【课堂新坐标】高三理科数学二轮:2.1.2数形结合思想(含答案解析)
- 格式:doc
- 大小:276.50 KB
- 文档页数:8
高考数学二轮复习讲义 数形结合一、课前导读⑴数形结合是根据数量与图形之间的关系,认识研究对象的数学特征,寻找解决问题的方法的一种数学思想。
⑵数形结合的本质是:几何图形的性质反映了数量关系 数量关系决定了几何图形的性质⑶数形结合作为一种数学思想方法大致分为: ①借助数的精确性来阐明形的某些属性②借助于形的几何直观性来阐明数之间的某种关系 ⑷数形结合作为手段主要用于:①平面几何、立体几何的一些算法(与解三角形有关的计算) ②解析几何中点与坐标、曲线与方程、区域(区间)与不等式的对应 ③函数与它的图象以及有关几何变换④三角函数的概念、向量及其运算的几何意义 ⑤集合的图示 ⑥导数的几何背景二、典型例题 ★221log log ab <<、若0,则( )()1A a b <<<0()1B b a <<<0()1C a b >>()1D b a >>★22cos sin x y x x π≤=+、若,则的最小值为_______4★343()7()17()1()1x x a a A a B a C a D a --<><<>≥、不等式+有实数解,则的取值范围是( )★2242)y x y x y x-、若实数,满足(+=3,则的最大值为_______★25402x y x y x y x y ++=-2、若,满足-2,则的最大值为_____★2643x x x m m -+=、关于的方程有四个不等实根,则的取值范围为___________ ★7{{}A x y y B x y y x a A B a ==+⋂≠∅、(,),(,)=,若,则的取值范围为_____________★18()log ()0()x a f x f x f x +=>∞、已知在区间(-1,0)上有,则在(-,-1)上是____函数(填增或减)★★229[1,1]()442()13()13()12()12[1,1]()442a f x x a x a xA xB x xC xD x x x f x x a x a a∈-=-+-<<<><<<>∈-=-+-、对于任何,函数+()的值总大于零,则 的取值范围是( )或 或 变题:对于任何,函数+()的值总大于零,则 的取值范围是_____________★★10()(0)(0,)()1,(1)0y f x x x f x x f x =≠∈+∞=--<、若奇函数在时,则的解集为_________★★211(0,1)x x a x ax a a a +>≠、关于的方程=-+2的解的个数为_____★★212AB y x M ABM y 、定长为3的线段的两个端点在抛物线=2上移动,为线段 的中点,求点到轴的最短距离★★213()3[2,2]()f x x ax x f x a a =+∈-≥、已知函数+,当时,恒成立,求的取值范围★★14[0,2]sin x a x x a π∈+=、已知,为实数,讨论的解的个数★★15sin 0021a a θθπαβαβ++=+在(,)上有相异二解、 ()求的取值范围 (2)求的值★★★1635320x y R x y -+--=222、若圆()+()=上有且仅有两点到直线4的距离为1,R 则的范围为____________★★★172,2OB OA OA OB αα→→→→、向量=(2,0),=(),则,的夹角的范围是________★★★18S ABC αα、正三棱锥-,其相邻两侧面所成的角为,则的取值范围为________★★★19x R y ∈=、,则★★★220()log ()log 10()log (205),()()a a af x a xg x x f x g x a =-+=-<、设函数,若 不等式的整数解只有1,求的取值范围★★★222221cos sin cos sin ,1cos cos 0,020222a b c a b c b a a b ac ααββαβ+=+=+=≠≠++=、已知,且(),求证:三、巩固练习★1523()()()()x x A B C D <<-<、命题甲:0;命题乙:,则甲是乙的( )充分不必要条件 必要不充分条件 充要条件 既不充分又不必要条件★2()[37]5()[73]()()()()f x f x A B C D --、如果奇函数在区间,上是增函数,且最小值是,那么在区间,上是( )增函数且最小值是-5 增函数且最大值是-5 减函数且最小值是-5 减函数且最大值是-5★2321()()()()x x A B C D =+、方程的实根的个数是( )1 2 3 4★4log2log 20log 2log 2()()()()dc b a a b cd A a b c d B a b d c C b a c d D b a d c<<<<>>>>>><<<<<<、若,则、、、的大小关系为( )★53634()()()2()A B C D π1、球面上有个点,其中任意两点的球面距离都等于大圆周长的,经过这个点的小圆的周长为,则这个球的半径为( )★62,3(3,2(0,2)A B P P l AB -、已知点(-)、)、,过点的直线与线段有公共点, l k 则直线的斜率的取值范围为____________★73102360_______kx y k x y k -++=+-=、设直线与直线的交点在第一象限,则的取值范围是★8_____、三边的长都是整数,且最大边长为9的三角形的个数是★2291916,x y -、设圆过双曲线=的一个顶点和一个焦点,圆心在此双曲线上则圆心到双曲线中心的距离是_______★★100sin tan 2παααα<<<<、已知,求证:★★21112()(1)(3)()(2)(3)()(2)(3)(4)()(3)x y x x y y x A B C D -=-=、设函数,则下列命题中正确的是( )(1)图象上一定存在两点,这两点的连线平行于轴 (2)图象上任意两点的连线都不平行于轴(3)图象关于直线对称(4)图象关于原点中心对称 和 和 和和★★12101____x x <<>+、“若-”,这一命题的否命题的真值为★★138040()()()()P P A B C D αβαβ︒︒、已知平面、成角,为空间的一定点,则过点且与平面、所成的角都等于的直线至多有( ) 1条 2条 3条 4条★★14、10个相同的小球放入1、2、3号盒中,要求每个盒子的球数不小于它的编号数,则不同的放入种数为_______★★2115log 0(0,2mx x m -<、方程不等式在)时成立,则的取值范围是_______★★222160(0)2ax bx a ab a b b +=>∅-、已知方程+的解集是,则+的取值范围是_____________★★★171(2)__________x k x a a k a --+、若方程=,对任意实数都有解,则实数的取值范围是★★★18,(2,2)(),()()OA OB A a b B b a a b OP R OA OBλ→→→→→≠=-∈、已知点(),若,P 则点的轨迹方程是____________★★★221212112222191,259((4,0)x y F F PF PF PF PF PF B F MF MB MF MB +--+、设椭圆=上一点、为焦点,=4,求 变题:(1)若去掉条件=4,求的最大值(2)若、,求的最大值 (3)在(2)中求的最大值★★★2200,2,244;442,2x x ax b a b b a b b αβαβαβ+=<<<+<<+<<<、已知关于的实系数二次方程+有两个实根。
