关系是CQ∥BE,BQ的长是3dm;(2)求液体的体积;(参考算法:直棱柱体积V液=底面积S△BCQ×高AB)(3)求α的度数.(注:sin49°=cos41°=,tan37°=)拓展:在图1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图3或图4是其正面示意图.若液面与棱C′C或CB交于点P,设PC=x,BQ=y.分别就图3和图4求y与x的函数关系式,并写出相应的α的范围.延伸:在图4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图5,隔板高NM=1dm,BM=CM,NM⊥BC.继续向右缓慢旋转,当α=60°时,通过计算,判断溢出容器的液体能否达到4dm3.考点:四边形综合题;解直角三角形的应用.专题:压轴题.分析:(1)根据水面与水平面平行可以得到CQ与BE平行,利用勾股定理即可求得BQ的长;(2)液体正好是一个以△BCQ是底面的直棱柱,据此即可求得液体的体积;(3)根据液体体积不变,据此即可列方程求解;延伸:当α=60°时,如图6所示,设FN∥EB,GB′∥EB,过点G作GH⊥BB′于点H,此时容器内液体形成两层液面,液体的形状分别是以Rt△NFM和直角梯形MBB′G为底面的直棱柱,求得棱柱的体积,即可求得溢出的水的体积,据此即可作出判断.解答:解:(1)CQ∥BE,BQ==3;(2)V液=×3×4×4=24(dm3);(3)在Rt△BCQ中,tan∠BCQ=,∴α=∠BCQ=37°.当容器向左旋转时,如图3,0°≤α≤37°,∵液体体积不变,∴(x+y)×4×4=24,∴y=﹣x+3.当容器向右旋转时,如图4.同理可得:y=;当液面恰好到达容器口沿,即点Q与点B′重合时,如图5,由BB′=4,且PB•BB′×4=24,得PB=3,∴由tan∠PB′B=,得∠PB′B=37°.∴α=∠B′PB=53°.此时37°≤α≤53°;延伸:当α=60°时,如图6所示,设FN∥EB,GB′∥EB,过点G作GH⊥BB′于点H.在Rt△B′GH中,GH=MB=2,∠GB′B=30°,∴HB′=2.∴MG=BH=4﹣2<MN.此时容器内液体形成两层液面,液体的形状分别是以Rt△NFM和直角梯形MBB′G为底面的直棱柱.∵S△NFM+S MBB′G=××1+(4﹣2+4)×2=8﹣.∴V溢出=24﹣4(8﹣)=﹣8>4(dm3).∴溢出液体可以达到4dm3.点评:本题考查了四边形的体积计算以及三视图的认识,正确理解棱柱的体积的计算是关键.参与本试卷答题和审题的老师有:sd2011;zhjh;caicl;lantin;星期八;HJJ;sks;gbl210;HLing;未来;sjzx;zcx(排名不分先后)菁优网2014年1月9日。
河北唐山市2013届高三第二次模拟考试数学(文)试题说明: 一、本试卷分为第Ⅰ卷和第Ⅱ卷。
第Ⅰ卷为选择题;第Ⅱ卷为非选择题,分为必考和选考两部分。
二、答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题。
三、做选择题时,每小题选出答案后,用铅笔把答题卡上对应题目的标号涂黑。
如需改动,用橡皮将选涂答案擦干净后,再选涂其他答案。
四、考试结束后,本试卷与原答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,有且只有一项符合题目要求。
1.复数z 满足()+=+1243i z i ,则复数z =A .i -+2B .i --2C .i +2D . i -22.双曲线x y -=22154的顶点和焦点到其渐近线距离的比是A B .53C D .353.,a b 是两个向量,||=1a ,||=2b ,且()+⊥a b a ,则a 与b 的夹角为A .︒30B .︒120C .︒60D .︒1504.在等差数列{}n a 中,+=4622a a ,则数列{}n a 的前9项和等于 A .3 B .9C .6D .125.执行如图所示的程序框图,则输出的c 的值是 A .8 B .21C .13D .346.已知,l m 是直线,α是平面,且m a ⊂,则“l m ⊥”是“l α⊥”的 A .必要不充条件 B .充分不必要条件C .充要条件D .既不充分也不必要条件7.已知x ,y 满足约束条件0,50,0,y x y x y ≤⎧⎪++≥⎨⎪-≤⎩则24z x y =+的最小值是A .-20B .-10C .-15D .08.已知函数y kx a =+的图象如右图所示,则函数x k y a +=的可能图象是9.若命题“x ∃∈0R ,使得++-<200240x mx m ”为假命题,则实数m 的取值范围是A .(,)-∞-2B .(,)+∞2C .(],-∞2D .[),+∞210.已知函数()sin()f x x α=+2在x π=12时有极大值,且()f x β-为奇函数,则,αβ的一组可能值依次为 A .,ππ-612B .,ππ612C .,ππ-36 D .,ππ3611.函数()sin f x x π=2A .16B .14C .12D .1012.一个由八个面围成的几何体的三视图如图所示,它的表面积为 A .12 B .8C.D.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上。
中考数学二模试卷姓名:得分:日期:一、选择题(本大题共 16 小题,共 42 分)1、(3分) 若代数式2有意义,则实数x的取值范围是()x−3A.x=0B.x=3C.x≠0D.x≠32、(3分) 计算3.8×107-3.7×107,结果用科学记数法表示为()A.0.1×107B.0.1×106C.1×107D.1×1063、(3分) 在⊙O中,已知半径为5,弦AB的长为8,则圆心O到AB的距离为()A.3B.4C.5D.64、(3分) 一元一次不等式x+1<2的解集在数轴上表示为()A. B. C. D.5、(3分) 如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为()A.40°B.35°C.50°D.45°6、(3分) 如图所示是测量一物体体积的过程:步骤一,将180ml的水装进一个容量为300ml的杯子中.步骤二,将三个相同的玻璃球放入水中,结果水没有满.步骤三,同样的玻璃球再加一个放入水中,结果水满溢出.根据以上过程,推测一颗玻璃球的体积在下列哪一范围内(1mL=1cm3)()A.10cm3以上,20cm3以下B.20cm3以上,30cm3以下C.30cm3以上,40cm3以下D.40cm3以上,50cm3以下7、(3分) 若阿光以四种不同的方式连接正六边形ABCDEF的两条对角线,连接后的情形如下列选项中的图形所示,则下列哪一个图形不是轴对称图形()A. B. C. D.8、(3分) 已知点A与点B关于原点对称,A的坐标是(2,-3),那么经过点B的反比例函数的解析式是()A.y=-2x B.y=-3xC.y=-6xD.y=-32x9、(3分) 用配方法解一元二次方程x2+4x-5=0,此方程可变形为()A.(x+2)2=9B.(x-2)2=9C.(x+2)2=1D.(x-2)2=110、(3分) 图中的手机截屏内容是某同学完成的作业,他做对的题数是()A.2个B.3个C.4个D.5个11、(2分) 如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设∠CAB=α,那么拉线BC的长度为()A.ℎsinαB.ℎcosαC.ℎtanαD.ℎcotα12、(2分) 在一个不透明的盒子中装有3个红球、2个黄球和1个绿球,这些球除了颜色外无其他差别.从中随机摸出一个小球,恰好是黄球的概率为()A.1 6B.12C.13D.2313、(2分) 图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④14、(2分) 如图,在△ABC中,AD平分∠BAC,按如下步骤作图:AD的长为半径在AD两侧作弧,交于两点M、N;第一步,分别以点A、D为圆心,以大于12第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则CF的长是()A.2B.4C.6D.815、(2分) 已知坐标平面上有两个二次函数y=a(x+1)(x-7),y=b(x+1)(x-15)的图形,其中a、b为整数.判断将二次函数y=b(x+1)(x-15)的图形依下列哪一种方式平移后,会使得此两图形的对称轴重叠()A.向左平移4单位B.向右平移4单位C.向左平移8单位D.向右平移8单位16、(2分) 如图,O为锐角三角形ABC的外心,四边形OCDE为正方形,其中E点在△ABC的外部,判断下列叙述何者正确()A.O是△AEB的外心,O是△AED的外心B.O是△AEB的外心,O不是△AED的外心C.O不是△AEB的外心,O是△AED的外心D.O不是△AEB的外心,O不是△AED的外心二、填空题(本大题共 3 小题,共 12 分)17、(3分) 分式方程3x=1的解是x=______.x+218、(3分) 如图所示,正五边形ABCDE的边长为1,⊙B过五边形的顶点A、C,则劣弧AC的长为______.19、(6分) 将一个直角三角形纸片ABO,放置在平面直角坐标中,点A(√3,0),点B(0,1),点O(0,0),过边OA上的动点M(点M不与点O,A重合)作MN⊥AB于N,沿着MN折叠该纸片,得顶点A的对应点A'.设OM=m,折叠后的△A'MN与四边形OMNB重叠部分的面积为S.(1)如图,当点A'与顶点B重合时,点M的坐标为______.时,点M的坐标为______.(2)当S=√324三、计算题(本大题共 1 小题,共 8 分)20、(8分) 有三个有理数x、y、z,其中x=2(n为正整数)且x与y互为相反数,y与z(−1)−1互为倒数.(1)当n为奇数时,求出x、y、z这三个数,并计算xy-y n-(y-2z)2015的值.(2)当n为偶数时,你能求出x、y、z这三个数吗?为什么?四、解答题(本大题共 6 小题,共 58 分)21、(9分) 阅读与证明:请阅读以下材料,并完成相应的任务.传说古希腊毕达哥拉斯(约公元570年-约公元前500年)学派的数学家经常在沙滩上研究数学问题.他们在沙滩上画点或用小石子来表示数,比如,他们研究过1、3、6,10…由于这些数可以用图中所示的三角形点阵表示,他们就将其称为三角形数,第n个三角形数可以用n(n+1)2(n≥1)表示.任务:请根据以上材料,证明以下结论:(1)任意一个三角形数乘8再加1是一个完全平方数;(2)连续两个三角形数的和是一个完全平方数.22、(9分) 为了迎接体育中考,初三7班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格,成绩达到9分以上(包括9分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如下(1)请补充完成下面的成绩统计分析表:(2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩要好于男生,请给出两条支持女生观点的理由;(3)体育老师说,咱班的合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是:全班优秀率达到50%.