2010年中考数学压轴题100题精选(81-90题)
- 格式:doc
- 大小:787.50 KB
- 文档页数:5
合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网2010年中考数学压轴题100题精选(81-90题)答案【081】解:(1)(0,-3),b =-94,c =-3. ···································································· 3分 (2)由(1),得y =34x 2-94x -3,它与x 轴交于A ,B 两点,得B (4,0).∴OB =4,又∵OC =3,∴BC =5. 由题意,得△BHP ∽△BOC , ∵OC ∶OB ∶BC =3∶4∶5,∴HP ∶HB ∶BP =3∶4∶5,∵PB =5t ,∴HB =4t ,HP =3t .∴OH =OB -HB =4-4t .由y =34tx -3与x 轴交于点Q ,得Q (4t ,0).∴OQ =4t . ······································································································· 4分 ①当H 在Q 、B 之间时, QH =OH -OQ=(4-4t )-4t =4-8t . ········································································ 5分 ②当H 在O 、Q 之间时, QH =OQ -OH=4t -(4-4t )=8t -4. ········································································ 6分 综合①,②得QH =|4-8t |; ········································································ 6分 (3)存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似. ······················· 7分①当H 在Q 、B 之间时,QH =4-8t ,若△QHP ∽△COQ ,则QH ∶CO =HP ∶OQ ,得483t -=34tt,∴t =732. ········································································································ 7分若△PHQ ∽△COQ ,则PH ∶CO =HQ ∶OQ ,得33t =484tt -,即t 2+2t -1=0.∴t 11,t 21(舍去). ······················································· 8分 ②当H 在O 、Q 之间时,QH =8t -4.若△QHP ∽△COQ ,则QH ∶CO =HP ∶OQ ,得843t -=34tt,∴t =2532. ········································································································ 9分若△PHQ ∽△COQ ,则PH ∶CO =HQ ∶OQ ,得33t =844t t -,即t 2-2t +1=0. ∴t 1=t 2=1(舍去). ···················································································· 10分综上所述,存在t 的值,t 11,t 2=732,t 3=2532. ··························· 10分附加题:解:(1)8; ·················································································································· 5分 (2)2.················································································································ 10分合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网【082】(09上海)略【083】. 解:(1)B (1(2)设抛物线的解析式为y =ax (x+a ),代入点B (1,,得a =,因此2y x =+ (3)如图,抛物线的对称轴是直线x =—1,当点C 位于对称轴与线段AB 的交点时,△BOC的周长最小.设直线AB 为y =kx +b .所以20.k k b k b b ⎧⎪⎧+=⎪⎪⎨⎨-+=⎪⎩⎪⎪⎩解得因此直线AB 为y x =+ 当x =-1时,y =, 因此点C 的坐标为(-1.(4)如图,过P 作y 轴的平行线交AB 于D .2221()()213212PAB PAD PBD D P B A S S S y y x x x ∆∆∆=+=--⎡⎤⎫=+-⨯⎢⎥⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦=⎫=+⎪⎝⎭当x =-12时,△PAB ,此时1,2P ⎛- ⎝⎭. 【084】解:(1)⊙P 与x 轴相切.∵直线y =-2x -8与x 轴交于A (4,0),与y 轴交于B (0,-8),∴OA =4,OB =8.由题意,OP =-k ,∴PB =PA =8+k . 在Rt △AOP 中,k 2+42=(8+k )2, ∴k =-3,∴OP 等于⊙P 的半径, ∴⊙P 与x 轴相切.(2)设⊙P 与直线l 交于C ,D 两点,连结PC ,PD 当圆心P 在线段OB 上时,作PE ⊥CD 于E .合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网∵△PCD 为正三角形,∴DE =12CD =32,PD =3, ∴PE. ∵∠AOB =∠PEB =90°, ∠ABO =∠PBE ,∴△AOB ∽△PEB ,∴2,AO PE AB PB PB=,∴PB =∴8PO BO PB =-=,∴8)P -,∴8k =-. 当圆心P 在线段OB 延长线上时,同理可得P (0,8), ∴k =8,∴当k8或k =8时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形.【085】解: (1)由题知: ⎩⎨⎧=+-=++033903b a b a ……………………………………1 分解得: ⎩⎨⎧-=-=21b a ……………………………………………………………2分∴ 所求抛物线解析式为: 322+=x --x y ……………………………3分(2) 存在符合条件的点P , 其坐标为P (-1, 10)或P(-1,- 10)或P (-1, 6) 或P (-1, 35)………………………………………………………7分 (3)解法①:过点E 作EF ⊥x 轴于点F , 设E ( a ,-2a -2a +3 )( -3< a < 0 ) ∴EF =-2a -2a +3,BF =a +3,OF =-a ………………………………………………8 分∴S 四边形BOCE =21BF ·EF + 21(OC +EF )·OF =21( a +3 )·(-2a -2a +3) + 21(-2a -2a +6)·(-a )……………………………9 分合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网=2929232+--a a ………………………………………………………………………10 分 =-232)23(+a +863∴ 当a =-23时,S 四边形BOCE 最大, 且最大值为 863.……………………………11 分此时,点E 坐标为 (-23,415)……………………………………………………12分解法②:过点E 作EF ⊥x 轴于点F , 设E ( x , y ) ( -3< x < 0 ) …………………………8分则S 四边形BOCE =21(3 + y )·(-x ) + 21( 3 + x )·y ………………………………………9分 = 23( y -x )= 23(332+x --x ) …………………………………10 分= -232)23(+x + 863∴ 当x =-23时,S 四边形BOCE 最大,且最大值为 863. …………………………11分此时,点E 坐标为 (-23,415) ……………………………………………………12分【086】⑴证明:∵BC 是⊙O 的直径∴∠BAC=90o又∵EM ⊥BC ,BM 平分∠ABC , ∴AM=ME ,∠AMN=EMN 又∵MN=MN , ∴△ANM ≌△ENM⑵∵AB 2=A F ·AC ∴ABAF AC AB =又∵∠BAC=∠FAB=90o ∴△ABF ∽△ACB ∴∠ABF=∠C又∵∠FBC=∠ABC+∠FBA=90o ∴FB 是⊙O 的切线合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网⑶由⑴得AN=EN ,AM=EM ,∠AMN=EMN , 又∵AN ∥ME ,∴∠ANM=∠EMN , ∴∠AMN=∠ANM ,∴AN=AM , ∴AM=ME=EN=AN ∴四边形AMEN 是菱形 ∵cos ∠ABD=53,∠ADB=90o∴53=AB BD 设BD=3x ,则AB=5x ,,由勾股定理()()x x -x AD 43522==而AD=12,∴x=3 ∴BD=9,AB=15∵MB 平分∠AME ,∴BE=AB=15 ∴DE=BE-BD=6∵ND ∥ME ,∴∠BND=∠BME ,又∵∠NBD=∠MBE ∴△BND ∽△BME ,则BEBD ME ND =设ME=x ,则ND=12-x ,15912=-x x ,解得x=215∴S=M E ·DE=215×6=45【087】(天门)略合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网【088】解:(1)法一:由图象可知:抛物线经过原点, 设抛物线解析式为2(0)y ax bx a =+≠.把(11)A ,,(31)B ,代入上式得: ································································································ 1分 11931a b a b =+⎧⎨=++⎩解得1343a b ⎧=-⎪⎪⎨⎪=⎪⎩··································································································· 3分 ∴所求抛物线解析式为21433y x x =-+··················································································· 4分 法二:∵(11)A ,,(31)B ,,∴抛物线的对称轴是直线2x =.