卜人入州八九几市潮王学校望城区白箬高三数学第二轮专题讲座复习:数形结合思想高考要求数形结合思想在高考中占有非常重要的地位,其“数〞与“形〞结合,互相浸透,把代数式的准确刻划与几何图形的直观描绘相结合,使代数问题、几何问题互相转化,使抽象思维和形象思维有机结合应用数形结合思想,就是充分考察数学问题的条件和结论之间的内在联络,既分析其代数意义又提醒其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决运用这一数学思想,要纯熟掌握一些概念和运算的几何意义及常见曲线的代数特征重难点归纳应用数形结合的思想,应注意以下数与形的转化〔1〕集合的运算及韦恩图〔2〕函数及其图象〔3〕数列通项及求和公式的函数特征及函数图象〔4〕方程〔多指二元方程〕及方程的曲线以形助数常用的有借助数轴;借助函数图象;借助单位圆;借助数式的构造特征;借助于解析几何方法以数助形常用的有借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合典型题例示范讲解例1设A={x|–2≤x≤a},B={y|y=2x+3,且x∈A},C={z|z=x2,且x∈A},假设C⊆B,务实数a 的取值范围此题借助数形结合,考察有关集合关系运算的题目知识依托解决此题的关键是依靠一元二次函数在区间上的值域求法确定集合C进而将C⊆B用不等式这一数学语言加以转化错解分析考生在确定z=x2,x∈[–2,a]的值域是易出错,不能分类而论巧妙观察图象将是上策不能漏掉a<–2这一种特殊情形技巧与方法解决集合问题首先看清元素终究是什么,然后再把集合语言“翻译〞为一般的数学语言,进而分析条件与结论特点,再将其转化为图形语言,利用数形结合的思想来解决解∵y=2x+3在[–2,a]上是增函数Array∴–1≤y≤2a+3,即B={y|–1≤y≤2a+3}作出z =x 2的图象,该函数定义域右端点x =a 有三种不同的位置情况如下①当–2≤a ≤0时,a 2≤z ≤4即C ={z |a 2≤z ≤4}要使C ⊆B ,必须且只须2a +3≥4得a ≥21与–2≤a <0矛盾 ②当0≤a ≤2时,0≤z ≤4即C ={z |0≤z ≤4},要使C ⊆B ,由图可知必须且只需⎩⎨⎧≤≤≥+20432a a 解得21≤a ≤2③当a >2时,0≤z ≤a 2,即C ={z |0≤z ≤a 2}, 要使C ⊆B 必须且只需⎩⎨⎧>+≤2322a a a 解得2<a ≤3 ④当a <–2时,A =∅此时B =C =∅,那么C ⊆B 成立综上所述,a 的取值范围是(–∞,–2)∪[21,3] 例2a cos α+b sin α=c ,a cos β+b sin β=c (ab ≠0,α–β≠k π,k ∈Z )求证22222cosba c +=-βα 此题主要考察数学代数式几何意义的转换才能知识依托解决此题的关键在于由条件式的构造联想到直线方程进而由A 、B 两点坐标特点知其在单位圆上错解分析考生不易联想到条件式的几何意义,是为瓶颈之一如何巧妙利用其几何意义是为瓶颈之二技巧与方法擅长发现条件的几何意义,还要根据图形的性质分析清楚结论的几何意义,这样才能巧用数形结合方法完成解题证明:在平面直角坐标系中,点A 〔cos α,sin α〕与点B 〔cos β, sin β〕是直线l :ax +by =c 与单位圆x 2+y 2=1的两个交点如图从而|AB |2=(cos α–cos β)2+(sin α–sin β)2=2–2cos(α–β)又∵单位圆的圆心到直线l 的间隔22||ba c d+=由平面几何知识知|OA |2–(21|AB |)2=d 2即 b a c d +==---2224)cos(221βα∴22222cos b a c +=-βα例3曲线y =1+24x -(–2≤x ≤2)与直线y =r (x –2)+4有两个交点时,实数r 的取值范围解析方程y =1+24x -的曲线为半圆,y =r (x –2)+4为过〔2,4〕的直线答案〔43,125] 例4设f (x )=x 2–2ax +2,当x ∈[–1,+∞)时,f (x )>a 恒成立,求a 的取值范围解法一由f (x )>a ,在[–1,+∞)上恒成立⇔x 2–2ax +2–a >0在[–1,+∞)上恒成立考察函数g (x )=x 2–2ax +2–a 的图象在[–1,+∞]时位于x 轴上方如图两种情况不等式的成立条件是(1)Δ=4a 2–4(2–a )<0⇒a ∈(–2,1)(2)⇒⎪⎩⎪⎨⎧>--<≥∆0)1(10g a a ∈(–3,–2], 综上所述a ∈(–3,1)解法二由f (x )>a ⇔x 2+2>a (2x +1)令y 1=x 2+2,y 2=a (2x +1),在同一坐标系中作出两个函数的图象如图满足条件的直线l 位于l 1与l 2之间,而直线l 1、l 2对应的a 值〔即直线的斜率〕分别为1,–3, 故直线l 对应的a ∈(–3,1)学生稳固练习1方程sin(x –4π)=41x 的实数解的个数是() A 2B 3C 4D 以上均不对2f (x )=(x –a )(x –b )–2〔其中a <b ),且α、β是方程f (x )=0的两根〔α<β),那么实数a 、b 、α、β的大小关系为()A α<a <b <βB α<a <β<bC a <α<b <βD a <α<β<b3(4cos θ+3–2t )2+(3sin θ–1+2t )2,(θ、t 为参数)的最大值是4集合A ={x |5–x ≥)1(2-x },B ={x |x 2–ax ≤x –a },当AB 时,那么a 的取值范围是M 12-2oyxa-1o yxa -1oyx-12-1o yx5设关于x 的方程sin x +3cos x +a =0在〔0,π〕内有相异解α、β〔1〕求a 的取值范围; 〔2〕求tan(α+β)的值6设A ={(x ,y )|y =222x a -,a >0},B ={(x ,y )|(x –1)2+(y –3)2=a 2,a >0},且A ∩B ≠∅,求a的最大值与最小值参考答案1解析在同一坐标系内作出y 1=sin(x –4π)与y 2=41x 的图象如图答案B2解析a ,b 是方程g (x )=(x –a )(x –b )=0的两根,在同一坐标系中作出函数f (x )、g (x )的图象如下列图答案A3解析联想到间隔公式,两点坐标为A (4cos θ,3sin θ),B (2t –3,1–2t )点A 的几何图形是椭圆,点B表示直线考虑用点到直线的间隔公式求解答案227 4解析解得A ={x |x ≥9或者x ≤3},B ={x |(x –a )(x –1)≤0},画数轴可得答a >35解y =sin(x +3π)(x ∈(0,π))及y =–2a 的图象,知当|–2a |<1且–2a≠23时,曲线与直线有两个交点,故a ∈(–2,–3)∪(–3,2)②把sin α+3cos α=–a ,sin β+3cos β=–a 相减得tan332=+βα, 故tan(α+β)=36解∵集合A 中的元素构成的图形是以原点O 为圆心,2a 为半径的半圆;集合B 中的元素是以点O ′(1,3)为圆心,a 为半径的圆如下列图∵A ∩B ≠∅,∴半圆O 和圆O ′有公一共点显然当半圆O 和圆O ′外切时,a 最小2a +a =|OO ′|=2,∴amin=22–2当半圆O 与圆O ′内切时,半圆O 的半径最大,即2a 最大此时2a–a=|OO′|=2,∴a max=22+2。
第二讲数形结合思想1.数形结合思想,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想.数形结合思想的应用包括以下两个方面:(1)“以形助数”,把某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,揭示数学问题的本质;(2)“以数定形”,把直观图形数量化,使形更加精确.2.数形结合思想的实质、关键及运用时应注意的问题:其实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化,在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参,合理用参,建立关系,由数思形,以形思数,做好数形转化;第三是正确确定参数的取值范围.3.实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3)以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;(4)所给的等式或代数式的结构含有明显的几何意义.如等式(x-2)2+(y-1)2=4,表示坐标平面内以(2,1)为圆心,以2为半径的圆.1. (·重庆)已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为() A.52-4 B.17-1C.6-2 2 D.17答案 A解析设P(x,0),设C1(2,3)关于x轴的对称点为C1′(2,-3),那么|PC1|+|PC2|=|PC1′|+|PC2|≥|C1′C2|=(2-3)2+(-3-4)2=5 2.而|PM|=|PC1|-1,|PN|=|PC2|-3,∴|PM|+|PN|=|PC1|+|PC2|-4≥52-4.2.(2011·大纲全国)已知a、b是平面内两个互相垂直的单位向量,若向量c满足(a-c)·(b-c)=0,则|c|的最大值是()A.1 B.2 C. 2 D.2 2答案 C解析 如图,设OA →=a ,OB →=b ,OC →=c ,则CA →=a -c ,CB →=b -c .由题意知CA →⊥CB →,∴O 、A 、C 、B 四点共圆.∴当OC 为圆的直径时,|c |最大,此时,|OC →|= 2.3. (·山东)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12答案 C解析 如图,由⎩⎪⎨⎪⎧x +2y -1=0,3x +y -8=0得A (3,-1).此时直线OM 的斜率最小,且为-13.4. (·课标全国Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x , x ≤0,ln (x +1), x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]答案 D解析 函数y =|f (x )|的图象如图.①当a =0时,|f (x )|≥ax 显然成立. ②当a >0时,只需在x >0时, ln(x +1)≥ax 成立.比较对数函数与一次函数y =ax 的增长速度. 显然不存在a >0使ln(x +1)≥ax 在x >0上恒成立. ③当a <0时,只需在x <0时,x 2-2x ≥ax 成立. 即a ≥x -2成立,∴a ≥-2.综上所述:-2≤a ≤0.故选D.5. (·天津)已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是________. 答案 (0,1)∪(1,4)解析 根据绝对值的意义,y =|x 2-1|x -1=⎩⎪⎨⎪⎧x +1(x >1或x <-1),-x -1(-1≤x <1).在直角坐标系中作出该函数的图象,如图中实线所示. 根据图象可知,当0<k <1或1<k <4时有两个交点.题型一 数形结合解决方程的根的个数问题例1 (·福建)对于实数a 和b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a 2-ab ,a ≤b ,b 2-ab ,a >b .设f (x )=(2x -1)*(x-1),且关于x 的方程f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是________.审题破题 本题以新定义为背景,要先写出f (x )的解析式,然后将方程f (x )=m 根的个数转化为函数y =f (x )的图象和直线y =m 的交点个数. 答案 ⎝⎛⎭⎪⎫1-316,0解析 由定义可知,f (x )=⎩⎪⎨⎪⎧(2x -1)x ,x ≤0,-(x -1)x ,x >0.作出函数f (x )的图象,如图所示.由图可知,当0<m <14时,f (x )=m (m ∈R )恰有三个互不相等 的实数根x 1,x 2,x 3. 不妨设x 1<x 2<x 3, 易知x 2>0,且x 2+x 3=2×12=1,∴x 2x 3<14.令⎩⎪⎨⎪⎧(2x -1)x =14,x <0,解得x =1-34.∴1-34<x 1<0,∴1-316<x 1x 2x 3<0.反思归纳 研究方程的根的个数、根的范围等问题时,经常采用数形结合的方法.一般 地,方程f (x )=0的根,就是函数f (x )的零点,方程f (x )=g (x )的根,就是函数f (x )和g (x )的图象的交点的横坐标.变式训练1 已知:函数f (x )满足下面关系:①f (x +1)=f (x -1);②当x ∈[-1,1]时,f (x )=x 2,则方程f (x )=lg x 解的个数是( )A .5B .7C .9D .10答案 C解析 由题意可知,f (x )是以2为周期,值域为[0,1]的函数.