如果女生新增优秀人数恰好是男生新增优秀人数的两倍,那么男、女生分别新增多少优秀人数才能达到老师的目标?23、(9分) 在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.24、(10分) 已知函数y=-x+4的图象与函数y=k的图象在同一坐标系内.函数y=-x+4的图象x如图1与坐标轴交于A、B两点,点M(2,m)是直线AB上一点,点N与点M关于y轴对称,线段MN交y轴于点C.(1)m=______,S△AOB=______;的图象分成两部分,并且这两部分长度的比为1:3,求(2)如果线段MN被反比例函数y=kxk的值;(3)如图2,若反比例函数y=k图象经过点N,此时反比例函数上存在两个点E(x1,y1)、Fx(x2,y2)关于原点对称且到直线MN的距离之比为1:3,若x1<x2请直接写出这两点的坐标.25、(10分) 某企业生产并销售某种产品,假设销售量与产量相等,图中的线段AB表示该产品每千克生产成本y1(单位:元)与产量x(单位:kg)之间的函数关系;线段CD表示该产品销售价y2(单位:元)与产量x(单位:kg)之间的函数关系,已知0<x≤120,m>60.(1)求线段AB所表示的y1与x之间的函数表达式;(2)若m=95,该产品产量为多少时,获得的利润最大?最大利润是多少?(3)若60<m<70,该产品产量为多少时,获得的利润最大?26、(11分) 如图,在矩形ABCD中,AD=acm,AB=bcm(a>b>4),半径为2cm的⊙O在矩形内且与AB、AD均相切.现动点P从A点出发,在矩形边上沿着A→B→C→D的方向匀速移动,当点P到达D点时停止移动;⊙O在矩形内部沿AD向右匀速平移,移动到与CD相切时立即沿原路按原速返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动.已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置)(1)如图①,点P从A→B→C→D,全程共移动了______cm(用含a、b的代数式表示);(2)如图①,已知点P从A点出发,移动2s到达B点,继续移动3s,到达BC的中点,若点P与⊙O的移动速度相等,求在这5s时间内圆心O移动的距离;(3)如图②,已知a=20,b=10.是否存在如下情形:当⊙O到达⊙O1的位置时(此时圆心O1在矩形对角线BD上),DP与⊙O1恰好相切?如存在,直接写出点P的移动速度V1与⊙O 移动速度V2的比值(即V1的值);如不存在,请简要说明理由.V22019年河北省唐山市路北区中考数学二模试卷【第 1 题】【答案】D【解析】解:由题意得,x-3≠0,解得,x≠3,故选:D.根据分式有意义的条件列出不等式解不等式即可.本题考查的是分式有意义的条件,掌握分式有意义的条件是分母不等于零是解题的关键.【第 2 题】【答案】D【解析】解:3.8×107-3.7×107=(3.8-3.7)×107=0.1×107=1×106.故选:D.直接根据乘法分配律即可求解.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.注意灵活运用运算定律简便计算.【第 3 题】【答案】A【解析】解:作OC⊥AB 于C ,连结OA ,如图,∵OC⊥AB , ∴AC=BC=12AB=12×8=4,在Rt△AOC 中,OA=5,∴OC=√OA 2−AC 2=√52−42=3,即圆心O 到AB 的距离为3.故选:A . 作OC⊥AB 于C ,连接OA ,根据垂径定理得到AC=BC=12AB=4,然后在Rt△AOC 中利用勾股定理计算OC 即可.本题考查了垂径定理:垂直弦的直径平分这条弦,并且平分弦所对的两条弧.关键是根据勾股定理解答.【 第 4 题 】【 答 案 】B【 解析 】解:不等式x+1<2,解得:x <1,如图所示:故选:B .求出不等式的解集,表示出数轴上即可.此题考查了在数轴上表示不等式的解集,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.【 第 5 题 】【 答 案 】A【 解析 】解:∵AD 平分∠BAC ,∠BAD=70°,∴∠BAC=2∠BAD=140°,∵AB∥CD ,∴∠ACD=180°-∠BAC=40°,故选:A .根据角平分线定义求出∠BAC ,根据平行线性质得出∠ACD+∠BAC=180°,代入求出即可. 本题考查了角平分线定义和平行线的性质的应用,关键是求出∠BAC 的度数,再结合∠ACD+∠BAC=180°.【 第 6 题 】【 答 案 】C【 解析 】解:设一颗玻璃球的体积为x cm 3,则由题意可知,300ml 的被子,被导入180ml 的水后,还留下120ml 的空间,当加入3颗玻璃球时,水没有满,有3x <120,当加入4颗玻璃球时,水满溢出,有4x >120,即{3x <1204x >120,解得30<x <40 因此,一颗玻璃球的体积在30cm 3以上,40cm 3以下故选:C .先求出剩余容量,然后根据水没满和水满溢出,列出相应的不等式,联立成不等式组求解,就可知道球的体积范围.特别需要注意的是对水没满与水满溢出两种状态的理解.【 第 7 题 】【 答 案 】D【 解析 】解:A 、是轴对称图形,故此选项错误;B 、是轴对称图形,故此选项错误;C 、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;故选:D.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.【第 8 题】【答案】C【解析】解:点A(2,-3),∴点A关于原点对称的点B的坐标(-2,3),∵反比例函数y=k经过B点,x∴k=-2×3=-6,∴反比例函数的解析式是y=-6.x故选:C.先根据中心对称的点的横坐标互为相反数,纵坐标互为相反数,求得B为(-2,3),然后把(-2,3)代入函数y=k中可先求出k的值,那么就可求出函数解析式.x本题考查了关于原点的对称的点的坐标和待定系数法求反比例函数的解析式,熟练掌握待定系数法是解题的关键.【第 9 题】【答案】A【解析】解:x2+4x-5=0,x2+4x=5,x2+4x+22=5+22,(x+2)2=9,故选:A.移项后配方,再根据完全平方公式求出即可.本题考查了解一元二次方程的应用,关键是能正确配方.【第 10 题】【答案】A【解析】解:(1)-3的绝对值是3,正确,故原题解答错误;(2)(a2)3=a6,错误,故原题解答错误;(3)a的相反数是:-a,错误,故原题解答正确;(4)√2的倒数是√22,错误,故原题解答错误;(5)cos45°=√22,错误,故原题解答正确;故选:A.直接利用幂的乘方运算法则以及相反数的定义以及绝对值的性质、倒数的定义分别分析得出答案.此题主要考查了幂的乘方运算以及相反数的定义以及绝对值的性质、倒数的定义,正确把握相关定义是解题关键.【第 11 题】【答案】B【解析】解:∵∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,∴∠CAD=∠BCD,在Rt△BCD中,∵cos∠BCD=CDBC,∴BC=CDcos∠BCD =ℎcosα,故选:B.根据同角的余角相等得∠CAD=∠BCD,由os∠BCD=CDBC,即可求出BC的长度.本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.【第 12 题】【 解析 】解:从中随机摸出一个小球,恰好是黄球的概率=23+2+1=13.故选:C .直接根据概率公式求解.本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.【 第 13 题 】【 答 案 】A【 解析 】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,故选:A . 由平面图形的折叠及正方体的表面展开图的特点解题.本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.【 第 14 题 】【 答 案 】A【 解析 】解:由作法得EF 垂直平分AD ,∴EA=ED ,FA=FD ,EF⊥AD ,∵AD 平分∠BAC ,∴△AEF 为等腰三角形,∴AE=AF ,∴AE=DE=DF=AF ,∴四边形AEDF 为菱形,∴DF∥AE ,∴CF AF =CD BD ,即CF 4=36,∴CF=2.由作法得EF垂直平分AD,根据垂直平分线的性质得到EA=ED,FA=FD,EF⊥AD,再证明四边形AEDF为菱形得到DF∥AE,然后根据平行线分线段成比例定理可计算出CF.本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).【第 15 题】【答案】A【解析】解:∵y=a(x+1)(x-7)=ax2-6ax-7a,y=b(x+1)(x-15)=bx2-14bx-15b,∴二次函数y=a(x+1)(x-7)的对称轴为直线x=3,二次函数y=b(x+1)(x-15)的对称轴为直线x=7,∵3-7=-4,∴将二次函数y=b(x+1)(x-15)的图形向左平移4个单位,两图形的对称轴重叠.故选:A.将二次函数解析式展开,结合二次函数的性质找出两二次函数的对称轴,二者做差后即可得出平移方向及距离.本题考查了二次函数图象与几何变换以及二次函数的性质,根据二次函数的性质找出两个二次函数的对称轴是解题的关键.【第 16 题】【答案】B【解析】解:如图,连接OA、OB、OD.∵O是△ABC的外心,∴OA=OB=OC,∵四边形OCDE是正方形,∴O 是△ABE 的外心,∵OA=OE≠OD ,∴O 不是△AED 的外心,故选:B .根据三角形的外心的性质,可以证明O 是△ABE 的外心,不是△AED 的外心.本题考查三角形的外心的性质.正方形的性质等知识,解本题的关键是灵活运用所学知识解决问题,属于中考常考题型.【 第 17 题 】【 答 案 】1【 解析 】解:3x x+2=1,去分母,得3x=x+2.整理得2x=2,解方程得x=1.经检验x=1是原分式方程的解.故原分式方程的解是x=1.故答案为:1.先确定分式方程的最简公分母为(x+2),两边同乘最简公分母将分式方程转化为整式方程求解. 本题主要考查的是分式方程的解法,解分式方程要注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.【 第 18 题 】【 答 案 】35π【 解析 】解:∵五边形ABCDE 是正五边形,∴∠B=15(5-2)×180°=108°,∴劣弧AC 的长=108π×1180=35π; 故答案为:35π.由正五边形的性质好内角和定理得出∠B=108°,然后由弧长公式即可得出结果.本题考查了正五边形的性质、多边形内角和定理、弧长公式;熟练掌握正五边形的性质,由内角和定理求出∠B 的度数是解决问题的关键.