设抛物线解析式为2(2)y a x h =-+(0a ≠) ······································································ 1分把(00)O ,,(11)A ,代入得 220(02)1(12)a h a h ⎧=-+⎪⎨=-+⎪⎩ 解得1343a h ⎧=-⎪⎪⎨⎪=⎪⎩······················································································ 3分 ∴所求抛物线解析式为214(2)33y x x =--+. ····································································· 4分合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网(2)分三种情况:①当02t <≤,重叠部分的面积是OPQ S △,过点A 作AF x ⊥轴于点F , ∵(11)A ,,在Rt OAF △中,1AF OF ==,45AOF ∠=°在Rt OPQ △中,OP t =,45OPQ QOP ∠=∠=°,∴cos 452PQ OQ t ===°, ∴2211224S t ⎛⎫== ⎪ ⎪⎝⎭. ····················································· 6分 ②当23t <≤,设PQ 交AB 于点G ,作GH x ⊥轴于点H 45OPQ QOP ∠=∠=°,则四边形OAGP 是等腰梯形,重叠部分的面积是OAGP S 梯形. ∴2AG FH t ==-, ∴11()(2)1122S AG OP AF t t t =+=+-⨯=-. ············ 8分 ③当34t <<,设PQ 与AB 交于点M ,交BC 于点N ,重叠部分的面积是OAMNC S 五边形. 因为P N C △和BMN △都是等腰直角三角形,所以重叠部分的面积是OA M NS 五边形B M NOA B C S S=-△梯形. ∵(31)B ,,OP t =, ∴3PC CN t ==-,∴1(3)4BM BN t t ==--=-,∴211(23)1(4)22S t =+⨯--2111422S t t =-+-. ······················································· 10分(3)存在 11t = ·················································································································· 12分 22t = ················································································································ 14分合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网【089】解:(1) 圆心O 在坐标原点,圆O 的半径为1,∴点A B C D 、、、的坐标分别为(10)(01)(10)(01)A B C D --,、,、,、, 抛物线与直线y x =交于点M N 、,且MA NC 、分别与圆O 相切于点A 和点C ,∴(11)(11)M N --,、,. ············································································································ 2分 点D M N 、、在抛物线上,将(01)(11)(11)D M N --,、,、,的坐标代入 2y ax bx c =++,得:111c a b c a b c =⎧⎪-=-+⎨⎪=++⎩ 解之,得:111a b c =-⎧⎪=⎨⎪=⎩∴抛物线的解析式为:21y x x =-++. ················································································ 4分 (2)2215124y x x x ⎛⎫=-++=--+ ⎪⎝⎭∴抛物线的对称轴为12x =,12OE DE ∴===,. ······················· 6分 连结90BF BFD ∠=,°,BFD EOD ∴△∽△,DE ODDB FD∴=,又12DE OD DB ===,,5FD ∴=,5210EF FD DE ∴=-=-=. ··············································································· 8分 (3)点P 在抛物线上. ············································································································· 9分 设过D C 、点的直线为:y kx b =+,将点(10)(01)C D ,、,的坐标代入y kx b =+,得:11k b =-=,,合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网∴直线DC 为:1y x =-+. ·································································································· 10分 过点B 作圆O 的切线BP 与x 轴平行,P 点的纵坐标为1y =-, 将1y =-代入1y x =-+,得:2x =.∴P 点的坐标为(21)-,, ········································································································ 11分 当2x =时,2212211y x x =-++=-++=-,所以,P 点在抛物线21y x x =-++上. ·············································································· 12分 说明:解答题各小题中只给出了1种解法,其它解法只要步骤合理、解答正确均应得到相应的分数.合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网【090】(1)解:把A (1-,0),C (3,2-)代入抛物线 23y ax ax b =-+ 得⎩⎨⎧-=+-=+-⨯--2990)1(3)1(2b a a b a a ···························································································· 1分整理得 ⎩⎨⎧-==+204b b a ·················· ……………… 2分 解得⎪⎩⎪⎨⎧-==221b a ………………3分∴抛物线的解析式为 223212--=x x y ············································································ 4分(2)令0223212=--x x 解得 1214x x =-=,∴ B 点坐标为(4,0)又∵D 点坐标为(0,2-) ∴AB ∥CD ∴四边形ABCD 是梯形. ∴S 梯形ABCD =82)35(21=⨯+ ································ 5分 设直线)0(1≠+=k kx y 与x 轴的交点为H ,与CD 的交点为T ,则H (k 1-,0), T (k3-,2-) ····················· 6分∵直线)0(1≠+=k kx y 将四边形ABCD 面积二等分∴S 梯形AHTD =21S 梯形ABCD =4∴42)311(21=⨯-+-kk ·········································· 7分 ∴34-=k ···································································· 8分(3)∵MG ⊥x 轴于点G ,线段MG ︰AG =1︰2∴设M (m ,21+-m ), (9)∵点M 在抛物线上 ∴22321212--=+-m m m 解得1231m m ==-,(舍去) ······························· 10分∴M 点坐标为(3,2-) ································································································ 11分 根据中心对称图形性质知,MQ ∥AF ,MQ =AF ,NQ =EF ,∴N 点坐标为(1,3-) ······························································································· 12分图(9) -2图(9) -1。
2010年各地中考数学压轴题精选1(北京)问题:已知△ABC中,∠BAC=2∠ACB,点D是△ABC内的一点,且AD=CD,BD=BA。
探究∠DBC与∠ABC度数的比值。
请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明。
(1) 当∠BAC=90︒时,依问题中的条件补全右图。
观察图形,AB与AC的数量关系为;可得到∠DBC与∠ABC度数的比值为;(2) 当∠BAC≠90︒时,请你画出图形,研究∠DBC与∠ABC度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明。