又f (x )=lg x ,则x ∈(0,10],画出两函数图象,则交点个数即为解的个数.由图象可知共9个交点.题型二 数形结合解不等式问题例2 设有函数f (x )=a +-x 2-4x 和g (x )=43x +1,已知x ∈[-4,0]时恒有f (x )≤g (x ),求实数a 的取值范围.审题破题 x ∈[-4,0]时恒有f (x )≤g (x ),可以转化为x ∈[-4,0]时,函数f (x )的图象都在函数g (x )的图象下方或者两图象有交点. 解 f (x )≤g (x ),即a +-x 2-4x ≤43x +1,变形得-x 2-4x ≤43x +1-a ,令y =-x 2-4x , ① y =43x +1-a .②①变形得(x +2)2+y 2=4(y ≥0),即表示以(-2,0)为圆心,2为半径的圆的上半圆;②表示斜率为43,纵截距为1-a 的平行直线系.设与圆相切的直线为AT ,AT 的直线方程为: y =43x +b (b >0), 则圆心(-2,0)到AT 的距离为d =|-8+3b |5,由|-8+3b |5=2得,b =6或-23(舍去).∴当1-a ≥6即a ≤-5时,f (x )≤g (x ).反思归纳 解决含参数的不等式和不等式恒成立问题,可以将题目中的某些条件用图象表现出来,利用图象间的关系以形助数,求方程的解集或其中参数的范围.变式训练2 已知不等式x 2+ax -2a 2<0的解集为P ,不等式|x +1|<3的解集为Q ,若P ⊆Q ,求实数a 的取值范围.解 x 2+ax -2a 2=(x +2a )(x -a )<0. |x +1|<3⇒Q ={x |-4<x <2}.当-2a <a ,即a >0时,P ={x |-2a <x <a }.∵P ⊆Q ,∴⎩⎨⎧-2a ≥-4,a ≤2,a >0.解得0<a ≤2.当-2a =a ,即a =0时,P =∅,P ⊆Q . 当-2a >a ,即a <0时,P ={x |a <x <-2a },∵P ⊆Q ,∴⎩⎪⎨⎪⎧a ≥-4,-2a ≤2,a <0, 解得-1≤a <0,综上可得-1≤a ≤2.题型三 数形结合解决有明显几何意义的式子(概念)问题例3 已知函数f (x )=ax 2+bx -1(a ,b ∈R 且a >0)有两个零点,其中一个零点在区间(1,2)内,则b a +1的取值范围为 ( ) A .(-∞,1) B .(-∞,1] C .(-2,1]D .(-2,1)审题破题 先根据图象确定a ,b 满足的条件,然后利用ba +1的几何意义——两点(a ,b ),(-1,0)连线斜率求范围. 答案 D解析 因为a >0,所以二次函数f (x )的图象开口向上.又f (0)=-1,所以要使函数f (x )的一个零点在区间(1,2)内,则有⎩⎪⎨⎪⎧a >0,f (1)<0,f (2)>0,即⎩⎪⎨⎪⎧a >0,a +b -1<0,4a +2b -1>0.如图所示的阴影部分是上述不等式组所确定的平面区域,式子b a +1表示平面区域内的点 P (a ,b )与点Q (-1,0)连线的 斜率.而直线QA 的斜率k =1-00-(-1)=1,直线4a +2b -1=0的斜率为-2,显然不等式组所表示的平面区域不包括边界,所以P ,Q 连线的斜率的取值范围为(-2,1).故选D. 反思归纳 如果等式、代数式的结构蕴含着明显的几何特征,就要考虑用数形结合的思想方法来解题,即所谓的几何法求解,比较常见的对应有: (1)b -n a -m ↔(a ,b )、(m ,n )连线的斜率; (2)(a -m )2+(b -n )2↔(a ,b )、(m ,n )之间的距离;(3)a 2+b 2=c 2↔a 、b 、c 为直角三角形的三边;(4)f (a -x )=f (b +x )↔f (x )图象的对称轴为x =a +b2.只要具有一定的观察能力,再掌握常见的数与形的对应类型,就一定能得心应手地运用数形结合的思想方法.变式训练3 已知点P (x ,y )的坐标x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则x 2+y 2-6x +9的取值范围是 ( )A .[2,4]B .[2,16]C .[4,10]D .[4,16]答案 B解析 画出可行域如图,所求的x 2+y 2-6x +9=(x -3)2+y 2是点Q (3,0)到可行域上的点的距离的平方,由图形知最小值为Q 到射线x -y -1=0(x ≥0)的距离d 的平方,最大值为|QA |2=16.∵d 2=⎝ ⎛⎭⎪⎪⎫|3-0-1|12+(-1)22=(2)2=2. ∴取值范围是[2,16]. 题型四 数形结合解几何问题例4 已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A .(14,-1)B .(14,1)C .(1,2)D .(1,-2)审题破题 本题可以结合图形将抛物线上的点P 到焦点的距离转化为到准线的距离,再探求最值. 答案 A解析 定点Q (2,-1)在抛物线内部,由抛物线的定义知,动点P到抛物线焦点的距离等于它到准线的距离,问题转化为当点P 到点Q 的距离和点P 到抛物线的准线距离之和最小时,求点P 的坐标,显然点P 是直线y =-1和抛物线y 2=4x的交点时,两距离之和取最小值,解得这个点的坐标是(14,-1).反思归纳 在几何中的一些最值问题中,可以根据图形的性质结合图形上点的条件进行转换,快速求得最值.变式训练4 已知P 是直线l :3x +4y +8=0上的动点,P A 、PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,求四边形P ACB 面积的最小值. 解 从运动的观点看问题,当动点P 沿直线3x +4y +8=0向左上方或右下方无穷远处运动时,直角三角形P AC 的面积S Rt △P AC=12|P A |·|AC |=12|P A |越来越大,从而S 四边形P ACB 也越来越大;当点P 从左上、右下两个方向向中间运动时,S四边形P ACB 变小,显然,当点P 到达一个最特殊的位置,即CP 垂直直线l 时,S 四边形P ACB 应有唯一的最小值,此时|PC |=|3×1+4×1+8|32+42=3, 从而|P A |=|PC |2-|AC |2=2 2.∴(S 四边形P ACB )min =2×12×|P A |×|AC |=2 2.典例 (12分)已知函数f (x )=x 3-3ax -1,a ≠0.(1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图象有三个不同的交点,求m 的取值范围. 规范解答解 (1)f ′(x )=3x 2-3a =3(x 2-a ), 当a <0时,对x ∈R ,有f ′(x )>0,∴当a <0时,f (x )的单调增区间为(-∞,+∞); 当a >0时,由f ′(x )>0,解得x <-a 或x >a , 由f ′(x )<0,解得-a <x <a ,∴当a >0时,f (x )的单调增区间为(-∞,-a ),(a ,+∞); 单调减区间为(-a ,a ).