【 第 19 题 】【 答 案 】(√33,0) (2√33,0) 【 解析 】解:(1)当点A'与顶点B 重合时,∴N 是AB 的中点,∵点A (√3,0),点B (O ,1),∴AB=2,∴AN=1,∵∠OAB=30°,∴AM=2√33, ∴M (√33,0);(2)在Rt△ABO 中,tan∠OAB=OB OA =√3=√33, ∴∠OAB=30°,由MN⊥AB ,可得:∠MNA=90°,∴在Rt△AMN 中,MN=AM•sin∠OAB=12(√3-m ), AN=AN•cos∠OAB=√32(√3-m ), ∴S △AMN =12MN•AN=√38(√3-m )2,由折叠可知△A'MN≌△AMN ,则∠A'=∠OAB=30°,∴∠A'MO=∠A'+∠OAB=60°,∴在Rt△COM 中,可得CO=OM•tan∠A'MO=√3m ,∴S△COM=12OM•CO=√32m 2,∵S△ABO=12OA•OB=√32,∴S=S △ABO -S △AMN -S △COM =√32-√38(√3-m )2-√3m 2, 即S=-5√38m 2+34m+√38(0<m <√33); ①当点A′落在第二象限时,把S 的值代入(2)中的函数关系式中,解方程求得m ,根据m 的取值范围判断取舍,两个根都舍去了;②当点A′落在第一象限时,则S=SRt△AMN ,根据(2)中Rt△AMN 的面积列方程求解,根据此时m 的取值范围,把S=√324代入,则点M 的坐标为(2√33,0). 故答案为:(√33,0);(2√33,0).(1)根据折叠的性质得出AN=BN ,再由含30度角的直角三角形的性质进行解答即可;(2)根据勾股定理和三角形的面积得出△AMN ,△COM 和△ABO 的面积,进而表示出S 的代数式即可;再把S=√324代入解答即可.此题考查了一次函数的综合问题,关键是利用勾股定理、三角形的面积,三角函数的运用进行分析.【 第 20 题 】【 答 案 】解:(1)当n 为奇数时,x=-1,y=1,z=1,则原式=-1-1+1=-1;(2)当n 为偶数时,不能求出x ,y ,z 的值,理由为:分明为0,无意义.【 解析 】(1)由n 为奇数,利用乘方的意义确定出x 的值,进而求出y 与z 的值,代入原式计算即可得到结果;(2)由n 为偶数,利用乘方的意义确定出x 无意义,不能求出y 与z 的值.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.【 第 21 题 】【 答 案 】证明:(1)∵第n 个三角形数为n(n+1)2个, ∴(n(n+1)2×8+1=4n+4n+1=(2n+1)2即任意一个三角形数乘8再加1是一个完全平方数.(2)∵第n-1个三角形数为(n−1)(n−1+1)2个,第n 个三角形数为n(n+1)2个, ∴(n−1)(n−1+1)+n(n+1)=1(n2-n+n2+n)2=n2,即连续两个三角形数的和是一个完全平方数.【解析】8再加1,再利用完全平方公式整理得出答案即可;(1)第n个三角形数n(n+1)2(2)分别用n表示出第n-1,n个三角形数,进一步相加整理得出答案即可.此题考查完全平方数,用字母表示出第n个三角形数,利用完全平方公式因式分解是解决问题的关键.【第 22 题】【答案】(1)由条形统计图可知,男生一共2+6+8+4+4=24人,其中位数是第12、第13个数的平均数,第12、13两数均为7,故男生中位数是7;=7(分),女生成绩平均分为:5×4+6×2+7×10+8×6+9×224=7(分);其中位数是:7+72补充完成的成绩统计分析表如下:(2)从平均数上看,女生平均分高于男生;从方差上看,女生的方差低于男生,波动性小;(3)设男生新增优秀人数为x人,则:2+4+x++2x=48×50%,解得:x=6,故6×2=12(人).答:男生新增优秀人数为6人,女生新增优秀人数为12人.【解析】解:(1)本题需先根据中位数的定义,再结合统计图得出它们的平均分和中位数即可求出答案;(2)本题需先根据以上表格,再结合女生的平均分和方差两方面说出支持女生的观点;(3)根据之前男、女生优秀人数+新增男、女生优秀人数=总人数×50%,列方程求解可得.本题考查的是条形统计图的综合运用.熟练进行平均数和中位数的计算是基础,读懂统计图,从统计图中得到必要的信息是解决问题的关键.【 第 23 题 】【 答 案 】(1)证明:∵AF∥BC ,∴∠AFE=∠DBE ,∵E 是AD 的中点,∴AE=DE ,在△AFE 和△DBE 中,{∠AFE =∠DBE ∠FEA =∠BED AE =DE∴△AFE≌△DBE (AAS );(2)证明:由(1)知,△AFE≌△DBE ,则AF=DB .∵AD 为BC 边上的中线∴DB=DC ,∴AF=CD .∵AF∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC=90°,D 是BC 的中点,E 是AD 的中点,∴AD=DC=12BC ,∴四边形ADCF 是菱形;(3)连接DF ,∵AF∥BD ,AF=BD ,∴四边形ABDF 是平行四边形,∴DF=AB=5,∵四边形ADCF 是菱形,∴S 菱形ADCF =12AC ▪DF=12×4×5=10. 【 解析 】(1)利用平行线的性质及中点的定义,可利用AAS 证得结论;(2)由(1)可得AF=BD ,结合条件可求得AF=DC ,则可证明四边形ADCF 为平行四边形,再利用直角三角形的性质可证得AD=CD ,可证得四边形ADCF 为菱形;(3)连接DF ,可证得四边形ABDF 为平行四边形,则可求得DF 的长,利用菱形的面积公式可求得答案.本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD 是解题的关键,注意菱形面积公式的应用.【 第 24 题 】【 答 案 】(1)∵M (2,m )在直线y=-x+4的图象上,∴m=-2+4=2,函数y=-x+4的图象与坐标轴交于A 、B 两点,∴A (4,0),B (0,4),∴OA=4,OB=4,∴S △AOB =12OA×OB=12×4×4=8.故答案为2,8.(2)∵m=2,∴M (2,2),∵点N 与点M 关于y 轴对称,∴N (-2,2),∴MN=4,∵线段MN 被反比例函数y =k x 的图象分成两部分,并且这两部分长度的比为1:3,且交点为D , ①当ND DM =13时,即:ND MN =14,∴ND=1,∴D (-1,2),∴k=-1×2=-2,②当ND DM =31时,即:MN DM =41,∴DM=14MN=14×4=1, ∴D (1,2),∴k=1×2=2.故k 的值为-2或2.(3)反比例函数y =k x 图象经过点N ,且N (-2,2),∴k=-2×2=-4,∵反比例函数上存在两个点E (x 1,y 1)、F (x 2,y 2),∴x 1y 1=-4x 2,y 2=-4,∵点E(x1,y1)、F(x2,y2)关于原点对称,∴x2=-x1,y2=-y1,∵M(2,2),N(-2,2),∴点E到直线MN的距离为|y1-2|,点F到直线MN的距离为|y1+2|,∵点E(x1,y1)、F(x2,y2)到直线MN的距离之比为1:3,∴点E(x1,y1)、F(-x1,-y1)到直线MN的距离之比为1:3,①当|y1−2||y1+2|=13时,即:3|y1-2|=|y1+2|当y1>2时,3y1-6=y1+2,∴y1=4,∴y2=-4,x1=-1,x2=1当-2<y1≤2时,-3y1+6=y1+2,∴y1=1,∴y2=-1,x1=-4,x2=4当y1<-2时,-3y1+6=-y1+2,∴y1=2(舍),②当|y1−2||y1+2|=31时,即:3|y1+2|=|y1-2|,当y1>2时,3y1+6=y1-2,∴y1=-4(舍),当-2<y1≤2时,3y1+6=-y1+2,∴y1=-1,∴y2=1,x1=4,x2=-4(∵x1<x2,舍),当y1<-2时,-3y1-6=-y1+2,∴y1=-4,∴y2=4,x1=1,x2=-1(∵x1<x2,舍),∴E(-1,4),F(1,-4)或E(-4,1),F(4,-1)【解析】解:(1)利用点在函数图象上的特点求出m,以及平面直角坐标系中三角形的面积的计算方法(利用坐标轴或平行于坐标轴的直线上的边作为底).(2)利用点的对称点的坐标特点求出N点的坐标,线段MN被反比例函数y=kx的图象分成两部分,并且这两部分长度的比为1:3,且交点为D,分两种情况NDDM =13或NDDM=31计算即可.(3)利用点到平行于坐标轴的直线的距离的计算方法以及和(2)类似的方法分两种情况处理,取绝对值时,也要分情况计算.本题是反比例函数的一道综合题,主要考查了点在函数图象上的特点,如求出m,坐标系中计算三角形面积的方法,利用坐标求两点之间的距离和点到直线的距离,如计算ND,MD,点E,F到直线MN的距离,本题的关键是确定确定两点的距离和点到直线的距离的确定,又用到了分几种情况计算,易丢掉其中一种情况.【 第 25 题 】【 答 案 】解:(1)设线段AB 所表示的y 1与x 之间的函数关系式为y 1=k 1x+b 1,根据题意,得:{b1=60120k 1+b 1=40,解得:{k 1=−16b 1=60,∴y 1与x 之间的函数关系式为y 1=-16x+60(0<x≤120);(2)若m=95,设y 2与x 之间的函数关系式为y 2=k 2x+95,根据题意,得:50=120k 2+95,解得:k 2=-38,这个函数的表达式为:y 2=-38x+95(0<x≤120),设产量为xkg 时,获得的利润为W 元,根据题意,得:W=x[(-38x+95)-(-16x+60)]=-524x 2+35x=-524(x-84)2+1470,∴当x=84时,W 取得最大值,最大值为1470,答:若m=95,该产品产量为84kg 时,获得的利润最大,最大利润是1470元;(3)设y=k 2x+m ,由题意得:120k 2+m=50,解得:k 2=50−m 120,这个函数的表达式为:y=50−m 120x+m ,W=x[(50−m 120x+m )-(-16x+60)]=70−m 120x 2+(m-60)x ,∵60<m <70,∴a=70−m 120>0,b=m-60>0,∴-b 2a <0,即该抛物线对称轴在y 轴左侧,∴0<x≤120时,W 随x 的增大而增大,当x=120时,W 的值最大,故60<m <70时,该产品产量为120kg 时,获得的利润最大.【 解析 】(1)待定系数法求解可得;(2)先求出m=95时,y2与x之间的函数关系式,再根据:总利润=销售量×(售价-成本)列出函数关系式,配方后根据二次函数性质可得其最值情况;(3)用含m的式子表示出y2与x之间的函数关系式,根据:总利润=销售量×(售价-成本)列出函数关系式,再结合60<m<70判断其最值情况.本题主要考查待定系数求一次函数解析式及二次函数的实际应用能力,根据相等关系列出函数关系式,熟练根据二次函数的性质判断函数的最值情况是解题的关键.【第 26 题】【答案】(1)∵点P从A→B→C→D,∴点P移动的长度=AB+BC+CD=(a+2b)cm故答案为:a+2b(2)∵在整个运动过程中,点P移动的距离为(a+2b)cm点O移动的距离为2(a-4)cm,且点P与⊙O的移动速度相等,∴a+2b=2(a-4)①∵点P从A点出发,移动2s到达B点,继续移动3s,到达BC的中点,∴b 2=a23②∴由①②得a=24,b=8∴点P速度=82=4cm/s∴这5s时间内圆心O移动的距离=4×5=20cm.(3)如图,过点O1作O1E⊥AD于点E,∵O1E⊥AD,AB⊥AD∴∠BAD=∠O1ED=90°,且∠BDA=∠O1DE∴△ABD∽△O1DE∴O1E AB =DEAD即210=DE20∴DE=4∵AD,DP是⊙O1的切线∴∠BDP=∠ADB∵BC∥AD∴∠PBD=∠ADB∴BP=PD在Rt△PCD 中,PD 2=PC 2+CD 2,∴BP 2=(20-BP )2+100∴BP=252∴点P 移动路程=10+252=452cm ∵BP=252>10∴⊙O 在与CD 相切后,返回时与DP 相切,∴⊙O 移动路程=20-4+(4-2)=18cm∴V 1V 2=45218=54 【 解析 】解:(1)由题意可直接求得;(2)由题意可得a+2b=2(a-4),b 2=a 23,可求a=24,b=8,可求点P 的速度,即可求解.(3)由相似三角形的性质和勾股定理分别求出点P 与⊙O 的移动距离,即可求解.本题是圆的综合题,考查了圆的有关知识,矩形的性质,相似三角形的性质和判定,勾股定理等知识,求出点P 移动的路程是本题的关键.。