2(盐城)已知:函数y=ax2+x+1的图象与x轴只有一个公共点.(1)求这个函数关系式;(2)如图所示,设二次..函数y=ax2+x+1图象的顶点为B,与y轴的交点为A,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;(3)在(2)中,若圆与x轴另一交点关于直线PB的对称点为M,试探索点M是否在抛物线y=ax2+x+1上,若在抛物线上,求出M点的坐标;若不在,请说明理由.3.(广州)如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),点D是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线y =-12x +b 交折线OAB 于点E .(1)记△ODE 的面积为S ,求S 与b 的函数关系式;(2)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形OA 1B 1C 1,试探究OA 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.4.(南平)如图1,已知点B (1,3)、C (1,0),直线y=x +k 经过点B ,且与x 轴交于点A ,将△ABC 沿直线AB 折叠得到△ABD. (1)填空:A 点坐标为(____,____),D 点坐标为(____,____); (2)若抛物线y= 13x 2+b x +c 经过C 、D 两点,求抛物线的解析式;(3)将(2)中的抛物线沿y 轴向上平移,设平移后所得抛物线与y 轴交点为E ,点M 是平移后的抛物线与直线AB 的公共点,在抛物线平移过程中是否存在某一位置使得直线EM ∥x 轴.若存在,此时抛物线向上平移了几个单位?若不存在,请说明理由.(提示:抛物线y=ax 2+b x +c(a ≠0)的对称轴是x =-b 2a ,顶点坐标是(-b 2a ,4a c -b24a).图1备用图5(大连)如图17,抛物线F :2(0)y ax bx c a =++>与y 轴相交于点C ,直线1L 经过点C 且平行于x 轴,将1L 向上平移t 个单位得到直线2L ,设1L 与抛物线F 的交点为C 、D ,2L 与抛物线F 的交点为A 、B ,连接AC 、BC (1)当12a =,32b =-,1c =,2t =时,探究△ABC 的形状,并说明理由; (2)若△ABC 为直角三角形,求t 的值(用含a 的式子表示);(3)在(2)的条件下,若点A 关于y 轴的对称点A ’恰好在抛物线F 的对称轴上,连接A ’C ,BD ,求四边形A ’CDB 的面积(用含a 的式子表示)6.(宿迁)已知抛物线c bx x y ++=2交x 轴于)0,1(A 、)0,3(B ,交y轴于点C ,其顶点为D .(1)求b 、c 的值并写出抛物线的对称轴; (2)连接BC ,过点O 作直线BC OE ⊥交抛物线的对称轴于点E .求证:四边形ODBE 是等腰梯形;(3)问Q 抛物线上是否存在点Q ,使得△OBQ的面积等于四边形ODBE 的面积的31?若存在,求出点Q 的坐标;若不存在,请说明理由.(第28题)(第28题2)7.(烟台)如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C。
2010年中考数学压轴题20题精选【001】如图,已知抛物线2(1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OCOB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【002】如图,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0(1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值范围) (3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由;(4)当DE 经过点C 时,请直接..写出t 的值.【003】如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax 2+bx 过A 、C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ,①过点E 作EF ⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长?②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形? 请直接写出相应的t 值。
2010全国中考数学经典压轴题100题(三)答案【021】解:(1)21k k −;………………………………3分(2)①EF ∥AB .……………………………………4分证明:如图,由题意可得A (–4,0),B (0,3),2(4,)4k E −−,2(,3)3k F .∴PA=3,PE=234k +,PB=4,PF=243k +.∴223121234PA k PEk ==++,224121243PB k PFk ==++∴∴7分②过轴于点N ,两线交由上知M (0,24−),N (23,0),Q (23,24k −).…8分而S △EFQ=S △PEF ,∴S2=S △PEF -S △OEF =S △EFQ -S △OEF =S △EOM +S △FON +S 矩形OMQN =4321212222kk k k ⋅++=222112k k+=221(6)312k+−.…………………………10分当26k>−时,S2的值随k2的增大而增大,而0<k2<12.……………11分∴0<S2<24,s2没有最小值.………12分说明:1.证明AB∥EF时,还可利用以下三种方法.方法一:分别求出经过A、B两点和经过E、F两点的直线解析式,利用这两个解析式中x的系数相等来证明AB∥EF;方法二:利用tan PAB∠=tan PEF∠来证明AB∥EF;方法三:连接AF、BE,利用S△AEF=S△BFE得到点A、点B到直线EF 的距离相等,再由A、B两点在直线EF同侧可得到AB∥EF.2.求S2的值时,还可进行如下变形:S2=S△PEF-S△OEF=S△PEF-(S四边形PEOF-S△PEF)=2S△PEF-S四边形PEOF,再利用第(1)题中的结论.【022】解:(1)设抛物线的解析式为:y=a(x-m+2)(x-m -2)=a(x-m)2-4a.……2分∵AC⊥BC,由抛物线的对称性可知:△ACB是等腰直角三角形,又AB=4,∴C(m,-2)代入得a=12.∴解析式为:y=12(x-m)2-2.………………………5分(亦可求C点,设顶点式)(2)∵m为小于零的常数,∴只需将抛物线向右平移-m个单位,再向上平移2个单位,可以使抛物线y =12(x -m)2-2顶点在坐标原点.……………………………………7分(3)由(1)得D(0,12m2-2),设存在实数m ,使得△BOD 为等腰三角形.∵△BOD 为直角三角形,∴只能OD =OB .……………9分∴12m2-2=|m +2|,当m +2>0时,解得m =4或m =-2(舍).当m +2<0时,解得m =0(舍)或m =-2(舍);当m +2=0时,即m =-2时,B 、O 、D 三点重合(不合题意,舍)综上所述:存在实数m =4,使得△BOD 为等腰三角形.……………………………12分【023】(1)证明:∵MBC △是等边三角形∴60MB MC MBC MCB ===°,∠∠∵M 是AD 中点∴AM MD =∵AD BC∥∴60AMB MBC ==°∠∠,60DMC MCB ==°∠∠∴AMB DMC △≌△∴AB DC =∴梯形ABCD 是等腰梯形.(2)解:在等边MBC △中,4MB MC BC ===,60MBC MCB ==°∠∠,60MPQ =°∠∴120BMP BPM BPM QPC +=+=°∠∠∠∠∴BMP QPC =∠∠∴BMP CQP △∽△∴PC CQBM BP =5分∵PC x MQ y ==,∴44BP x QC y =−=−,6分ADCBPMQ60°∴444x y x−=−∴2144y x x =−+7分(3)解:①当1BP =时,则有BP BP MD ∥∥,则四边形ABPM和四边形MBPD均为平行四边形∴211333444MQ y ==×−+=当3BP =时,则有PC AM PC MD ∥∥,,则四边形MPCD和四边形APCM均为平行四边形∴11311444MQ y ==×−+=∴当1314BP MQ ==,或1334BP MQ ==,时,以P 、M 和A 、B 、C 、D△y 取最小值时,x =∴P°,∴30CPQ =°∠,∴∠【ABC 为等腰直∴3,0m −).(2)∵45ODA OAD ∠=∠=°∴3OD OA m ==−,则点D 的坐标是(0,3m −).又抛物线顶点为(1,0)P ,且过点B 、D ,所以可设抛物线的解析式为:2(1)y a x =−,得:22(31)(01)3a m a m ⎧−=⎪⎨−=−⎪⎩解得14a m =⎧⎨=⎩∴抛物线的解析式为221y x x =−+………7分(3)过点Q 作QM AC ⊥于点M ,过点Q 作QN BC ⊥于点N ,设点Q 的坐标是2(,21)x x x −+,则2(1)QM CN x ==−,3MC QN x ==−.∵//QM CE ∴PQM ∆∽PEC∆∴QM PMEC PC =即2(1)12x x EC −−=,得2(1)EC x =−∵//QN FC∴BQN∆∽BFC∆∴QN BNFC BC=即234(1)4x x FC −−−=,得41FC x =+又∵4AC =∴2(1)8x +=即【M 的纵坐标为-x ∣=x ;∴C x+4+x )=8的周长不发生变(2)根据题意得:S 四边形OCMD =MC ·MD =(-x+4)·x =-x2+4x =-(x-2)2+4∴四边形OCMD 的面积是关于点M 的横坐标x (0<x<4)的二次函数,并且当x =2,即当点M 运动到线段AB 的中点时,四边形OCMD 的面积最大且最大面积为4;(3)如图10(2),当20≤<a时,42121422+−=−=aaS;如图10(3),当42<≤a时,22)4(21)4(21−=−=aaS;∴S与a的函数的图象如下图所示:的))4<≤a【026】解:(1)∵AH∶AC=2∶3,AC=6 ∴AH=23AC=23×ACB………1分 ∴2分 ∴3分 (4分∵′H为平行四边5分又∴当CD=CH=2时,四边形CDH′H为正方形此时可得t=2秒时,四边形CDH′H为正方形………6分 ②(Ⅰ)∵∠DEF=∠ABC,∴EF∥AB∴当t=4秒时,直角梯形的腰EF与BA重合.当0≤t≤4时,重叠部分的面积为直角梯形DEFH′的面积.…………7分 过F 作FM ⊥DE 于M ,F M M E=tan ∠DEF=tan ∠ABC=A CB C=68=34∴ME=43FM=43×2=83,HF=DM=DE-ME=4-83=43∴直角梯形DEFH ′的面积为12(4+43)×2=163∴y=163(Ⅱ)∵当4<t ≤513时,重叠部分的面积为四边形CBGH的面积-矩形CDH ′H 的面积. 