[4分](2)∵f (x )在x =-1处取得极值,∴f ′(-1)=3×(-1)2-3a =0,∴a =1.[6分]∴f (x )=x 3-3x -1,f ′(x )=3x 2-3, 由f ′(x )=0, 解得x 1=-1,x 2=1.由(1)中f (x )的单调性可知,f (x )在x =-1处取得极大值f (-1)=1,在x =1处取得极小值f (1)=-3.因为直线y =m 与函数y =f (x )的图象有三个不同的交点, 结合如图所示f (x )的图象可知: m 的取值范围是(-3,1).[12分]评分细则 (1)求出f ′(x )给1分,不写出单调区间扣1分;(2)只画图象没有说明极值扣2分;(3)没有结论扣1分,结论中范围写成不等式形式不扣分.阅卷老师提醒 (1)解答本题的关键是数形结合,根据函数的性质勾画函数的大致图象; (2)解答中一定要将函数图象的特点交待清楚,单调性和极值是勾画函数的前提,然后结合图象找出实数m 的取值范围.1. 设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f (13)<f (2)<f (12)B .f (12)<f (2)<f (13)C .f (12)<f (13)<f (2)D .f (2)<f (12)<f (13)答案 C解析 由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|13-1|>|12-1|,∴f (12)<f (13)<f (2).2. 设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c , x ≤0,2, x >0.若f (-4)=f (0),f (-2)=-2,则函数y =g (x )=f (x )-x 的零点个数为( )A .1B .2C .3D .4答案 C解析 由f (-4)=f (0)得16-4b +c =c .由f (-2)=-2,得4-2b +c =-2. 联立两方程解得:b =4,c =2.于是,f (x )=⎩⎪⎨⎪⎧x 2+4x +2, x ≤0,2, x >0.在同一直角坐标系内,作出函数y =f (x )与函数y =x 的图象,知它们有3个交点,进而函数亦有3个零点.3. 若方程x +k =1-x 2有且只有一个解,则k 的取值范围是( )A .[-1,1)B .k =±2C .[-1,1]D .k =2或k ∈[-1,1)答案 D解析 令y =x +k ,令y =1-x 2,则x 2+y 2=1(y ≥0).作出图象如图:而y =x +k 中,k 是直线的纵截距,由图知:方程有一个解⇔直线与 上述半圆只有一个公共点⇔k =2或-1≤k <1.4. 设a ,b ,c 是单位向量,且a·b =0,则(a -c )·(b -c )的最小值为( )A .-2 B.2-2 C .-1D .1- 2答案 D解析 由于(a -c )·(b -c )=-(a +b )·c +1,因此等价于求(a +b )·c 的最大值,这个最大值只有当向量a +b 与向量c 同向共线时取得.由于a ·b =0,故a ⊥b ,如图所示,|a +b |=2,|c |=1,当θ=0时,(a +b )·c 取最大值2,故所求的最小值为1- 2. 5. 当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22B.⎝⎛⎭⎫22,1C .(1,2)D .(2,2)答案 B解析 由0<x ≤12,且log a x >4x >0,可得0<a <1,由4 =log a 12可得a =22.令f (x )=4x ,g (x )=log a x , 若4x <log a x ,则说明当0<x ≤12时,f (x )的图象恒在g (x )图象的下方(如图所示),12此时需a >22. 综上可得a 的取值范围是⎝⎛⎭⎫22,1.6. 已知P 为抛物线y =14x 2上的动点,点P 在x 轴上的射影为M ,点A 的坐标是(2,0),则|P A |+|PM |的最小值是________. 答案5-1解析 如图,抛物线y =14x 2,即x 2=4y 的焦点F (0,1),记点P 在抛物线的准线l :y =-1上的射影为P ′,根据抛物线的定义知, |PP ′|=|PF |,则|PP ′|+|PA |=|PF |+|P A |≥|AF |=22+12= 5.所以(|P A |+|PM |)min =(|P A |+|PP ′|-1)min =5-1.专题限时规范训练一、选择题1. 已知f (x )是定义在(-3,3)上的奇函数,当0<x <3时,f (x )的图象如图所示,那么不等式f (x )·cosx <0的解集是( )A.⎝⎛⎭⎫-3,-π2∪(0,1)∪⎝⎛⎭⎫π2,3 B.⎝⎛⎭⎫-π2,-1∪(0,1)∪⎝⎛⎭⎫π2,3 C .(-3,-1)∪(0,1)∪(1,3)D.⎝⎛⎭⎫-3,-π2∪(0,1)∪(1,3) 答案 B解析 根据对称性画出f (x )在(-3,0)上的图象如图,结合y =cos x 在(-3,0),(0,3)上函数值的正负,易知不等式f (x )cos x <0的解集是⎝⎛⎭⎫-π2,-1∪(0,1)∪⎝⎛⎭⎫π2,3. 2. 已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a 、b 、c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)答案 C解析 a ,b ,c 互不相等,不妨设a <b <c , ∵f (a )=f (b )=f (c ),由图象可知,0<a <1,1<b <10,10<c <12. ∵f (a )=f (b ),∴|lg a |=|lg b |,即lg a =lg 1b ,a =1b .则ab =1,所以abc =c ∈(10,12).3. 用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x } (x ≥0),则f (x )的最大值为( )A .4B .5C .6D .7答案 C解析 画出y =2x ,y =x +2,y =10-x 的图象,如图所示,观察图象,可知当0≤x ≤2,f (x )=2x ,当2<x ≤4时,f (x )=x +2,当x >4时,f (x )=10-x ,f (x )的最大值在x =4时取得,为6.4. 函数f (x )=(12)x -sin x 在区间[0,2π]上的零点个数为( )A .1B .2C .3D .4答案 B解析 函数f (x )=(12)x -sin x 在区间[0,2π]上的零点个数即为方程(12)x -sin x =0在区间[0,2π]上解的个数.因此可以转化为两函数y =(12)x 与y =sin x 交点的个数.