2015年河北省唐山市路北区中考数学二模试卷一、选择题(本大题共16小题,1-6小题,每题2分;7-16小题,每题3分,共42分)1.(2分)﹣2的相反数是(的相反数是( ) A .2B .﹣2C .D .﹣2.(2分)若一粒米的质量约是0.000021kg ,将数据0.000 021用科学记数法表示为(示为( ) A .21×10﹣4 B .2.1×10﹣6 C .2.1×10﹣5 D .2.1×10﹣43.(2分)如图,直线a ,b 相交于点O ,若∠1等于50°,则∠2等于(等于( )A .50°B .40°C .140°140°D D .130°4.(2分)抛物线y=2x 2+1的顶点坐标是(的顶点坐标是( ) A .(2,1) B .(0,1) C .(1,0) D .(1,2)5.(2分)正多边形的中心角是36°,那么这个正多边形的边数是(,那么这个正多边形的边数是( ) A .10 B .8C .6D .56.(2分)若关于x 的一元二次方程x 2﹣2x +k=0有两个不相等的实数根,则k 的取值范围是(取值范围是( ) A .k <1B .k ≤1C .k >﹣1D .k >17.(3分)某火车站的显示屏每间隔4分钟显示一次火车班次的信息,显示时间持续1分钟,某人到达该车站时,显示屏正好显示火车班次信息的概率是( ) A . B . C . D .8.(3分)如图是某几何体的三视图及相关数据,则判断正确的是(分)如图是某几何体的三视图及相关数据,则判断正确的是( )2222229.(3分)甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的 1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x 千米/时,可列方程为(时,可列方程为( )A .+=2B .﹣=2 C .+= D .﹣=10.(3分)如图,小林从P 点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P ,则α=( )A .30°B .40°C .80°D .108°11.(3分)如图,A 、B 、C 、D 四个点均在⊙O 上,∠AOD=70°,AO ∥DC ,则∠B 的度数为(的度数为( )A .40°B .45°C .50°D .55°12.(3分)根据图中所给的边长长度及角度,判断下列选项中的四边形是平行四边形的为(四边形的为( )A .B .C .D .13.(3分)如图,正方形ABCD 的边长为2,点E 在AB 边上,四边形EFGB 也为正方形,设△AFC 的面积为S ,则(,则( )A .S 与BE 长度有关长度有关B .S=2.4C .S=4D .S=214.(3分)小智将如图两水平线L 1、L 2的其中一条当成x 轴,且向右为正向;两铅直线L 3、L 4的其中一条当成y 轴,且向上为正向,并在此坐标平面上画出二次函数y=ax 2+2ax +1的图形.关于他选择x 、y 轴的叙述,下列何者正确?( )A .L 1为x 轴,L 3为y 轴B .L 1为x 轴,L 4为y 轴C .L 2为x 轴,L 3为y 轴D .L 2为x 轴,L 4为y 轴15.(3分)已知⊙O 及⊙O 外一点P ,过点P 作出⊙O 的一条切线(只有圆规和三角板这两种工具).以下是甲、乙两同学的作业:甲:①连接OP ,作OP 的垂直平分线l ,交OP 于点A ; ②以点A 为圆心、OA 为半径画弧、交⊙O 于点M ; ③作直线PM ,则直线PM 即为所求(如图1). 乙:①让直角三角板的一条直角边始终经过点P ;②调整直角三角板的位置,让它的另一条直角边过圆心O ,直角顶点落在⊙O 上,记这时直角顶点的位置为点M ;③作直线PM ,则直线PM 即为所求(如图2). 对于两人的作业,下列说法正确的是(对于两人的作业,下列说法正确的是( )A .甲对,乙不对.甲对,乙不对B .甲不对,乙对.甲不对,乙对C .两人都对.两人都对D .两人都不对 16.(3分)已知反比例函数y=的图象如图,则二次函数y=2kx 2﹣4x +k 2的图象大致为(大致为( )A. B. C. D.二、填空题(本大题共4个小题,每小题3分,共12分)17.(3分)16的算术平方根= .18.(3分)如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是 .19.(3分)在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算 .大约是出n大约是20.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高.动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP 的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8),则t= 秒时,S1=2S2.三、解答题(本大题共6小题,共66分)21.(9分)已知x=2是关于x的一元二次方程x2+3x+m﹣2=0的一个根. (1)求m的值及方程的另一个根;(2)若7﹣x≥1+m(x﹣3),求x的取值范围.22.(10分)如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.23.(10分)某中学举行了“班班有歌声”活动,某校比赛聘请了10位老师和10位学生担任评委,其中甲班的得分情况如统计图(表)所示.老师评分统计表格:评委序号 1 2 3 4 5 6 7 8 9 10 分数 94 96 93 91 x 92 91 98 96 93(1)在频数分布直方图中,自左向右第四组的频数为;)在频数分布直方图中,自左向右第四组的频数为分;(2)学生评委计分的中位数是)学生评委计分的中位数是(3)计分办法规定:老师、学生评委的计分各去掉一个最高分、一个最低分,分别计算平均分,别且按老师、学生各占60%、40%的方法计算各班最后得分.已知甲班最后得分为94.4分,求统计表中x的值.24.(11分)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B 两处出发,沿轨道到达C处,B在AC上,甲的速度是乙的速度的1.5倍,设t (分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2= 米/分;(2)写出d1与t的函数关系式:试探求什么米时信号不会产生相互干扰,试探求什么(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,时间两遥控车的信号不会产生相互干扰?25.(12分)如图,经过点A(0,﹣6)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),C两点.(1)求此抛物线的函数关系式和顶点D的坐标;(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1,若新抛物线y1的顶点P在△ABC内,求m的取值范围;(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,直接写出AM的长.26.(14分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.动点P从点A开始沿折线AC﹣CB﹣BA运动,点P在AC,CB,BA边上运动的速度分别为每秒3,4,5 个单位.直线l从与AC重合的位置开始,以每秒个单位的速度沿CB方向平行移动,即移动过程中保持l∥AC,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动走过的路径长为;②当t= 秒时,点P (1)①当t=3秒时,点P走过的路径长为与点E重合;③当t= 秒时,PE∥AB;(2)当点P在AC边上运动时,将△PEF绕点E逆时针旋转,使得点P的对应点M落在EF上,点F的对应点记为点N,当EN⊥AB时,求t的值;(3)当点P在折线AC﹣CB﹣BA上运动时,作点P关于直线EF的对称点,记为点Q.在点P与直线l运动的过程中,若形成的四边形PEQF为菱形,请直接写出t的值.2015年河北省唐山市路北区中考数学二模试卷参考答案与试题解析一、选择题(本大题共16小题,1-6小题,每题2分;7-16小题,每题3分,共42分)1.(2分)﹣2的相反数是(的相反数是( )A .2B .﹣2C .D .﹣【解答】解:根据相反数的定义,﹣2的相反数是2. 故选:A .2.(2分)若一粒米的质量约是0.000021kg ,将数据0.000 021用科学记数法表示为(示为( )A .21×10﹣4B .2.1×10﹣6C .2.1×10﹣5D .2.1×10﹣4【解答】解:0.000021=2.1×10﹣5; 故选:C .3.(2分)如图,直线a ,b 相交于点O ,若∠1等于50°,则∠2等于(等于( )A .50°B .40°C .140°140°D D .130° 【解答】解:∵∠2与∠1是对顶角, ∴∠2=∠1=50°. 故选:A .4.(2分)抛物线y=2x 2+1的顶点坐标是(的顶点坐标是( ) A .(2,1) B .(0,1) C .(1,0) D .(1,2) 【解答】解:∵y=2x 2+1=2(x ﹣0)2+1,∴抛物线的顶点坐标为(0,1), 故选:B .5.(2分)正多边形的中心角是36°,那么这个正多边形的边数是(,那么这个正多边形的边数是( ) A .10 B .8C .6D .5【解答】解:设这个正多边形的边数是n , ∵正多边形的中心角是36°, ∴=36°,解得n=10.故选:A .6.(2分)若关于x 的一元二次方程x 2﹣2x +k=0有两个不相等的实数根,则k 的取值范围是(取值范围是( ) A .k <1 B .k ≤1 C .k >﹣1 D .k >1【解答】解:∵关于x 的一元二次方程x 2﹣2x +k=0有两个不相等的实数根, ∴(﹣2)2﹣4×1×k >0, ∴4﹣4k >0, 解得k <1,∴k 的取值范围是:k <1. 故选:A .7.(3分)某火车站的显示屏每间隔4分钟显示一次火车班次的信息,显示时间持续1分钟,某人到达该车站时,显示屏正好显示火车班次信息的概率是( )A .B .C .D .