而S 边形CBGH=S △ABC-S△AHG=12×8×6-323=403S 矩形CDH ′H =2t ∴y=403-2tAB 于P. BD=8-t∴y=S ,△8-t )2=38t2-6t+24y=40338t2-6t+24(513<t ≤8)【027】解:(1)设抛物线的解析式为:4)1(21+−=x a y ,把A (3,0)代入解析式求得1−=a所以324)1(221++−=+−−=x x x y ,设直线AB 的解析式为:bkx y +=2由3221++−=x x y 求得B 点的坐标为)3,0(把)0,3(A ,)3,0(B 代入b kx y +=2中解得:3,1=−=b k 所以32+−=x y 6分(2)因为C 点坐标为(1,4),所以当x =1时,y1=4,y2=2所以CD =4-2=28分32321=××=∆CAB S (平方单位)(3)假设存在符合条件的点P ,设P 点的横坐标为x ,△PABx x x 3)32+−=+−,由S △389×,化简得:42−x 322++x x 中,解得P【0,3),)根据题意,得⎩⎨=++0339b a ,解得⎩⎨=2b ∴抛物线的解析式为322++−=x x y (5′)(2)(5′)由顶点坐标公式得顶点坐标为(1,4)(2′)设对称轴与x 轴的交点为F∴四边形ABDE 的面积=ABO DFEBOFD S S S ∆∆++梯形=111()222AO BO BO DF OF EF DF⋅++⋅+⋅=11113(34)124222××++×+××=9(5′)(3)(2′)相似如图,BD===;∴====∴2220BDBE +=,220DE =即:222BD BE DE +=,所以BDE ∆是直角三角形∴∠∴∆(2′)【04>所x 轴总有两个交(2a x x −=+21,1•x x 是13,所以|1−x 即:13)(221=−x x 变形为:134)(21221=•−+x x x x ……………………(5分)所以:13)2(4)(2=−−−a a ,整理得:0)1)(5(=+−a a 解方程得:15−=或a ,又因为:a<0,所以:a=-1所以:此二次函数的解析式为32−−=x xy ………………(6分)(3)设点P 的坐标为),(0y x o ,因为函数图象与x 轴的两个交点间的距离等于13,所以:AB=13,所以:S △PAB=213||210=•y AB 所以:2132||130=y 即:3||0=y ,则30±=y 当30=y 时,3320=−−o x x ,即0)2)(3(0=+−o x x 解此方程得:x =-2或3,当30−=y 时,3320−=−−o x x ,即)1(0=−o x x 解此方程得:0x =0或1(-2,3),(3,3),(0,-3)【2分)(2A 到点D 并随⊙有5,垂足为F ,则由∠得CDF EDO △∽△,则3(5)45CF t −−=.解得485t CF −=.由12CF ≤t ,即48152t t −≤,解得163t ≤.∴当C ⊙与射线DE 有公共点时,t 的取值范围为41633t ≤≤.11(5分)②当PA AB =时,过P 作PQ x ⊥轴,垂足为Q ,有222PA PQ AQ =+221633532525t t t ⎛⎞=+−−+⎜⎟⎝⎠.2229184205t t t ∴−+=,即2972800t t −+=.解得1242033t t ==.(7分)当PA PB =时,有PC AB ⊥,3535t t ∴−=−.解得35t =.(9分)当PB AB =时,有2222216132525PB ⎛⎞1320t ∴11分)∴当5t =,或203t =.。
2010年中考数学压轴题100题精选(61-70题)答案【061】解(1)A (4-,0),B (0,3) ············································· 2分(每对一个给1分) (2)满分3分.其中过F 作出垂线1分,作出BF 中垂线1分,找出圆心并画出⊙P 给1分. (注:画垂线PF 不用尺规作图的不扣分)(3)过点P 作PD ⊥y 轴于D ,则PD =x ,BD =3y -, ··············· 6分 PB =PF =y ,∵△BDP 为直角三形,∴ 2PB =∴222BP PD BD =+,即223y x =+-即222(3)y x y =+-∴y 与x 的函数关系为y =(4)存在解法1:∵⊙P 与x 轴相切于点F ,且与直线l ∴AB AF =,∵22225AB OA OB =+=,∴∵AF =4x + , ∴22(4)5x +=,∴19x x ==-或 11分 把19x x ==-或代入21362y x =+,得5153y y ==或 ∴点P 的坐标为(1,53)或(-9,15)12分 【062】解:实践应用(1)2;l c.16;13.(2)54.拓展联想(1)∵△ABC 的周长为l ,∴⊙O 在三边上自转了lc周.又∵三角形的外角和是360°,∴在三个顶点处,⊙O 自转了3601360=(周).∴⊙O 共自转了(lc +1)周.(2)lc+1.【063】(1)① 对称轴422x =-=- ················································································ (2分) ② 当0y =时,有2430x x ++=,解之,得 11x =-,23x =-∴ 点A 的坐标为(3-,0).············································································ (4分) (2)满足条件的点P 有3个,分别为(2-,3),(2,3),(4-,3-). ········ (7分) (3)存在.当0x =时,2433y x x =++= ∴ 点C 的坐标为(0,3)∵ DE ∥y 轴,AO =3,EO =2,AE =1,CO =3∴ AED △∽AOC △ ∴ AE DE AO CO = 即 133DE= ∴ DE =1 ············· (9分) ∴ DEOC S =梯形1(13)22⨯+⨯=4 在OE 上找点F ,使OF =43,此时COF S =△14323⨯⨯=2,直线CF 把四边形DEOC分成面积相等的两部分,交抛物线于点M . ································································ (10分)设直线CM 的解析式为3y kx =+,它经过点403F ⎛⎫- ⎪⎝⎭,.则4303k -+= · (11分) 解之,得 94k =∴ 直线CM 的解析式为 934y x =+ ······························ (12分) 【064】解:(1)抛物线2124y x x =--+与y∴B (0,2)∵22112(2)344y x x x =--+=-++ ∴A (—2(2)当点P 是 AB 的延长线与x 轴交点时,AB PB PA =-.当点P 在x 轴上又异于AB 的延长线与x 在点P 、A 、B 构成的三角形中,PB PA -综合上述:PA PB AB -≤(3)作直线AB 交x 轴于点P ,由(2)可知:当PA —PB 最大时,点P 是所求的点 ······· 8分 作AH ⊥OP 于H .∵BO ⊥OP ,∴△BOP ∽△AHP∴AH HPBO OP=由(1)可知:AH=3、OH=2、OB=2,∴OP=4,故P (4,0) 【065】解:(1)∵AB 是⊙O 的直径(已知) ∴∠ACB =90º(直径所对的圆周角是直角) ∵∠ABC =60º(已知) ∴∠BAC =180º-∠ACB -∠ABC = 30º(三角形的内角和等于180º) ∴AB =2BC =4cm (直角三角形中,30º锐角所对的直角边等于斜边的一半) 即⊙O 的直径为4cm .(2)如图10(1)CD 切⊙O 于点C ,连结OC ,则OC =OB =1/2·AB =2cm . ∴CD ⊥CO (圆的切线垂直于经过切点的半径) ∴∠OCD =90º(垂直的定义) ∵∠BAC = 30º(已求)∴∠COD =2∠BAC = 60º ∴∠D =180º-∠COD -∠OCD = 30º∴OD =2OC =4cm ∴BD =OD -OB =4-2=2(cm ) ∴当BD 长为2cm ,CD 与⊙O 相切. (3)根据题意得:BE =(4-2t )cm ,BF =tcm ;如图10(2)当EF ⊥BC 时,△BEF 为直角三角形,此时△BEF ∽△BAC ∴BE :BA =BF :BC 即:(4-2t ):4=t :2解得:t =1如图10(3)当EF ⊥BA 时,△BEF 为直角三角形,此时△BEF ∽△BCA ∴BE :BC =BF :BA 即:(4-2t ):2=t :4解得:t =1.6 ∴当t =1s 或t =1.6s 时,△BEF 为直角三角形.第28题图【066】(1)由112C ⎛⎫⎪⎝⎭,得(12)A ,,代入反比例函数my x=中,得2m = ∴反比例函数解析式为:2(0)y x x=> ·························································································· 2分 解方程组15222y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩由15222x x -+=化简得:2540x x -+=(4)(1)0x x --=,1241x x ==,所以142B ⎛⎫⎪⎝⎭, ·········································································· 5分 (2)无论P 点在AB 之间怎样滑动,PMN △与CAB △总能相似.因为B C 、两点纵坐标相等,所以BC x ∥轴.又因为AC y ∥轴,所以CAB △为直角三角形.同时PMN △也是直角三角形,AC PM BC PN ∥,∥.∴PMN CAB △∽△.········································································································· 8分 (在理由中只要能说出BC x ∥轴,90ACB ∠=°即可得分.)【067】(1)解:∵直角梯形ABCD ,AD BC ∥ PD QC ∴∥∴当PD QC =时,四边形PQCD为平行四边形.由题意可知:2AP t CQ t ==,82t t ∴-=38t = 83t =∴当83t s =时,四边形PQCD 为平行四边形. ·········································································· 3分 (2)解:设PQ 与O ⊙相切于点H , 过点P 作PE BC ⊥,垂足为E 直角梯形ABCD AD BC ,∥PE AB ∴=由题意可知:2AP BE t CQ t ===,222BQ BC CQ t ∴=-=-222223EQ BQ BE t t t =-=--=-BQBQEAB 为O ⊙的直径,90ABC DAB ∠=∠=°AD BC ∴、为O ⊙的切线AP PH HQ BQ ∴==,22222PQ PH HQ AP BQ t t t ∴=+=+=+-=- ···························································· 5分 在Rt PEQ △中,222PE EQ PQ +=,22212(223)(22)t t ∴+-=- 即:28881440t t -+=,211180t t -+=,(2)(9)0t t --=1229t t ∴==,,因为P 在AD 边运动的时间为8811AD ==秒 而98t =>,9t ∴=(舍去),∴当2t =秒时,PQ 与O ⊙相切. ··································· 8分【068】解:(1)如图4,过B 作BG OA G ⊥于,则13AB ====过Q 作,于H OA QH ⊥则QP === ····································································································· (2分) 要使四边形PABQ 是等腰梯形,则AB QP =,即,13)310(1442=-+tt ∴53=或5t =(此时PABQ 是平行四边形,不合题意,舍去) ····························· (3分) (2)当2=t 时,410282OP CQ QB ==-==,,。