根据图象可得交点个数为2,即零点个数为2.5. 已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .(1,2]B .(1,2)C .[2,+∞)D .(2,+∞)答案 C解析 ∵渐近线y =bax 与过焦点F 的直线l 平行,或渐近线从该位置绕原点按逆时针旋转时,直线l 与双曲线的右支有一个交点,∴ba ≥3,即c 2=a 2+b 2≥4a 2,∴e ≥2.6. 设a =sin5π7,b =cos 2π7,c =tan 2π7,则 ( )A .a <b <cB .a <c <bC .b <c <aD .b <a <c答案 D解析 a =sin5π7=sin ⎝⎛⎭⎫π-2π7 =sin 2π7,又π4<2π7<π2,可通过单位圆中的三角函数线进行比较:如图所示,cos 2π7=OA ,sin 2π7=AB ,tan 2π7=MN ,∴cos 2π7<sin 2π7<tan 2π7,即b <a <c .7. 不等式x 2-log a x <0在x ∈(0,12)时恒成立,则a 的取值范围是( )A .0<a <1 B.116≤a <1C .a >1D .0<a ≤116答案 B解析 不等式x 2-loga x <0转化为x 2<log a x ,由图形知0<a <1且 (12)2≤log a 12, ∴a ≥116,故a 的取值范围为⎣⎡⎭⎫116,1. 8. 函数y =11-x的图象与函数y =2sin πx (-2≤x ≤4)的图象所有交点的横坐标之和等于( )A .2B .4C .6D .8 答案 D解析 令1-x =t ,则x =1-t .由-2≤x ≤4,知-2≤1-t ≤4,所以-3≤t ≤3. 又y =2sin πx =2sin π(1-t )=2sin πt .在同一坐标系下作出y =1t 和y =2sin πt 的图象.由图可知两函数图象在[-3,3]上共有8个交点,且这8个交点两两关于原点对称.因此这8个交点的横坐标的和为0,即t 1+t 2+…+t 8 =0.也就是1-x 1+1-x 2+…+1-x 8=0, 因此x 1+x 2+…+x 8=8.二、填空题9. 若实数x 、y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,则yx的最小值是________. 答案 2解析 可行域如图所示.又yx 的几何意义是可行域内的点与坐标原点连线的斜率k . 由图知,过点A 的直线OA 的斜率最小.联立⎩⎪⎨⎪⎧x -y +1=0,y =2,得A (1,2),∴k OA =2-01-0=2.∴y x 的最小值为2.10.设A ={(x ,y )|x 2+(y -1)2=1},B ={(x ,y )|x +y +m ≥0},则使A ⊆B 成立的实数m 的取值范围是__________. 答案 m ≥2-1解析 集合A 是一个圆x 2+(y -1)2=1上的点的集合,集合B 是一个不等式x +y +m ≥0表示的平面区域内的点的集合,要使A ⊆B ,则应使圆被平面区域所包含(如图),即直线x +y +m =0应与圆相切或相离(在圆的下方),而当直线与圆相切时有|m +1|2=1,又m >0,∴m =2-1,故m 的取值范围是m ≥2-1.11.若函数f (x )=a x -x -a (a >0且a ≠1)有两个零点,则实数a 的取值范围是________.答案 a >1解析 设函数y =a x (a >0且a ≠1)和函数y =x +a .则函数f (x )=a x -x -a (a >0且a ≠1)有两个零点,就是函数y =a x (a >0且a ≠1)的图象与函数y =x +a 的图象有两个交点.由图象可知,当0<a <1时,两函数只有一个交点,不符合;当a >1时,因为函数y =a x (a >1)的图象过点(0,1),而直线y =x +a 的图象与y 轴的交点一定在点(0,1)的上方,所以一定有两个交点.所以实数a 的取值范围是a >1.12.已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≥0-2x ,x <0,则关于x 的方程f [f (x )]+k =0,给出下列四个命题:①存在实数k ,使得方程恰有1个实根; ②存在实数k ,使得方程恰有2个不相等的实根; ③存在实数k ,使得方程恰有3个不相等的实根; ④存在实数k ,使得方程恰有4个不相等的实根.其中正确命题的序号是________.(把所有满足要求的命题序号都填上) 答案 ①②解析 依题意知函数f (x )>0,又f [f (x )]=依据y =f [f (x )]的大致图象(如图)知,存在实数k ,使得方程f [f (x )]+k =0恰有1个实根;存在实数k ,使得方程f [f (x )]+k =0恰有2个不相等的实根;不存在实数k ,使得方程恰有3个不相等的实根;不存在实数k ,使得方程恰有4个不相等的实根.综上所述,其中正确命题的序号是①②. 三、解答题13.已知函数f (x )=x 3+ax 2+bx .(1)若函数y =f (x )在x =2处有极值-6,求y =f (x )的单调递减区间;(2)若y =f (x )的导数f ′(x )对x ∈[-1,1]都有f ′(x )≤2,求ba -1的范围.解 (1)f ′(x )=3x 2+2ax +b ,依题意有⎩⎪⎨⎪⎧ f ′(2)=0,f (2)=-6.即⎩⎪⎨⎪⎧12+4a +b =0,8+4a +2b =-6,解得⎩⎪⎨⎪⎧a =-52,b =-2.∴f ′(x )=3x 2-5x -2.由f ′(x )<0,得-13<x <2.∴y =f (x )的单调递减区间是⎝⎛⎭⎫-13,2. (2)由⎩⎪⎨⎪⎧ f ′(-1)=3-2a +b ≤2,f ′(1)=3+2a +b ≤2,得⎩⎪⎨⎪⎧2a -b -1≥0,2a +b +1≤0.不等式组确定的平面区域如图阴影部分所示:由⎩⎪⎨⎪⎧ 2a -b -1=0,2a +b +1=0,得⎩⎪⎨⎪⎧a =0,b =-1.∴Q 点的坐标为(0,-1).设z =ba -1,则z 表示平面区域内的点(a ,b )与点P (1,0)连线的斜率.∵k PQ =1,由图可知z ≥1或z <-2,即b a -1∈(-∞,-2)∪[1,+∞).14.设关于θ的方程3cos θ+sin θ+a=0在区间(0,2π)内有相异的两个实根α、β.(1)求实数a的取值范围;(2)求α+β的值.解方法一(1)设x=cos θ,y=sin θ,则由题设知,直线l:3x+y+a=0与圆x2+y2=1有两个不同的交点A(cos α,sin α)和B(cos β,sin β).所以原点O到直线l的距离小于半径1,即d=||0+0+a(3)2+12=|a|2<1,∴-2<a<2.又∵α、β∈(0,2π),且α≠β.∴直线l不过点(1,0),即3+a≠0.∴a≠-3,即a∈(-2,-3)∪(-3,2).