【解答】解:P (显示火车班次信息)=. 故选:B .8.(3分)如图是某几何体的三视图及相关数据,则判断正确的是(分)如图是某几何体的三视图及相关数据,则判断正确的是( )A.a>c B.b>c C.4a2+b2=c2 D.a2+b2=c2【解答】解:根据勾股定理,a2+b2=c2.故选:D.9.(3分)甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的 1.5倍,进而从甲地到乙地的时间缩短了2小)时,可列方程为(时.设原来的平均速度为x千米/时,可列方程为(A.+=2 B.﹣=2C.+= D.﹣=【解答】解:设原来的平均速度为x千米/时,由题意得,﹣=2.故选:B.10.(3分)如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α=( )A.30° B.40° C.80° D.108°【解答】解:设边数为n,根据题意,n=108÷12=9,则α=360°÷9=40°.故选:B.11.(3分)如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为(的度数为( )A .40°B .45°C .50°D .55° 【解答】解:如图,连接OC , ∵AO ∥DC ,∴∠ODC=∠AOD=70°, ∵OD=OC ,∴∠ODC=∠OCD=70°, ∴∠COD=40°, ∴∠AOC=110°,∴∠B=∠AOC=55°. 故选:D .12.(3分)根据图中所给的边长长度及角度,判断下列选项中的四边形是平行四边形的为(四边形的为( )A .B .C .D .【解答】解:A 、上、下这一组对边平行,可能为等腰梯形;B 、上、下这一组对边平行,左右一组对边相等,可能为等腰梯形,也可能为平行四边形,但等腰梯形的底角不可能是90°,所以为平行四边形,C、上、下这一组对边平行,可能为梯形;D、上、下这一组对边平行,可能为梯形.故选:B.13.(3分)如图,正方形ABCD的边长为2,点E在AB边上,四边形EFGB也为),则(正方形,设△AFC的面积为S,则(A.S与BE长度有关长度有关 B.S=2.4C.S=4 D.S=2【解答】解:设正方形EFGB的边长为a,根据题意得:S=a2+4+a(2﹣a)﹣a(a+2)﹣×2×2=2.故选:D.14.(3分)小智将如图两水平线L1、L2的其中一条当成x轴,且向右为正向;两铅直线L3、L4的其中一条当成y轴,且向上为正向,并在此坐标平面上画出二次函数y=ax2+2ax+1的图形.关于他选择x、y轴的叙述,下列何者正确?( )A.L1为x轴,L3为y轴 B.L1为x轴,L4为y轴C.L2为x轴,L3为y轴 D.L2为x轴,L4为y轴【解答】解:∵y=ax2+2ax+1,∴x=0时,y=1,∴抛物线与y轴交点坐标为(0,1),即抛物线与y轴的交点在x轴的上方,∴L2为x轴;∵对称轴为直线x=﹣=﹣1,即对称轴在y轴的左侧,∴L 4为y 轴. 故选:D .15.(3分)已知⊙O 及⊙O 外一点P ,过点P 作出⊙O 的一条切线(只有圆规和三角板这两种工具).以下是甲、乙两同学的作业:甲:①连接OP ,作OP 的垂直平分线l ,交OP 于点A ; ②以点A 为圆心、OA 为半径画弧、交⊙O 于点M ; ③作直线PM ,则直线PM 即为所求(如图1). 乙:①让直角三角板的一条直角边始终经过点P ;②调整直角三角板的位置,让它的另一条直角边过圆心O ,直角顶点落在⊙O 上,记这时直角顶点的位置为点M ;③作直线PM ,则直线PM 即为所求(如图2). 对于两人的作业,下列说法正确的是(对于两人的作业,下列说法正确的是( )A .甲对,乙不对.甲对,乙不对B .甲不对,乙对.甲不对,乙对C .两人都对.两人都对D .两人都不对【解答】证明:如图1连接OM ,OA ,∵连接OP ,作OP 的垂直平分线l ,交OP 于点A ; ∴OA=OP ,∵以点A 为圆心、OA 为半径画弧、交⊙O 于点M ; ∴OA=MA=OP ,∴∠O=∠AMO ,∠AMP=∠MPA , ∴∠OMA +∠AMP=∠O +∠MPA=90°∴OM ⊥MP ,∴MP 是⊙O 的切线, (2)如图2∵直角三角板的一条直角边始终经过点P ,它的另一条直角边过圆心O ,直角顶点落在⊙O 上, ∴∠OMP=90°, ∴MP 是⊙O 的切线. 故两位同学的作法都正确, 故选:C .16.(3分)已知反比例函数y=的图象如图,则二次函数y=2kx 2﹣4x +k 2的图象大致为(大致为( )A .B .C .D .【解答】解:∵函数y=的图象经过二、四象限,∴k <0, 由图知当x=﹣1时,y=﹣k >1,∴k <﹣1, ∴抛物线y=2kx 2﹣4x +k 2开口向下, 对称轴为x=﹣=,﹣1<<0,∴对称轴在﹣1与0之间, 故选:D .二、填空题(本大题共4个小题,每小题3分,共12分) 17.(3分)16的算术平方根= 4 .【解答】解:∵42=16,∴16的算术平方根为4,故答案为:4.18.(3分)如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,﹣的解集是若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是1<x<3 .【解答】解:由图象得:对称轴是x=1,其中一个点的坐标为(3,0)∴图象与x轴的另一个交点坐标为(﹣1,0)利用图象可知:ax2+bx+c<0的解集即是y<0的解集,∴﹣1<x<3故填:﹣1<x<319.(3分)在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算10 .大约是出n大约是【解答】解:由题意可得,=0.2,解得,n=10.故估计n大约有10个.故答案为:10.20.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高.动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP 的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8),则t= 6 秒时,S1=2S2.【解答】解:∵Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高,∴AD=BD=CD=8cm,又∵AP=t,则S1=AP•BD=×8×t=8t,PD=8﹣t,∵PE∥BC,∴△APE∽△ADC,∴,∴PE=AP=t,∴S2=PD•PE=(8﹣t)•t,∵S1=2S2,∴8t=2(8﹣t)•t,解得:t=6.故答案是:6.三、解答题(本大题共6小题,共66分)21.(9分)已知x=2是关于x的一元二次方程x2+3x+m﹣2=0的一个根. (1)求m的值及方程的另一个根;(2)若7﹣x≥1+m(x﹣3),求x的取值范围.【解答】解:(1)设方程另一个根为t,则2+t=﹣3,2t=m﹣2,所以t=﹣5,m=﹣8,即m的值为﹣8,方程的另一个根为﹣5;(2)7﹣x≥1﹣8(x﹣3),7﹣x≥1﹣8x+24,8x﹣x≥1+24﹣7,7x≥18,所以x≥.22.(10分)如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠5=∠3,∵∠1=∠2,∴∠AEB=∠4,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF;(2)由(1)得△ABE≌△CDF,∴AE=CF,∵∠1=∠2,∴AE∥CF,∴四边形AECF是平行四边形,∴AF∥CE.23.(10分)某中学举行了“班班有歌声”活动,某校比赛聘请了10位老师和10位学生担任评委,其中甲班的得分情况如统计图(表)所示.老师评分统计表格:评委序号 1 2 3 4 5 6 7 8 9 10 分数 94 96 93 91 x 92 91 98 96 935 ;(1)在频数分布直方图中,自左向右第四组的频数为)在频数分布直方图中,自左向右第四组的频数为95 分;)学生评委计分的中位数是(2)学生评委计分的中位数是(3)计分办法规定:老师、学生评委的计分各去掉一个最高分、一个最低分,分别计算平均分,别且按老师、学生各占60%、40%的方法计算各班最后得分.已知甲班最后得分为94.4分,求统计表中x的值.【解答】解:(1)由题可知该数据的个数为20个,自左向右第四组的频数=20﹣3﹣4﹣6﹣2=5;(2)学生计分从小到大排列为:91,93,94,95,95,95,95,96,97,98,因此中位数为95;(3)解:设表示有效成绩平均分,则(95+95+94+95+96+97+95+93)=95∵×0.6+95×0.4=94.4,∴=94.∵共有10位老师当评委,去掉一个最高分、一个最低分后有10﹣2=8位评委, ∴老师评委有效总得分为94×8=752.在x、91、98三个数中留下的数为752﹣(94+96+93+91+92+96+93)=97,∴x=97.24.(11分)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B 两处出发,沿轨道到达C处,B在AC上,甲的速度是乙的速度的1.5倍,设t (分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2= 40 米/分;(2)写出d1与t的函数关系式:试探求什么米时信号不会产生相互干扰,试探求什么(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,时间两遥控车的信号不会产生相互干扰?【解答】解:(1)乙的速度v2=120÷3=40(米/分),故答案为:40;(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,d1=;(3)d2=40t,当0≤t<1时,d2+d1>10,即﹣60t+60+40t>10,解得0≤t<2.5,∵0≤t<1,∴当0≤t<1时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d2﹣d1>10,即40t﹣(60t﹣60)>10,当1≤时,两遥控车的信号不会产生相互干扰综上所述:当0≤t<2.5时,两遥控车的信号不会产生相互干扰.25.(12分)如图,经过点A(0,﹣6)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),C两点.(1)求此抛物线的函数关系式和顶点D的坐标;(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1,若新抛物线y1的顶点P在△ABC内,求m的取值范围;(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,直接写出AM的长.【解答】解:(1)将A(0,﹣6)、B(﹣2,0)代入抛物线y=x2+bx+c中,得:,解得.∴抛物线的解析式:y=x2﹣2x﹣6=(x﹣2)2﹣8,顶点D(2,﹣8);(2)由题意,新抛物线的解析式可表示为:y=(x﹣2+1)2﹣8+m,即:y=(x﹣2+1)2﹣8+m.