2010年中考数学压轴题100题精选(51-60题)答案【051】解:(1)3k =-,(-1,0),B (3,0). ······················· 3分 (2)如图14(1),抛物线的顶点为M (1,-4),连结OM .则 △AOC 的面积=23,△MOC 的面积=23,△MOB 的面积=6,∴ 四边形 ABMC 的面积=△AOC 的面积+△MOC 的面积+△MOB 的面积=9. ·································· 6分说明:也可过点M 作抛物线的对称轴,将四边形ABMC 的面积转化为求1个梯形与2个直角三角形面积的和. (3)如图14(2),设D (m ,322--m m ),连结OD . 则 0<m <3,322--m m <0. 且 △AOC 的面积=23,△DOC 的面积=m 23, △DOB 的面积=-23(322--m m ), ∴ 四边形 ABDC 的面积=△AOC 的面积+△DOC 的面积+△DOB 的面积=629232++-m m =875)23(232+--m . ∴ 存在点D 315()24-,,使四边形ABDC 的面积最大为875.(4)有两种情况:如图14(3),过点B 作BQ 1⊥BC ,交抛物线于点Q 1、交y 轴于点E ,连接Q 1C . ∵ ∠CBO =45°,∴∠EBO =45°,BO =OE =3. ∴ 点E 的坐标为(0,3). ∴ 直线BE 的解析式为3y x =-+. ···························· 12分由2323y x y x x =-+⎧⎨=--⎩, 解得1125x y ,;2230.x y ,∴ 点Q 1的坐标为(-2,5). ········· 13分如图14(4),过点C 作CF ⊥CB ,交抛物线于点Q 2、交x 轴于点F ,连接BQ 2.∵ ∠CBO =45°,∴∠CFB =45°,OF =OC =3. ∴ 点F 的坐标为(-3,0).∴ 直线CF 的解析式为3y x =--.····························· 14分 由2323y x y x x =--⎧⎨=--⎩, 解得1103x y ,;2214x y ,.∴点Q 2的坐标为(1,-4).综上,在抛物线上存在点Q 1(-2,5)、Q 2(1,-4), 使△BCQ 1、△BCQ 2是以BC 为直角边的直角三角形.【052】解:(1)根据题意,得04202.a b c a b c c ++=⎧⎪++=⎨⎪=-⎩,,图14(2)图14(3) 图14(4)yxOBA DE 1 (E 2)解得132a b c =-==-,,.232y x x ∴=-+-.(2分) (2)当EDB AOC △∽△时,得AO CO ED BD =或AO COBD ED=, ∵122AO CO BD m ===-,,,当AO CO ED BD =时,得122ED m =-, ∴22m ED -=,∵点E 在第四象限,∴122m E m -⎛⎫⎪⎝⎭,. ··········································· (4分) 当AO CO BD ED =时,得122m ED=-,∴24ED m =-, ∵点E 在第四象限,∴2(42)E m m -,. ········································································· (6分)(3)假设抛物线上存在一点F ,使得四边形ABEF 为平行四边形,则 1EF AB ==,点F 的横坐标为1m -, 当点1E 的坐标为22m m -⎛⎫ ⎪⎝⎭,时,点1F 的坐标为212m m -⎛⎫- ⎪⎝⎭,,∵点1F 在抛物线的图象上,∴22(1)3(1)22mm m -=--+--,∴2211140m m -+=, ∴(27)(2)0m m --=,∴722m m ==,(舍去),∴15324F ⎛⎫- ⎪⎝⎭,, ∴33144ABEFS=⨯=. ····································································································· (9分) 当点2E 的坐标为(42)m m -,时,点2F 的坐标为(142)m m --,, ∵点2F 在抛物线的图象上,∴242(1)3(1)2m m m -=--+--,∴27100m m -+=,∴(2)(5)0m m --=,∴2m =(舍去),5m =,∴2(46)F -,,∴166ABEFS =⨯=.【053】解:(1)设(1)(3)y a x x =+-,把(03)C ,代入,得1a =-, ······························ 2分∴抛物线的解析式为:223y x x =-++.顶点D 的坐标为(14),. ··································· 5分 (2)设直线BD 解析式为:y kx b =+(0k ≠),把B D 、两点坐标代入,得304.k b k b +=⎧⎨+=⎩,解得26k b =-=,.∴直线AD 解析式为26y x =-+. ························· 7分2111(26)3222s PE OE xy x x x x ===-+=-+,∴23(13)s x x x =-+<< ·················· 9分 22993934424s x x x ⎛⎫⎛⎫=--++=--+ ⎪ ⎪⎝⎭⎝⎭. ····································································· 10分∴当32x =时,s 取得最大值,最大值为94. ······································································ 11分 (3)当s 取得最大值,32x =,3y =,∴332P ⎛⎫⎪⎝⎭,.∴四边形PEOF 是矩形. 作点P 关于直线EF 的对称点P ',连接P E P F ''、. 法一:过P '作P H y '⊥轴于H ,P F '交y 轴于点M设MC m =,则332MF m P M m P E ''==-=,,.在Rt P MC '△中,由勾股定理,223(3)2m m ⎛⎫+-= ⎪⎝⎭解得158m =.∵CM P H P M PE '''=,∴910P H '=. 由EHP EP M ''△∽△,可得EH EP EP EM '=',65EH =.∴69355OH =-=. ∴P '坐标99105⎛⎫-⎪⎝⎭,. ·············································································································· 13分 法二:连接PP ',交CF 于点H ,分别过点H P '、作PC 的垂线,垂足为M N 、. 易证CMH HMP △∽△.∴12CM MH MH PM ==. 设CM k =,则24MH k PM k ==,.∴5PC =由三角形中位线定理,12845PN k P N k '====,∴12395210CN PN PC =-=-=,即910x =-. 69355y PF P N '=-=-=∴P '坐标99105⎛⎫- ⎪⎝⎭,. ··把P '坐标99105⎛⎫-⎪⎝⎭,代入抛物线解析式,不成立,所以P '不在抛物线上. ····················· 14分 【054】(1)由抛物线经过点A (0,1),C (2,4),得21,122 4.4c b c =⎧⎪⎨-⨯++=⎪⎩解得2,1.b c =⎧⎨=⎩ ∴抛物线对应的函数关系式为:21214y x x =-++. ··································· (2分)(2)当1t =时,P 点坐标为(1,1),∴Q 点坐标为(2,0). 当4t =时,P 点坐标为(2,3),∴Q 点坐标为(5,0). ································ (5分)(3)当0t <≤2时,211(211)124S t t =-++-⨯.S 218t t =-+.当2t <≤5时,1(5)(2212)2S t t =-+-+-.S 215322t t =-+-. (8分)当3t =时,S 的最大值为2. ································【055】(1)过点B 作BD x ⊥轴,垂足为D , 9090BCD ACO ACO CAO ∠+∠=∠+∠=°,°BCD CAO ∴∠=∠;又90BDC COA CB AC ∠=∠==°;, BCD CAO ∴△≌△,12BD OC CD OA ∴====,∴点B 的坐标为(31)-,; ·················································· 4(2)抛物线22y ax ax =+-经过点(31)B -,,则得到1932a a =--, ··························· 5分 解得12a =,所以抛物线的解析式为211222y x x =+-; ···················································· 7分 (3)假设存在点P ,使得ACP △仍然是以AC 为直角边的等腰直角三角形:①若以点C 为直角顶点;则延长BC 至点1P ,使得1PC BC =,得到等腰直角三角形1ACP △, ······························ 8分 过点1P 作1PM x ⊥轴,11190CP BC MCP BCD PMC BDC =∠=∠∠=∠=,,°; 1MPC DBC ∴△≌△121CM CD PM BD ∴====,,可求得点1P (1,-1); ·········· 11分 ②若以点A 为直角顶点;则过点A 作2AP CA ⊥,且使得2AP AC =,得到等腰直角三角形2ACP △, ················ 12分 过点2P 作2P N y ⊥轴,同理可证2AP N CAO △≌△; ····················································· 13分221NP OA AN OC ∴====,,可求得点2(21)P ,; ······················································· 14分 经检验,点1(11)P -,与点2(21)P ,都在抛物线211222y x x =+-上. ································ 16分 【056】解:(1) C (3,0);(2)①抛物线c bx ax y ++=2,令x =0,则y =c , ∴A 点坐标(0,c ).∵ac b 22=,∴ 242424442c a ac a ac ac a b ac ==-=-,∴点P 的坐标为(2,2ca b -). ∵PD ⊥x 轴于D ,∴点D 的坐标为(0,2ab-). ……………………………………5分 根据题意,得a=a ′,c= c ′,∴抛物线F ′的解析式为c x b ax y ++='2.又∵抛物线F ′经过点D (0,2a b-),∴c a b b ab a +-+⨯=)2('4022.……………6分 ∴ac bb b 4'202+-=.又∵ac b 22=,∴'2302bb b -=.