(2)如图,不妨设∠xOA =α,∠xOB =-β,作OH ⊥AB ,垂足为 H ,则∠BOH =α-β2.∵OH ⊥AB ,∴k AB ·k OH =-1. ∴tan α+β2=33.又∵α+β2∈(0,2π),∴α+β=π3或α+β=7π3.方法二 (1)原方程可化为sin (θ+π3)=-a 2,作出函数y =sin (x +π3)(x ∈(0,2π))的图象.由图知,方程在(0,2π)内有相异实根α,β的充要条件是⎩⎨⎧-1<-a2<1-a 2≠32,即-2<a <-3或-3<a <2.(2)由图知:当-3<a <2,即-a 2∈⎝⎛⎭⎫-1,32时,直线y =-a 2与三角函数y =sin(x +π3)的图象交于C 、D 两点,它们中点的横坐标为7π6,∴α+β2=7π6,∴α+β=7π3.当-2<a <-3,即-a 2∈⎝⎛⎭⎫32,1时,直线y =-a 2与三角函数y =sin(x +π3)的图象有两交点A 、B ,由对称性知,α+β2=π6,∴α+β=π3,综上所述,α+β=π3或α+β=7π3.。
第2讲函数与方程思想、数形结合思想函数与方程思想,渗透到中学数学的各个领域,是历年高考考查的重点和热点一般通过函数与导数、三角函数、数列及解析几何等知识运用的交汇处,思想方法和相关能力的结合处进行考查.思想方法诠释1.函数的思想:是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.2.方程的思想:就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程思想是动中求静,研究运动中的等量关系.3.函数思想与方程思想的联系:函数思想与方程思想密切相关,对于函数y=f(x),当y=0时,转化为方程f(x)=0,也可以把函数y=f(x)看作二元方程y-f(x)=0.函数与方程的问题可相互转化.求方程f(x)=0的解就是求函数y=f(x)的零点.求方程f(x)=g(x)的解的问题,可以转化为求函数y=f(x)-g(x)与x轴的交点问题.思想分类应用应用一函数思想与方程思想的转换,g(x)=ax2+bx(a,b∈R,a≠0),若y=f(x)的图象与y=g(x)的图象有且【例1】设函数f(x)=1x仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是()A.当a<0时,x1+x2<0,y1+y2>0B.当a<0时,x1+x2>0,y1+y2<0C.当a>0时,x1+x2<0,y1+y2<0D.当a>0时,x1+x2>0,y1+y2>0思维升华求两个函数f(x),g(x)图象的交点问题通常转化为求函数F(x)=f(x)-g(x)的零点问题.而函数F(x)的零点问题也可以转化为两个函数图象的交点问题.【对点训练1】已知函数f(x)的定义域为R,且有2f(x)+f(x2-1)=1,则f(-√2)= . 应用二函数与方程思想在解三角形中的应用【例2】为了竖一块广告牌,要制造三角形支架,如图,要求∠ACB=60°,BC的长度大于1 m, m,为了稳固广告牌,要求AC越短越好,则AC最短为()且AC比AB长12)m B.2 mA.(1+√32C.(1+√3)mD.(2+√3)m思维升华函数思想的实质是使用函数方法解决数学问题(不一定只是函数问题),构造函数解题是函数思想的一种主要体现.方程思想的本质是根据已知得出方程(组),通过解方程(组)解决问题.【对点训练2】已知a,b,c分别为△ABC的内角A,B,C的对边,S为△ABC的面.积,sin(B+C)=2xx2-x2(1)证明:A=2C;(2)若b=2,且△ABC为锐角三角形,求S的取值范围.应用三函数与方程思想在比较大小或不等式中的应用【例3】(1)(2020全国Ⅰ,理12)若2a+log2a=4b+2log4b,则()A.a>2bB.a<2bC.a>b2D.a<b2(2)(2020安徽合肥一中模拟,理12)已知关于x的不等式ax2e1-x-x ln x-1≤0恒成立,则实数a的取值范围是()A.[0,1]B.(-∞,0]]C.(-∞,1]D.(-∞,12思维升华1.在解决不等式问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题.2.函数f(x)>0或f(x)<0恒成立,一般可转化为f(x)min>0或f(x)max<0.已知恒成立求参数取值范围可先分离参数,再利用函数最值求解.【对点训练3】(1)(2020全国Ⅲ,文10)设a=log32,b=log53,c=2,则()3A.a<c<bB.a<b<cC.b<c<aD.c<a<b≥x-ln x+a恒成立,则a的最大值为()(2)若x∈(0,+∞),e x-1xC.0D.-eA.1B.1e应用四函数与方程思想在数列中的应用【例4】(2020湖南长郡中学四模,文4)设等差数列{a n }的前n 项和为S n ,若S 13=13π4,则cos 2a 5+cos 2a 7+cos 2a 9=( ) A.1B.32C.52D.2思维升华在解决数列问题时,应充分利用函数的有关知识,解题往往以函数的概念、图象、性质为纽带,建立起函数与数列间的桥梁,揭示它们内在的联系,从而有效快速解决数列问题. 【对点训练4】已知在数列{a n }中,前n 项和为S n ,且S n =x +23a n ,则xx x x -1的最大值为( )A .-3B .-1C .3D .1 应用五 函数与方程思想在概率中的应用 【例5】(2020河北沧州一模,理12)2019年末,武汉出现新型冠状病毒肺炎(COVID-19)疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为p (0<p<1)且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为f (p ),当p=p 0时,f (p )最大,则p 0=( ) A.1-√63B.√63C.12D.1-√33思维升华关于概率的应用题,首先应用概率的相关知识得到两个量的等量关系,然后利用函数模型研究函数的最值、极值问题,重在考查考生的“数学建模”的核心素养和知识的迁移能力等.【对点训练5】(2018全国1,理20)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p (0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f (p ),求f (p )的最大值点p 0;(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p 0作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求E (X ); ②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?应用方法归纳函数思想在解题中的应用主要表现在两个方面:。