它的顶点坐标P(1,m﹣8).由(1)的抛物线解析式可得:C(6,0).∴直线AB:y=﹣3x﹣6;直线AC:y=x﹣6.当点P在直线AC上时,﹣6=m﹣8,解得:m=;又∵m>0,∴当点P在△ABC内时,0<m<.(3)由A(0,﹣6)、C(6,0)得:OA=OC=6,且△OAC是等腰直角三角形. 如图,在OA上取ON=OB=2,则∠ONB=∠ACB=45°.∴∠ONB=∠NBA+∠OAB=∠ACB=∠OMB+∠OAB,即∠NBA=∠OMB.如图,在△ABN、△AM1B中,∠BAN=∠M1AB,∠ABN=∠AM1B,∴△ABN∽△AM1B,得:AB2=AN•AM1;由勾股定理,得AB2=(﹣2)2+(﹣6)2=40,又∵AN=OA﹣ON=6﹣2=4,∴AM1=40÷4=10,OM1=AM1﹣OA=10﹣6=4OM2=OM1=4AM2=OA﹣OM2=6﹣4=2.综上所述,AM的长为10或2.26.(14分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.动点P从点A开始沿折线AC﹣CB﹣BA运动,点P在AC,CB,BA边上运动的速度分别为每秒3,4,5 个单位.直线l从与AC重合的位置开始,以每秒个单位的速度沿CB方向平行移动,即移动过程中保持l∥AC,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动10 ;②当t= 3 秒时,点P与点走过的路径长为(1)①当t=3秒时,点P走过的路径长为E重合;③当t= 秒时,PE∥AB;(2)当点P在AC边上运动时,将△PEF绕点E逆时针旋转,使得点P的对应点M落在EF上,点F的对应点记为点N,当EN⊥AB时,求t的值;(3)当点P在折线AC﹣CB﹣BA上运动时,作点P关于直线EF的对称点,记为点Q.在点P与直线l运动的过程中,若形成的四边形PEQF为菱形,请直接写出t的值.【解答】解:(1)①在Rt△ABC中,由∠C=90°,AC=6,BC=8得AB=10.∵点P在AC,CB,BA边上运动的速度分别为每秒3,4,5个单位,∴点P在AC边上运动的时间为:6÷3=2秒,点P在BC边上运动的时间为:8÷4=2秒,点P在AB边上运动的时间为:10÷5=2秒.∴当t=3秒时,点P走过的路径长为6+4×(3﹣2)=10.②由题意可知:当(t﹣2)×4=t时,点P与点E重合.解得:t=3.∴t=3秒时,点P与点E重合.③若PE∥AB,如图1,则有△CPE∽△CAB.∴=.∴CP•CB=CE•CA.∵CP=6﹣3t,CB=8,CE=t,CA=6,∴8(6﹣3t)=t×6.解得:t=1.5.∴当t=1.5秒时,PE∥AB.故答案分别为:10、3、1.5.(2)如图2,由旋转可得:∠PEF=∠MEN,∵P在AC上,∴AP=3t (0<t≤2).∴CP=6﹣3t.∵EF∥AC,∠C=90°,∴∠CPE=∠PEF,∠BEF=∠C=90°.∵EN⊥AB,∴∠B=90°﹣∠NEB=∠MEN.∴∠CPE=∠B.∵∠C=∠C,∠CPE=∠B,∴△CPE∽△CBA.∴=.∴CP•CA=CE•CB.∴(6﹣3t)×6=×8.解得:t=.∴当EN⊥AB时,t的值为(秒).(3)①当P点在AC上时,(0<t≤2),如图3,∵EF∥AC,∴△FEB∽△ACB,∴==.∵AC=6,BC=8,AB=10,BE=8﹣,∴EF=6﹣t,BF=10﹣.∵四边形PEQF是菱形,∴∠POE=90°,EF=2OE.∵∠C=∠POE=∠OEC=90°,∴四边形PCEO是矩形.∴OE=PC.∴EF=2PC.∴6﹣t=2(6﹣3t).∴t=.②当P点在BC上时,此时点Q也在BC上,所以以点P、E、Q、F为顶点不能构成菱形,故不存在.③当P在AB上时,(4<t<6),如图4,∵四边形PFQE是菱形,∴OE=OF=EF,EF⊥PQ.FOP=90°==∠FEB.∴∠FOP=90°∴OP∥BE.∴△FOP∽△FEB.∴=.∴=.∴BF=2PF.∴BF=2BP.∵BF=10﹣t,BP=5(t﹣4),∴10﹣=2[5(t﹣4)].解得:t=.综上所述:当四边形PEQF为菱形时,t的值为或.。
20120133年唐山市初中毕业生升学文化课考试数学模拟试卷一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2−的相反数是()A .2B .2−C .12D .12−2.计算23()a 的结果是()A .5a B .6a C .8a D .23a 3.如图,数轴上A B 、两点分别对应实数a b 、,则下列结论正确的是()A .0a b +>B .0ab >C .0a b −>D .||||0a b −>4.下面四个几何体中,左视图是四边形的几何体共有()A .1个B .2个C .3个D .4个5.如图,在55×方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙A .先向下平移3格,再向右平移1格B .先向下平移2格,再向右平移1格C .先向下平移2格,再向右平移2格D .先向下平移3格,再向右平移2格6.某商场试销一种新款衬衫,一周内销售情况如下表所示:型号(厘米)383940414243数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是()A .平均数B .众数C .中位数D .方差7.如图,给出下列四组条件:①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,;③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,.(第3题)圆柱球正方体图②图①A B DFE (第7题)其中,能使ABC DEF△≌△的条件共有()A.1组B.2组C.3组D.4组8.将两枚同样大小的硬币放在桌上,固定其中一枚,而另一枚则沿着其边缘滚动一周,这时滚动的硬币滚动了()A.1圈B.1.5圈C.2圈D.2.59.如图5,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m.如果在坡度为0.75的山坡上种树,也要求株距为4m,那么相邻两树间的坡面距离为()A.5m B.6m C.7m D.8m10.如图,在Rt ABC△中,C∠=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则AC的长等于()A.B.5C.D.611.9.如图,AB是半圆O的直径,点P从点O出发,沿�OA AB BO−−的路径运动一周.设OP为s,运动时间为t,则下列图形能大致地刻画s与t之间关系的是()12.下面是按一定规律排列的一列数:第1个数:11122−⎛⎞−+⎜⎟⎝⎠;第2个数:2311(1)(1)1113234⎛⎞⎛⎞−−−⎛⎞−+++⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠;第3个数:234511(1)(1)(1)(1)11111423456⎛⎞⎛⎞⎛⎞⎛⎞−−−−−⎛⎞−+++++⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠⎝⎠⎝⎠;……第n个数:232111(1)(1)(1)111112342nn n−⎛⎞⎛⎞⎛⎞−−−−⎛⎞−++++⎜⎟⎜⎟⎜⎟⎜⎟+⎝⎠⎝⎠⎝⎠⎝⎠⋯.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是()A.第10个数B.第11个数C.第12个数D.第13个数第8题图OA.B.C.D.BD第10题图第9题图二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.计算2(3)−=.14.使有意义的x 的取值范围是.15.反比例函数1y x=−的图象在第象限.16.某县2008年农民人均年收入为7800元,计划到2010年,农民人均年收入达到9100元.设人均年收入的平均增长率为x ,则可列方程.17.若2320a a −−=,则2526a a +−=.18.如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:①AD =BE ;②PQ ∥AE ;③AP =BQ ;④DE =DP ;⑤∠AOB =60°.恒成立的有______________(把你认为正确的序号都填上).三、解答题(本大题共8个小题;共76分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分8分)先化简,再求值:11a b a b ⎛⎞−⎜⎟−+⎝⎠÷222b a ab b −+,其中21+=a ,21−=b .ABC E DOP Q20.(本小题满分8分)如图,△ABC 中,P 是BC 上一点,PQ ⊥AB ,垂足为Q ,PQ =10,∠B =30°,∠PAB =45°,以A 为原点,AB 所在的直线为x 轴建立如图所示的坐标系.(1)点B 的坐标为,点P 的坐标为.(2)如果AC 与x 轴的正半轴的夹角为75°,求AC 的长.21.(本小题满分9分)“戒烟一小时,健康亿人行”.今年国际无烟日,小华就公众对在餐厅吸烟的态度进行了随机抽样调查,主要有四种态度:A.顾客出面制止;B.劝说进吸烟室;C.餐厅老板出面制止;D.无所谓.他将调查结果绘制了两幅不完整的统计图.请你根据图中的信息回答下列问题:(1)这次抽样的公众有__________人;(2)请将统计图①补充完整;(3)在统计图②中,“无所谓”部分所对应的圆心角是_________度;(4)若城区人口有20万人,估计赞成“餐厅老板出面制止”的有__________万人.并根据统计信息,谈谈自己的感想.(不超过30个字)22.(本小题满分9分)如图抛物线254y ax x a =−+与x轴相交于点A、B,且过点C(5,4).(1)求a 的值和该抛物线顶点P的坐标.(2)请你设计一种..平移的方法,使平移后抛物线的顶点落要第二象限,并写出平移后抛物线的解析式.23.(本小题满分10分)在图(1)中,若13CE CD =,则AM BN 的值等于;若14CE CD =则AMBN 的值等于;若1CE CD n =(n 为整数),则AM BN的值等于.(用含n 的式子表示)联系拓广如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AMBN 的值等于.(用含m n ,的式子表示)D E24.(本小题满分10分)将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB =90º,∠A=∠D =30º,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .(1)求证:AF +EF =DE ;(2)若将图①中的△DBE 绕点B 按顺时针方向旋转角α,且0º<α<60º,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中的结论是否仍然成立;(3)若将图①中的△DBE 绕点B 按顺时针方向旋转角β,且60º<β<180º,其他条件不变,如图③.