∴b :b ′=32. ②由①得,抛物线F ′为c bx ax y ++=232. 令y=0,则0232=++c bx ax . ∴abx a b x -=-=21,2.∵点D 的横坐标为,2a b -∴点C 的坐标为(0,ab-). 设直线OP 的解析式为kx y =.∵点P 的坐标为(2,2ca b -), ∴k a b c 22-=,∴22222b b b b ac b ac k -=-=-=-=,∴x by 2-=. ∵点B 是抛物线F 与直线OP 的交点,∴x b c bx ax 22-=++.∴abx a b x -=-=21,2.∵点P 的横坐标为a b 2-,∴点B 的横坐标为ab-.把a b x -=代入x by 2-=,得c a ac a b a b b y ===--=222)(22.∴点B 的坐标为),(c ab-.∴BC ∥OA ,AB ∥OC .(或BC ∥OA ,BC =OA ),∴四边形OABC 是平行四边形.又∵∠AOC =90°,∴四边形OABC 【057】(1) )6,0(),0,8(B A(2)∵8=OA ,6=OB ,∴AB 当点P 在OB 上运动时,t OP =1t t OP OA S 4821211=⨯⨯=⨯=; 当点P 在BA 上运动时,作D P ⊥2有AB AP BO D P 22=∵t AP -+=1062∴51925125348821212+-=-⨯⨯=⨯⨯=t t D P OA S (3)当124=t 时,3=t ,)3,0(1P ,此时,过AOP ∆各顶点作对边的平行线,与坐标轴无第二个交点,所以点M 不存在; 当125192512=+-t 时,11=t ,)3,4(2P ,此时,)3,0(1M 、)6,0(2-M 【058】解:(1)令0y =,得210x -= 解得1x =±,令0x =,得1y =-∴ A (1,0)- B (1,0) C (0,1)- ·············(2)∵O A =O B =O C =1 ∴∠BAC =∠AC O=∠BC O=45 ∵A P ∥CB ,∴∠P AB =45,过点P 作P E ⊥x 轴于E , 则∆A P E 为等腰直角三角形令O E =a ,则P E =1a + ∴P (,1)a a +∵点P 在抛物线21y x =-上 ∴211a a +=-解得12a =,21a =-(不合题意,舍去) ∴P E =3 · 4分 ∴四边形ACB P 的面积S =12AB •O C +12AB •P E =112123422⨯⨯+⨯⨯= ································ 5分 (3). 假设存在∵∠P AB =∠BAC =45 ∴P A ⊥AC∵MG ⊥x 轴于点G , ∴∠MG A =∠P AC =90在Rt △A O C 中,O A =O C =1 ∴AC ,在Rt △P AE 中,AE =P E =3 ∴A P= ······· 6分设M 点的横坐标为m ,则M 2(,1)m m - ①点M 在y 轴左侧时,则1m <- (ⅰ) 当∆A MG ∽∆P CA 时,有AG PA =MGCA∵A G=1m --MG=21m -2= 解得11m =-(舍去) 223m =(舍去)………7分 (ⅱ) 当∆M A G ∽∆P CA 时有AG CA =MGPA即 2=,解得:1m =-(舍去) 22m =-∴M (2,3)- ························································ 8分② 点M 在y 轴右侧时,则1m >(ⅰ) 当∆A MG ∽∆P CA 时有AG PA =MGCA∵A G=1m +,MG=21m -∴2= 解得11m =-(舍去) 243m = ∴M 47(,)39(ⅱ) 当∆M A G ∽∆P CA 时有AG CA =MGPA 即2=解得:11m =-(舍去) 24m = ∴M (4,15) ∴存在点M ,使以A 、M 、G 三点为顶点的三角形与∆P CA 相似,M 点的坐标为(2,3)-,47(,)39,(4,15)【059】解:(1)∵四边形ABCD 和四边形AEFG 是正方形 ∴AB =AD ,AE =AG ,∠BAD =∠EAG =90º∴∠BAE +∠EAD =∠DAG +∠EAD ∴∠BAE =∠DAG∴△ BAE ≌△DAG …………4分(2)∠FCN =45º …………5分 理由是:作FH ⊥MN 于H∵∠AEF =∠ABE =90º∴∠BAE +∠AEB =90º,∠FEH +∠AEB =90º∴∠FEH =∠BAE 又∵AE =EF ,∠EHF =∠EBA =90º∴△EFH ≌△ABE …………7分 ∴FH =BE ,EH =AB =BC ,∴CH =BE =FH∵∠FHC =90º,∴∠FCH =45º …………8分(3)当点E 由B 向C 运动时,∠FCN的大小总保持不变,…………9分理由是:作FH ⊥MN 于H由已知可得∠EAG =∠BAD =∠AEF =90º 结合(1)(2)得∠FEH =∠BAE =∠DAG又∵G 在射线CD 上,∠GDA =∠EHF =∠EBA =90º ∴△EFH ≌△GAD ,△EFH ∽△ABE ……11分 ∴EH =AD =BC =b ,∴CH =BE ,∴EH AB =FH BE =FHCH∴在Rt △FEH 中,tan ∠FCN =FH CH =EH AB =b a∴当点E 由B 向C 运动时,∠FCN =ba【060】解:(1)根据题意,得 4203660a c a c -+=⎧⎨++=⎩,解得143a c ⎧=-⎪⎨⎪=⎩ ∴抛物线的解析式为2134y x x =-++,顶点坐标是(2,4) (2)(43)D ,,设直线AD 的解析式为(0)y kx b k =+≠ 直线经过点(20)A -,、点(43)D ,2043k b k b -+=⎧∴⎨+=⎩121k b ⎧=⎪∴⎨⎪=⎩ 112y x ∴=+(3)存在.120)Q ,,2(2)Q -,0,3(6Q -,4(6Q +M B E AC ND F G 图(2) HM B E A C ND F G图(1)H第26题图。
2010中考数学压轴题精选(一)★★1、(2010北京)在平面直角坐标系xOy 中,抛物线y = -41-m x 2+45mx +m 2-3m +2 与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上。
(1)求点B 的坐标; (2)点P 在线段OA 上,从O 点出发向点运动,过P 点作x 轴的垂线,与直线OB 交于点E 。
延长PE 到点D ,使得ED =PE ,以PD 为斜边在PD 右侧作等腰直角三角形PCD (当P 点运动时,C 点、D 点也随之运动)当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一 点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止运动,P 点也同时停止运动)。
过Q 点作x 轴的垂线,与直线AB 交于点F 。
延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当Q 点运动时,M 点,N 点也随之运动)。
若P 点运动到t 秒时,两个等腰直角三角形分别有一条直角边恰好落在同一条直线上,求此刻t 的值。
★★2、(2010北京)问题:已知△ABC 中,∠BAC =2∠ACB ,点D 是△ABC 内的一点,且AD =CD ,BD =BA 。
探究∠DBC 与∠ABC 度数的比值。
请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明。
(1) 当∠BAC =90︒时,依问题中的条件补全右图。
观察图形,AB 与AC 的数量关系为 ; 当推出∠DAC =15︒时,可进一步推出∠DBC 的度数为 ;可得到∠DBC 与∠ABC 度数的比值为 ;(2) 当∠BAC ≠90︒时,请你画出图形,研究∠DBC 与∠ABC 度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明。
★★3、(2010郴州)如图(1),抛物线42y x x =+-与y 轴交于点A ,E (0,b )为y A C B轴上一动点,过点E 的直线y x b =+与抛物线交于点B 、C .(1)求点A 的坐标;(2)当b =0时(如图(2)),ABE 与ACE 的面积大小关系如何?当4b >-时,上述BOC 是以b ;若★★4、(2010滨州)如图,四边形ABCD 是菱形,点D的坐标是(0,3),以点C 为顶点的抛物线c bx ax y ++=2恰好经过x 轴上A 、B 两点.(1)求A 、B 、C 三点的坐标;(2)求过A 、B 、C 三点的抛物线的解析式;(3)若将上述抛物线沿其对称轴向上平移后恰好过D 点,求平移后抛物线的解析式,并指出平移了多少个单位?★★5、(2010长沙)已知:二次函数22y ax bx =+-的图象经过点(1,0),一次函数图象经过原点和点(1,-b ),其中0a b >>且a 、b 为实数. (1)求一次函数的表达式(用含b 的式子表示); (2)试说明:这两个函数的图象交于不同的两点;(3)设(2)中的两个交点的横坐标分别为x1、x2,求| x1-x2 |的范围.★★6、(2010长沙)如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA , OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动.设运动时间为t秒.(1)用t 的式子表示△OPQ 的面积S ;(2)求证:四边形OPBQ 的面积是一个定值,并求出这个定值;(3)当△OPQ 与△PAB 和△QPB 相似时,抛物线214y x bx c =++经过B 、P 两点,过线段BP 上一动点M 作y 轴的平行线交抛物线于N ,当线段MN 的长取最大值时,求直线MN 把四边形OPBQ 分成两部分的面积之比.★★7、(2010常德)如图9,已知抛物线212y x bx c x =++与轴交于点A (-4,0)和B (1,0)两点,与y 轴交于C 点. (1)求此抛物线的解析式;第26题图(2)设E 是线段AB 上的动点,作EF∥AC 交BC 于F ,连接CE ,当C E F 的面积是BEF 面积的2倍时,求E 点的坐标;(3)若P 为抛物线上A 、C 两点间的一个动点,过P 作y 轴的平行线,交AC 于Q ,当P 点运动到什么位置时,线段PQ 的值最大,并求此时P 点的坐标.★★8、(2010常德)如图10,若四边形ABCD 、四边形CFED 都是正方形,显然图中有AG=CE ,AG⊥CE.(1)当正方形GFED 绕D 旋转到如图11的位置时,AG=CE 是否成立?若成立,请给出证明;图9x若不成立,请说明理由.(2)当正方形GFED 绕D 旋转到如图12的位置时,延长CE 交AG 于H ,交AD 于M. ①求证:AG⊥CH;②当AD=4,CH 的长。