你认为(1)中的结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF 、EF 与DE 之间的关系,并说明理由.图①图②25.(本小题满分12分)某农业大市种植了一种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植一亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y (亩)与补贴数额x (元)之间大致满足如图1所示的一次函数关系.随着补贴数额x 的不断增大,出口量也不断增加,但每亩蔬菜的收益z (元)会相应降低,且z 与x 也大致满足函数关系z =-3x+3000.(1)在政府未出台补贴政策之前,该市种植这种蔬菜的总收益额为.(2)求政府补贴政策实施后,种植亩数y 和政府补贴数额x 之间的函数关系式.(3)要使全市这种蔬菜的总收益w (元)最大,政府应将每亩补贴额x 定为多少元?并求出总收益w 的最大值.(4)该市希望这种蔬菜的总收益不低于7200000元,请你在图2所示的坐标系画出(3)的函数图像的草图,利用函数图象帮助该市确定每亩补贴数额的范围,并说明每亩补贴额应定为多少元合适?800x(元)x(元)26.(本小题满分12分)如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P 从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.(1)求NC,MC的长(用t的代数式表示);(2)当t为何值时,四边形PCDQ构成平行四边形?(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;(4)探究:t为何值时,△PMC为等腰三角形?(第25题图)。
河北省唐山市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)的算术平方根是()A . ﹣2B . ±2C .D . 22. (2分)(2020·吉林模拟) 下列计算正确的是()A .B .C .D .3. (2分)(2020·邵阳) 下列四个立体图形中,它们各自的三视图都相同的是()A .B .C .D .4. (2分)下列说法正确的是()A . 两个全等的三角形合在一起是轴对称图形B . 两个轴对称的三角形一定是全等的C . 线段不是轴对称图形D . 三角形的一条高线就是它的对称轴5. (2分)如图,一条公路的转弯处是一段圆弧(图中的),点O是这段弧的圆心,C是AB上一点,OC⊥AB,垂足为D,AB=180m,CD=30m,则这段弯路的半径为()A . 150mB . 165mC . 180mD . 200m6. (2分) (2017九上·黄石期中) 已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc <0;②b<a﹣c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b),(m≠1的实数)⑥2a+b+c>0,其中正确的结论的有()A . 3个B . 4个C . 5个D . 6个7. (2分) (2020七下·巴中期中) 方程,去分母正确的是()A .B .C .D .8. (2分)(2019·德州模拟) 小华在整理平行四边形、矩形、菱形、正方形的性质时,发现它们的对角线都具有同一性质是()A . 互相平分B . 相等C . 互相垂直D . 平分一组对角9. (2分)某反比例函数的图象经过点,则此函数图象也经过点()A .B .C .D .10. (2分)一次函数y=kx+b中,k<0,b>0,那么它的图像不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限二、填空题 (共10题;共10分)11. (1分) (2019七上·施秉月考) - 用科学记数法表示为________.12. (1分) (2019七下·鄞州期末) 若分式有意义,则x的取值范围是________.13. (1分)分解因式:2x2﹣4xy+2y2=________ .14. (1分)不等式组的解集是________.15. (1分)(2018·道外模拟) 计算: =________.16. (1分)(2016·丹阳模拟) 二次函数y=x2+6x+5图象的顶点坐标为________.17. (1分) (2020八下·无锡期中) 一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为14、10、8、4,则第5组的频率为________.18. (1分) (2019九上·秀洲期中) 已知扇形的圆心角为,面积为,则该扇形所在圆的半径为________.19. (1分) (2016九上·黑龙江月考) 已知正方形ABCD边长为4,在直线DC上有一点E,且DE=1,过点A 作AE的垂线交直线BC于点F,则CF的长为________.20. (1分) (2019九上·西安开学考) 如图,四边形为矩形,过点作对角线的垂线,交的延长线于点,,设,,则 __.三、解答题 (共7题;共72分)21. (5分) (2019九上·江北期末) 计算: .22. (10分)(2019·道外模拟) 如图,在大小为的正方形方格中,线段的两端点都在单位小正方形的顶点上.(1)在方格中画出一个,点在小正方形的格点上使得, .(2)在方格中画出一个等腰,点在小正方形的格点上,且使顶角为钝角,其面积等于4.(3)在(1)(2)的条件下,连接,四边形的面积为________个面积单位.23. (15分)(2020·温州模拟) 某学校为了增强学生体质,决定开放以下体育课外活动项目:A.篮球、B.乒乓球、C.跳绳、D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图(如图(1),图(2)),请回答下列问题:(1)这次被调查的学生共有________人;(2)请你将条形统计图补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).24. (2分) (2020八下·温岭期末) 如图,5×5网格中每个小正方形的边长都为1,△ABC的顶点均为网格上的格点。
2013年河北省初中毕业生中考模拟考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共24分)注意事项:1.答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.3-的相反数是A.3B.3-C.1 3D.13-2.下列根式中不是最简二次根式的是A.10B.8C.6D.23.若分式33xx-+的值为零,则x的值是A.3 B.3-C.3±D.04.如图所示的物体的左视图(从左面看得到的视图)是A.B.C.D.5.下表是我国部分城市气象台对四月某一天最高温度的预报,当天预报最高温度数据的城市北京上海杭州苏州武汉重庆广州汕头珠海深圳最高温度(℃)26 25 29 29 31 32 28 27 28 29A.28 B.28.5 C.29 D.29.5 第4题图第 1 页共10页第 2 页 共10页6.两个相似三角形的面积比是9∶16,则这两个三角形的相似比是A .9∶16B .3∶4C .9∶4D .3∶167.若⊙O 1与⊙O 2相切,且O 1O 2=5,⊙O 1的半径r 1=2,则⊙O 2的半径r 2是A .3B .5C .7D .3 或7 8.如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,AE =3,则tan ∠DBE 的值是 A .12B .2C .52D .559.不等式组213351x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是10.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径OB =6cm ,高OC =8cm ,则这个圆锥漏斗的侧面积是A .30cm 2B .30πcm 2C .60πcm 2D .120cm 211.一副三角板如图方式摆放,且∠1的度数比∠2的度数大50°,设∠1=x °,∠2=y °,则可得到方程组为 A.50180x y x y =-⎧⎨+=⎩, B.50180x y x y =+⎧⎨+=⎩, C.5090x y x y =-⎧⎨+=⎩, D.5090x y x y =+⎧⎨+=⎩,12.如图,已知O 是四边形ABCD 内一点,OA =OB =OC ,∠ABC =∠ADC =70°,则 ∠DAO +∠DCO 的大小是( )A .70°B .110°C .140°D .150°1 21 21 21 2A B C D B ACO第10题图第11题图DBCOA第12题图第8题图DAB C第 3 页 共10页卷II (非选择题,共96分)注意事项:1.答卷II 前,将密封线左侧的项目填写清楚.6个小题;每小题3分,共18分.把答案写在题中横线上)13.分解因式am an bm bn +++= .14.平面直角坐标系中,点A (2,3)关于x 轴的对称点坐标为 . 15.为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15~20包括15,不包括20,以下同),请根据统计图计算成绩在20~30次的频率是 . 16.已知13x x +=,则代数式221x x+的值为_________.17.如图,⊙O 的半径OA =5cm ,弦AB =8cm ,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是 cm . 18.如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由A点开始按ABCDEFCGA 的顺序沿菱形的边循环运动,行走2011厘米后停下,则这只蚂蚁停在 点.三、解答题(本大题共8个小题;共78分) 19.本题8分C ADE B G第15题图第16题图第18题图第 4 页 共10页解方程:31223=--x xx -20.本题8分如图,在△ABC 中,BC >AC ,点D 在BC 上,且DC =AC .(1)利用直尺与圆规先作∠ACB 的平分线,交AD 与F 点,再作线段AB 的垂直平分线,交AB 于点E ,最后连结EF .(2)若线段BD 的长为6,求线段EF 的长.21.本题8分不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),ABC其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为14.(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.22.本题10分第 5 页共10页第 6 页 共10页已知:如图,正比例函数y ax =的图象与反比例函数ky x=的图象交于点A (3,2) (1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值?(3)点M (m ,n )是反比例函数图象上的一动点,其中0<m <3,过点M 作直线MB ∥x 轴,交y 轴于点B ;过点A 作直线AC ∥y 轴交x 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.23.本题10分第 7 页 共10页已知正方形ABCD 的边长为4,E 是CD 上一个动点,以CE 为一条直角边作等腰直角三角形CEF ,连结BF 、BD 、FD .(1)BD 与CF 的位置关系是 .(2)①如图1,当CE =4(即点E 与点D 重合)时,△BDF 的面积为 .②如图2,当CE =2(即点E 为CD 的中点)时,△BDF 的面积为 . ③如图3,当CE =3时,△BDF 的面积为 .(3)如图4,根据上述计算的结果,当E 是CD 上任意一点时,请提出你对△BDF 面积与正方形ABCD 的面积之间关系的猜想,并证明你的猜想.24.本题10分图4图1 图2 图3探究一:如图1,正△ABC中,E为AB边上任一点,△CDE为正三角形,连结AD,猜想AD与BC的位置关系,并说明理由.探究二:如图2,若△ABC为任意等腰三角形,AB=AC,E为AB上任一点,△CDE 为等腰三角形,DE=DC,且∠BAC=∠EDC,连接AD,猜想AD与BC的位置关系,并说明理由.25.本题12分A DB CE图1A DB C E图2第8 页共10页如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:12BC AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN·MC的值.26.本题12分第9 页共10页如图,已知抛物线y=34x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,0),过点C的直线y=34tx-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.(1)填空:点C的坐标是,b=,c=;(2)求线段QH的长(用含t的式子表示);(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.第10 页共10页第 11 页 共10页数学试题参考答案及评分说明一、选择题(每小题2分,共24分)1.A 2.B 3.A 4D . 5.B 6.B 7.D 8.B 9.C 10.C 11.D 12.D 二、填空题(每小题3分,共18分)13.(a+b)(m+n) 14.(2,-3) 15.0.7 16.7 17.3 18.D三、解答题19.解:方程两边同乘以2(x -1),得3-2x =6x -6……………………………3分解得x =89,………………………………………………………………5分经检验:x =89是原分式方程的解…………………………………………7分∴原分式方程的解是x =89…………………………………………………8分20.(1)作图略………………………………………………………………4分(2) CF ACB ∠Q 平分,∴∠ACF=∠BCF . ············································ 5分又∵ DC AC =,∴ CF 是△ACD 的中线,∴ 点F 是AD 的中点.………………………………………………6分 ∵ 点E 是AB 的垂直平分线与AB 的交点∴点E 是AB 的中点,………………………………………………7分 ∴ EF 是△ABD 的中位线 ∴EF=21BD=3…………………………………………………………8分 21.解:(1)袋中黄球的个数为1个;…………………………………………2分 (2)列表或树状图略…………………………………………………………6分所以两次摸到不同颜色球的概率为:105126P ==. ……………………8分 22.解:解:(1)将()32A ,分别代入k y y ax x ==,中,得2323ka ==,∴263k a ==, ················································································· 2分∴反比例函数的表达式为:6y x = ·························································· 3分正比例函数的表达式为23y x = ··························································· 4分(2)观察图象,得在第一象限内,当03x <<时,反比例函数的值大于正比例函数的值. ···································································································· 6分第 12 页 共10页(3)BM DM =理由:∵132OMB OAC S S k ==⨯=△△ ∴33612OMB OAC OBDC OADM S S S S =++=++=△△矩形四边形 ·························· 7分 即O C ·OB=12∵3OC = ∴4OB = ································································ 8分 即4n =∴632m n == ∴3333222MB MD ==-=, ······························································· 9分∴MB MD = ·················································································· 10分23.(1)平行 ································································································ 3分(2)①8;②8;③8; ············································································ 6分(3)△BDF 面积等于正方形ABCD 面积的一半∵BD ∥CF , ∴△BDF 和△BDC 等低等高∴ABCD BDC BDF S S S 正方形21==∆∆………………………………………………10分24.解(1)AD BC ∥…………………………………………………………1分 ABC Q △与DEC △为正三角形AC BC DC EC ∴==, 122360+=+=o∠∠∠∠13∴=∠∠…………………………………………………………2分 在ADC △与BEC △中13DC EC AC BC =⎧⎪=⎨⎪=⎩∠∠ ADC BEC ∴△≌△………………………………………………3分60DAC B ∴==o ∠∠DAC ACB ∴=∠∠…………………………………………………4分AD BC ∴∥…………………………………………………………5分 (2)AD BC ∥ABC Q △与DEC △为等腰三角形,且∠BAC =∠EDC ABC DEC Q △∽△A DBCE (8-2)12 3 A DBC E (8-3)2 3 1第 13 页 共10页DC EC DC ACAC BC EC BC ∴=⇒=ACB DCE =∠∠ 即1223+=+∠∠∠∠ 13∴=∠∠……………………………………………………7分 ADC BEC ∴△∽△……………………………………………………8分 DAC B ∴=∠∠ 又AB AC = ABC ACB ∴=∠∠ DAC ACB ∴=∠∠AD BC ∴∥………………………………………………………………10分 25.解:(1)OA OC A ACO =∴∠=∠Q ,, 又22COB A COB PCB ∠=∠∠=∠Q ,,A ACO PCB ∴∠=∠=∠.…………………………2分 又AB Q 是O ⊙的直径, 90ACO OCB ∴∠+∠=°,90PCB OCB ∴∠+∠=°,即OC CP ⊥,…………3分 而OC 是O ⊙的半径,∴PC 是O ⊙的切线.………………………………………………4分 (2)AC PC A P =∴∠=∠Q ,, A ACO PCB P ∴∠=∠=∠=∠,又COB A ACO CBO P PCB ∠=∠+∠∠=∠+∠Q ,,∴∠AOB=∠CBO ……………………………………………………6分∴BC=OC ∴BC=21AB ……………………………………………………7分 (3)连接MA MB ,,……………………………………………………………………8分Q 点M 是弧AB 的中点,∴⌒AM =⌒BM, ACM BCM ∴∠=∠, ∵ACM ABM ∠=∠,BCM ABM ∴∠=∠,…………………………9分又∵BMN BMC ∠=∠, MBN MCB ∴△∽△,BM MN MC BM∴=, ∴BM 2=M N ·MC ,…………………………………10分 又AB Q 是O ⊙的直径,⌒AM =⌒BM, 90AMB AM BM ∴∠==°,.422AB BM =∴=Q ,…………………………………………………………11分∴ M N ·MC = BM 2=(22)2=8……………………………………………………12分26.解:(1)(0,-3),b =-94,c =-3.…………………………………………3分(2)由(1),得y=34x2-94x-3,它与x轴交于A,B两点,得B(4,0).…4分∴OB=4,又∵OC=3,∴BC=5.由题意,得△BHP∽△BOC,∵OC∶OB∶BC=3∶4∶5,∴HP∶HB∶BP=3∶4∶5,∵PB=5t,∴HB=4t,HP=3t.………………………………………………5分∴OH=OB-HB=4-4t.由y=34tx-3与x轴交于点Q,得Q(4t,0).∴OQ=4t.……………………………………………………………………6分①当H在Q、B之间时,QH=OH-OQ=(4-4t)-4t=4-8t.……………………………………7分②当H在O、Q之间时,QH=OQ-OH=4t-(4-4t)=8t-4.……………………………………8分综合①,②得QH=|4-8t|;(3)存在t的值,使以P、H、Q为顶点的三角形与△COQ相似.①当H在Q、B之间时,QH=4-8t,若△QHP∽△COQ,则QH∶CO=HP∶OQ,得483t-=34tt,∴t=732.……………………………………………………………………9分若△PHQ∽△COQ,则PH∶CO=HQ∶OQ,得33t=484tt-,即t2+2t-1=0.∴t11,t21(舍去).………………………………………10分②当H在O、Q之间时,QH=8t-4.若△QHP∽△COQ,则QH∶CO=HP∶OQ,得843t-=34tt,∴t=2532.…………………………………………………………………………11分若△PHQ∽△COQ,则PH∶CO=HQ∶OQ,得33t=844tt-,即t2-2t+1=0.∴t1=t2=1(舍去).………………………………………………………………12分综上所述,存在t的值,t11,t2=732,t3=2532.第14 页共10页。