2010 年中考数学压轴题100 题优选( 5160 题)答案2010 年中考数学压轴题100 题优选( 51-60 题)【051】如图 14( 1),抛物线与x轴交于A、B两点,与y 轴交于点 C( 0,).[图 14( 2)、图 14( 3)为解答备用图](1),点A的坐标为,点B的坐标为;(2)设抛物线的极点为 M ,求四边形 ABMC 的面积;(3)在x 轴下方的抛物线上能否存在一点 D ,使四边形 ABDC 的面积最大?若存在,恳求出点 D 的坐标;若不存在,请说明原因;(4)在抛物线角三角形.图上求点14( 1)Q,使△BCQ是以 BC 为直角边的直图 14( 2)图 14(3)【052】已知二次函数()的图象经过点,,,直线()与轴交于点.(1)求二次函数的分析式;(2)在直线()上有一点(点在第四象限),使得为极点的三角形与以为极点的三角形相像,求点坐标(用含的代数式表示);(3)在( 2)建立的条件下,抛物线上能否存在一点,使得四边形为平行四边形?若存在,恳求出的值及四边形的面积;若不存在,请说明原因.yxO【053】如下图,在平面直角坐标系中,抛物线()经过,,三点,其极点为,连结,点是线段上一个动点(不与重合),过点作轴的垂线,垂足为,连结.(1)求抛物线的分析式,并写出极点的坐标;(2)假如点的坐标为,的面积为,求与的函数关系式,写出自变量的取值范围,并求出的最大值;12331DyCBAP2ExO ( 3)在( 2)的条件下,当获得最大值时,过点作的垂线,垂足为,连结,把沿直线折叠,点的对应点为,请直接写出点坐标,并判断点能否在该抛物线上.【054】如图,在直角坐标系中,矩形ABCD 的边 AD 在 y轴正半轴上,点 A 、 C 的坐标分别为( 0,1)、( 2,4).点 P 从点 A 出发,沿 A → B → C 以每秒 1 个单位的速度运动,到点C 停止;点 Q 在 x 轴上,横坐标为点 P 的横、纵坐标之和.抛物线经过 A 、C 两点.过点 P 作 x 轴的垂线,垂足为 M ,交抛物线于点 R.设点 P 的运动时间为 t(秒),△ PQR 的面积为 S (平方单位).(1)求抛物线对应的函数关系式.(2)分别求 t=1 和 t=4 时,点 Q 的坐标.(3)当 0<≤ 5 时,求 S 与 t 之间的函数关系式,并直接写出S 的最大值.【055】在平面直角坐标系中,现将一块等腰直角三角板放在第二象限,斜靠在两坐标轴上,且点,点,如下图:抛物线经过点.(1)求点的坐标;(2)求抛物线的分析式;(3)在抛物线上能否还存在点(点除外),使仍旧是以为直角边的等腰直角三角形?若存在,求全部点的坐标;若不存在,请说明原因. BACxy ( 0,2)(- 1, 0)(第 25 题)【056】如图 18,抛物线 F:的极点为 P,抛物线:与 y 轴交于点 A ,与直线 OP 交于点 B.过点 P 作 PD⊥ x 轴于点 D ,平移抛物线 F 使其经过点 A 、D 获得抛物线 F′:,抛物线F′与 x 轴的另一个交点为C.⑴当 a = 1,b=- 2,c = 3 时,求点 C 的坐标 (直接写出答案 );⑵若 a、 b、c 知足了①求 b: b′的值;②研究四边形OABC 的形状,并说明原因.图18【057】直线与坐标轴分别交于、两点,、的长分别是方程的两根(),动点从点出发,沿路线→ → 以每秒1 个单位长度的速度运动,抵达点时运动停止.(1)直接写出、两点的坐标;(2)设点的运动时间为 (秒 ),的面积为,求与之间的函数关系式(不用写出自变量的取值范围);(3)当时,直接写出点的坐标,此时,在座标轴上能否存在点,使以、、、为极点的四边形是梯形?若存在,请直接写出点的坐标;若不存在,请说明原因.【058】如图,已知抛物线与轴交于A、B两点,与轴交于点 C.(1)求 A 、 B、 C 三点的坐标.(2)过点 A 作 AP ∥CB 交抛物线于点 P,求四边形 ACBP的面积.CPByA (3)在轴上方的抛物线上能否存在一点M ,过 M 作 MG 轴于点 G,使以 A 、M 、G 三点为极点的三角形与 PCA 相像.若存在,恳求出 M 点的坐标;不然,请说明原因.【059】如图( 1),已知正方形 ABCD 在直线 MN 的上方, BC 在直线 MN 上, E 是 BC 上一点,以 AE 为边在直线 MN的上方作正方形AEFG .(1)连结 GD ,求证:△ ADG ≌△ ABE ;(4 分 )(2)连结 FC,察看并猜想∠ FCN 的度数,并说明原因; (4分)(3)如图(2),将图(1)中正方形 ABCD 改为矩形 ABCD ,AB=a ,BC=b( a、b 为常数),E 是线段 BC 上一动点(不含端点 B、 C),以 AE 为边在直线 MN 的上方作矩形 AEFG ,使极点G 恰巧落在射线CD上.判断当点 E 由B 向C 运动时,∠FCN的大小能否总保持不变,若∠FCN的大小不变,请用含 a、b 的代数式表示tan∠FCN 的值;若∠ FCN 的大小发生改变,请举例说明.(5 分 )图( 2) MBEACDFG NNMBE CDFG图( 1)【060】已知:如下图,对于的抛物线与轴交于点、点,与轴交于点.(1)求出此抛物线的分析式,并写出极点坐标;(2)在抛物线上有一点,使四边形为等腰梯形,写出点的坐标,并求出直线的分析式; BAOCyx (第 26 题图)( 3)在( 2)中的直线交抛物线的对称轴于点,抛物线上有一动点,轴上有一动点.能否存在以为极点的平行四边形?假如存在,请直接写出点的坐标;假如不存在,请说明原因.2010 年中考数学压轴题100 题优选( 51-60 题)答案【051】解:( 1),( -1,0),B(3,0). (3)分(2)如图 14(1),抛物线的极点为M (1,-4),连结 OM .则△AOC 的面积 = ,△ MOC 的面积 = ,△ MOB 的面积=6,∴ 四边形 ABMC 的面积 =△ AOC 的面积 +△ MOC 的面积+△ MOB 的面积=9.···················································6分图 14( 2)说明:也可过点 M 作抛物线的对称轴,将四边形ABMC 的面积转变为求 1 个梯形与 2 个直角三角形面积的和.(3)如图 14( 2),设 D( m,),连结OD .则 0< m< 3,< 0.且△ AOC 的面积 = ,△ DOC 的面积= ,△DOB 的面积 =- (),∴四边形 ABDC 的面积 =△AOC 的面积 +△DOC 的面积 +△DOB的面积= =.图14(3)图 14(4)∴存在点D ,使四边形ABDC(4)有两种状况:的面积最大为.如图 14( 3),过点 B 作 BQ1⊥ BC,交抛物线于点轴于点 E,连结 Q1C.∵ ∠ CBO=45 °,∴∠ EBO=45 °, BO=OE=3 .∴点 E 的坐标为( 0, 3).∴直线 BE 的分析式为.···················· 12 分由解得∴ 点Q1的坐标为(-2,5).······Q1、交13 分y如图 14( 4),过点 C 作 CF⊥ CB,交抛物线于点 Q2、交 x轴于点 F,连结 BQ2.∵ ∠ CBO=45 °,∴∠ CFB=45 °,OF=OC=3 .∴点 F 的坐标为( -3,0).∴ 直线CF 的分析式为. (14)分由解得∴点 Q2 的坐标为( 1,-4).综上,在抛物线上存在点 Q1(-2 ,5)、 Q2( 1,-4),使△ BCQ1 、△ BCQ2 是以 BC 为直角边的直角三角形. yxOBADC(x=m)(F2)F1E1 (E2) 【 052】解:(1)依据题意,得解得..(2分)(2)当时,得或,∵ ,当时,得,∴ ,∵点在第四象限,∴ .······························(4 分)当时,得,∴ ,∵点在第四象限,∴ .···················································( 6 分)(3)假定抛物线上存在一点,使得四边形为平行四边形,则,点的横坐标为,当点的坐标为时,点的坐标为,∵点在抛物线的图象上,∴ ,∴ ,∴ ,∴(舍去),∴ ,∴ .·······································································(9 分)当点的坐标为时,点的坐标为,∵点在抛物线的图象上,∴ ,∴ ,∴ ,∴ (舍去),,∴ ,∴ .【053】解:(1)设,把代入,得, (2)分∴抛物线的分析式为:.极点的坐标为. (5)分(2)设直线分析式为:(),把两点坐标代入,得解得.∴直线分析式为.················· 7分,∴············ 9分.················································10 分∴当时,获得最大值,最大值为.·················································11 分 (E)12331DyCBAP2xOFMH ( 3)当获得最大值,,,∴ .∴四边形是矩形.作点对于直线的对称点,连结.法一:过作轴于,交轴于点.设,则.在中,由勾股定理,.解得.∵,∴.由,可得,.∴.∴ 坐标.············································································· 13 分法二:连结,交于点,分别过点作的垂线,垂足为.易证.(E)12331DyCBAP2xOFMHNM∴ .设,则.∴,.由三角形中位线定理,.∴ ,即.∴ 坐标. (13)分把坐标代入抛物线分析式,不建立,因此不在抛物线上.·············· 14 分【054】(1)由抛物线经过点 A(0 , 1),C(2, 4),得解得∴抛物线对应的函数关系式为:.························· (2分)(2)当时, P 点坐标为 (1,1),∴ Q 点坐标为 (2, 0).当时, P 点坐标为 (2, 3),∴ Q 点坐标为 (5,0).·······················( 5 分)(3)当≤ 2 时,. S .BADCOMNxyP1P2当≤ 5 时,.S.(8分)当时, S 的最大值为2.···················································(10 分)【055】(1)过点作轴,垂足为,;又,,点的坐标为; (4)分(2)抛物线经过点,则获得, (5)分解得,因此抛物线的分析式为;···································· 7 分(3)假定存在点,使得仍旧是以为直角边的等腰直角三角形:若以点直角点;延至点,使得,获得等腰直角三角形,····················· 8 分点作,;,可求得点;······· 11 分若以点直角点;点作,且使得,获得等腰直角三角形,··········· 12 分点作,同理可;····································· 13 分,可求得点;······································· 14 分,点与点都在抛物上.······················ 16 分【056】解:( 1) C( 3, 0);(2)①抛物,令 =0, = ,∴A 点坐( 0, c).∵,∴ ,∴点 P的坐().∵PD⊥于 D ,∴点 D 的坐().⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分依据意,得 a=a′, c= c′,∴抛物 F′的分析式.又∵抛物 F′ 点 D(),∴.⋯⋯⋯⋯⋯ 6 分∴ .又∵,∴.∴ b:b′ = .②由①得,抛物线F′为.令 y=0 ,则.∴ .∵点 D 的横坐标为∴点C的坐标为().设直线 OP 的分析式为.∵点P的坐标为(),∴ ,∴,∴.∵点 B 是抛物线 F 与直线 OP 的交点,∴.∴.∵点 P 的横坐标为,∴点B的横坐标为.把代入,得.∴点 B 的坐标为.∴ BC∥ OA,AB∥ OC.(或BC∥ OA,BC =OA ),∴四边形 OABC 是平行四边形.又∵∠ AOC=90 °,∴四边形OABC 是矩形.【057】(1)(2)∵,,∴当点在上运动时,,;当点在上运动时,作于点,有∵ ,∴∴(3)当时,,,此时,过各极点作对边的平行线,与坐标轴无第二个交点,因此点不存在;当,,,此,、【058】解:( 1)令,得解得,令,得ECB yPA∴A B C ········· 3 分(2)∵ OA=OB=OC=∴ BAC= ACO= BCO=∵A P∥ CB,∴ PAB= ,点 P 作 PE 于 E,APE 等腰直角三角形令OE=,PE=∴ P∵点P 在抛物上∴解得,(不合意,舍去)∴PE= ······································· 4 分∴四形 ACBP 的面= AB?OC+AB?PE=····················· 5 分(3).假存在∵PAB= BAC =∴PA AC∵MG于点G,∴MGA= PAC =在 Rt△ AOC中,OA=OC=∴ AC=,在Rt△ PAE中,AE=PE=∴ AP=·· 6 分GM CB yPA M点的横坐, M①点 M 在左,(ⅰ ) 当 AMG PCA ,有= ∵ AG= ,MG=即解得(舍去)(舍去)⋯⋯⋯7 分(ⅱ ) 当 MAG PCA 有= GM CB yPA 即,解得:(舍去)∴M··············································································· 8 分②点 M 在右,(ⅰ ) 当 AMG PCA 有=∵AG=, MG=∴解得(舍去)∴ M(ⅱ )当MAG PCA有=即解得:(舍去)∴ M∴存在点M ,使以 A 、M 、G 三点点的三角形与MBEACNDFG(1)H PCA 相像, M 点的坐【 059】解:( 1)∵四形,,ABCD和四形AEFG是正方形∴A B=AD , AE=AG ,∠ BAD =∠ EAG = 90o ∴∠ BAE +∠ EAD =∠ DAG +∠ EAD∴∠ BAE =∠DAG∴△BAE ≌△ DAG (2)∠ FCN = 45o ⋯⋯⋯⋯ 4 分⋯⋯⋯⋯ 5 分原因是:作FH ⊥MN于H∵∠ AEF =∠ ABE = 90o∴∠ BAE + ∠ AEB = 90o,∠ FEH+ ∠AEB = 90o∴∠ FEH =∠ BAE又∵ AE=EF,∠ EHF=∠ EBA =90o∴△ EFH ≌△ ABE⋯⋯⋯⋯7分∴F H = BE, EH= AB = BC ,∴ CH =BE= FH∵∠ FHC = 90o,∴∠FCH = 45o⋯⋯⋯⋯ 8 分MBEACNDFG( 2)H(3)当点 E 由B 向C运,∠FCN的大小保持不,⋯⋯⋯⋯9 分原因是:作FH ⊥MN于H由已知可得∠ EAG =∠ BAD =∠ AEF = 90o合( 1)( 2)得∠ FEH=∠ BAE =∠ DAG又∵ G 在射 CD 上,∠ GDA =∠ EHF =∠ EBA = 90o ∴△ EFH ≌△ GAD ,△ EFH ∽△ ABE⋯⋯11分∴E H= AD =BC =b,∴ CH= BE,∴==∴在 Rt△ FEH 中, tan∠ FCN===BAOCyx 第 26Q4Q3Q1Q2P3P1P2DCP4 ∴当点 E 由 B 向 C 运,∠ FCN 的大小保持不, tan∠ FCN=【060】解:( 1)依据意,得,解得抛物的分析式,点坐是( 2,4)(2),直的分析式直点点(3)存在.,,,。
2010年全国中考数学压轴题1.已知:如图,△ABC 内接于⊙O ,AB 为直径,弦CE AB ⊥于F ,C 是 AD 的中点,连结BD并延长交CE 的延长线于点G ,连结AD ,分别交CE 、BC 于点P 、Q . (1)求证:P 是△ACQ 的外心;(2)若3tan ,84ABC CF ∠==,求CQ 的长; (3)求证:2()FP PQ FP FG += .2. 如图,设抛物线C 1:()512-+=x a y , C 2:()512+--=x a y ,C 1与C 2的交点为A, B,点A )4,2(,点B 的横坐标是-2.(1)求a 的值及点B 的坐标;(2)点D 在线段AB 上,过D 作x 轴的垂线,垂足为点H ,在DH 的右侧作 正三角形DHG . 记过C 2顶点M的直线为l ,且l 与x 轴交于点N . ① 若l 过△DHG 的顶点G ,点D 的坐标为(1, 2),求点N 的横坐标; ② 若l 与△DHG 的边DG 相交,求点N 的横坐标的取值范围.3.如图,二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,-4).(1)求出图象与x 轴的交点A,B 的坐标; (2)二次函数的图象上是否存在点P ,使M A B P A BS S ∆∆=45,若存在,求P 点的坐标;若不存在,请说明;(3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围.4.已知:函数y=ax 2+x+1的图象与x 轴只有一个公共点.(1)求这个函数关系式;(2)如图所示,设二次..函数y=ax 2+x+1图象的顶点为B ,与y 轴的交点为A ,P 为图象上的一点,若以线段PB 为直径的圆与直线AB 相切于点B ,求P 点的坐标;(3)在(2)中,若圆与x 轴另一交点关于直线PB 的对称点为M ,试探索点M 是否在抛物线y=ax 2+x+1上,若在抛物线上,求出M 点的坐标;若不在,请说明理由.A xyOB5.如图,在平面直角坐标系中,顶点为(4,1-)的抛物线y 轴于A 点,交x 轴于B ,C 两点(点B在点C 的左侧). 已知A 点坐标为(0,3). (1)求此抛物线的解析式; (2)过点B 作线段AB 的垂线交抛物线于点D , 如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明; (3)已知点P 是抛物线上的一个动点,且位于A ,C 两点之间,问:当点P 运动到什么位置时,PAC∆的面积最大?并求出此时P 点的坐标和PAC ∆的最大面积.6.在直角梯形OABC 中,CB//OA ,∠COA=90︒,CB=3,OA=6,BA=3分别以OA 、OC 边所在直线为x 轴、y 轴建立如图所示的平面直角坐标系。
2010年中考数学压轴题100题精选(81-90题)
【081】如图,已知抛物线y =34
x 2
+bx +c 与坐标轴交于A 、B 、C 三点, A 点的坐标为(-1,0),过点C 的直线y =
3
4t
x -3与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且0<t <1.
(1)填空:点C 的坐标是_▲_,b =_▲_,c =_▲_; (2)求线段QH 的长(用含t 的式子表示);
(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似?若存在,求出所有t 的值;若不存在,说明理由.
【082】(09上海)在直角坐标平面内,O 为原点,点A 的坐标为(10),,点C 的坐标为(04),
,直线CM x ∥轴(如图7所示).点B 与点A 关于原点对称,直线y x b =+(b 为常数)经过点B ,且与直线CM 相交于点D ,联结OD .
(1)求b 的值和点D 的坐标;
(2)设点P 在x 轴的正半轴上,若POD △是等腰三角形,求点P 的坐标;
(3)在(2)的条件下,如果以PD 为半径的圆P 与圆O 外切,求圆O 的半径.
x
b
【083】如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.
(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.
【084】如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P (0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;
(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?
【085】如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C .
(1) 求抛物线的解析式;
(2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由. (3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.
【086】如图,以BC 为直径的⊙O 交△CFB 的边CF 于点A ,BM 平分
∠ABC 交AC 于点M ,AD ⊥BC 于点D ,AD 交BM 于点N ,ME ⊥BC 于点E ,AB 2
=AF ·AC ,cos ∠ABD=5
3,
AD=12.
⑴求证:△ANM ≌△ENM ; ⑵求证:FB 是⊙O 的切线;
⑶证明四边形AMEN 是菱形,并求该菱形的面积S .
【087】如图,已知抛物线y =x 2+bx +c 经过矩形ABCD 的两个顶点A 、B ,AB 平行于x 轴,对角线
BD 与抛物线交于点P ,点A 的坐标为(0,2),AB =4. (1)求抛物线的解析式;
(2)若S △APO =2
3
,求矩形ABCD 的面积.
【088】如图所示,已知在直角梯形OABC 中,AB OC BC x ∥,⊥轴于点(11)
(31)C A B ,,、,.动点P 从O 点出发,沿x 轴正方向以每秒1个单位长度的速度移动.过P 点作PQ 垂直于直线..OA ,
垂足为Q .设P 点移动的时间为t 秒(04t <<),
O P Q △与直角梯形OABC 重叠部分的面积为S .
(1)求经过O A B 、、三点的抛物线解析式;
(2)求S 与t 的函数关系式;
(3)将O P Q △绕着点P 顺时针旋转90°,是否存在t ,使得OPQ △的顶点O 或Q 在抛物线上?若存在,直接写出t 的值;若不存在,请说明理由.
【089】如图,在平面直角坐标系xOy 中,半径为1的圆的圆心O 在坐标原点,且与两坐标轴分别交于A B C D 、、、四点.抛物线2y ax bx c =++与y 轴交于点D ,与直线y x =交于点M N 、,且MA NC 、分别与圆O 相切于点A 和点C . (1)求抛物线的解析式;
(2)抛物线的对称轴交x 轴于点E ,连结DE ,并延长DE 交圆O 于F ,求EF 的长. (3)过点B 作圆O 的切线交DC 的延长线于点P ,判断点P 是否在抛物线上,说明理由.
【090】如图(9)-1,抛物线23y ax ax b =-+经过A (1-,0),C (3,2-)两点,与y 轴交于点D ,与x 轴交于另一点B . (1)求此抛物线的解析式;
(2)若直线)0(1≠+=k kx y 将四边形ABCD 面积二等分,求k 的值;
(3)如图(9)-2,过点E (1,1)作EF ⊥x 轴于点F ,将△AEF 绕平面内某点旋转180°得△MNQ (点M 、N 、Q 分别与点A 、E 、F 对应),使点M 、N 在抛物线上,作MG ⊥x 轴于点G ,若线段MG ︰AG =1︰2,求点M ,N 的坐标.
图(9)-1
图(9)-2。