第二讲数形结合思想1.数形结合的含义(1)数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法.数形结合思想通过“以形助数,以数辅形”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合.(2)数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数形之间的联系,即以形作为手段,数作为目的,比如应用函数的图像来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.2.数形结合的途径(1)通过坐标系“形题数解”借助于直角坐标系、复平面,可以将几何问题代数化.这一方法在解析几何中体现得相当充分(在高考中主要也是以解析几何作为知识载体来考查的).值得强调的是,“形题数解”时,通过辅助角引入三角函数也是常常运用的技巧(这是因为三角公式的使用,可以大大缩短代数推理).实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图像的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义.如等式(x-2)2+(y-1)2=4,表示坐标平面内以(2,1)为圆心,2为半径的圆.(2)通过转化构造“数题形解”许多代数结构都有着相对应的几何意义,据此,可以将数与形进行巧妙地转化.例如,将a(a>0)与距离互化;将a2与面积互化,将a2+b2+ab=a2+b2-2|a||b|cos θ(θ=60°或θ=120°)与余弦定理沟通;将a≥b≥c>0且b+c>a中的a、b、c与三角形的三边沟通;将有序实数对(或复数)和点沟通;将二元一次方程与直线、将二元二次方程与相应的圆锥曲线对应等等.这种代数结构向几何结构的转化常常表现为构造一个图形(平面的或立体的).另外,函数的图像也是实现数形转化的有效工具之一,正是基于此,函数思想和数形结合思想经常相互渗透,演绎出解题捷径.[例1] (2013·长沙模拟)若f (x )+1=1f (x +1),当x ∈[0,1]时,f (x )=x ,若在区间(-1,1]内g (x )=f (x )-mx -m 有两个零点,则实数m 的取值范围是( )A.⎣⎡⎭⎫0,12 B.⎣⎡⎭⎫12,+∞ C.⎣⎡⎭⎫0,13 D.⎝⎛⎦⎤0,12 [思维流程][解析] 当x ∈(-1,0]时,x +1∈(0,1], ∵当x ∈(0,1]时,f (x )=x ,∴f (x +1)=x +1.而由f (x )+1=1f (x +1),可得f (x )=1f (x +1)-1=1x +1-1(x ∈(-1,0]).如图所示,作出函数f (x )在区间(-1,1]内的图像,而函数g (x )零点的个数即为函数f (x )与y =mx +m 图像交点的个数,显然函数y =mx +m 的图像为经过点P (-1,0),斜率为m 的直线.如图所示,f (1)=1,故B (1,1).直线PB 的斜率k 1=1-01-(-1)=12;直线PO 的斜率为k 2=0.由图可知,函数f (x )与y =mx +m 的图像有两个交点,则直线y =mx +m 的斜率k 2<m ≤k 1,即m ∈⎝⎛⎦⎤0,12. [答案] D——————————规律·总结———————————————————利用数形结合求方程解应注意两点(1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图像的准确性、全面性,否则会得到错解.(2)正确作出两个函数的图像是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去数形结合.1.若定义在R 上的函数f (x )满足f (x +2)=f (x ),且x ∈[-1,1]时,f (x )=1-x 2,函数g (x )=⎩⎪⎨⎪⎧lg x ,x >0,0,x =0,-1x ,x <0,则函数h (x )=f (x )-g (x )在区间[-5,5]内零点的个数是( )A .5B .7C .8D .10解析:选C 依题意得,函数f (x )是以2为周期的函数,在同一坐标系下画出函数y =f (x )与函数y =g (x )的图像,结合图像得,当x ∈[-5,5]时,它们的图像的公共点共有8个,即函数h (x )=f (x )-g (x )在区间[-5,5]内的零点的个数是8.[2((2)若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.[思维流程][解析] (1)在同一坐标系中,分别作出y =log 2(-x ),y =x +1的图像,由图可知,x 的取值范围是(-1,0).(2)作出y =|x -2a |和y =12x +a -1的简图,依题意知应有2a ≤2-2a ,故a ≤12.[答案] (1)(-1,0) (2)⎝⎛⎦⎤-∞,12 ————————规律·总结——————————————————————利用数形结合解不等式应注意的问题解含参数的不等式时,由于涉及到参数,往往需要讨论,导致运算过程繁琐冗长.如果题设与几何图形有联系,那么利用数形结合的方法,问题将会顺利地得到解决.2.当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,则a 的取值范围为( ) A .(2,3] B .[4,+∞) C .(1,2]D .[2,4)解析:选C 设y 1=(x -1)2,y 2=log a x ,则y 1的图像为如图所示的抛物线.要使对一切x ∈(1,2),y 1<y 2恒成立,显然a >1,并且只需当x =2时,log a x ≥1,即a ≤2,所以1<a ≤2.[例3] (1)如果实数x ,y 满足(x -2)2+y 2=3,则yx 的最大值为( )A.12B.33C.32D. 3(2)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( )A .1B .2 C. 2 D.22[思维流程][解析] (1)(x -2)2+y 2=3表示坐标平面上的一个圆,圆心为M (2,0),半径r =3,如图,而y x =y -0x -0表示圆上的点(x ,y )与原点O (0,0)连线的斜率.该问题转化为如下几何问题:点A 在M (2,0)为圆心,3为半径的圆上移动,求直线OA 的斜率的最大值.由图可知,当点A 在第一象限,且OA 与圆相切时OA 的斜率最大. 连接AM ,则AM ⊥OA ,|OA |=|OM |2-|AM |2=22-(3)2=1,可得yx的最大值为tan ∠AOM =3,故选D.(2)因为(a -c )·(b -c )=0,所以(a -c )⊥(b -c ).如图所示,设OC =c ,OA =a ,OB =b ,CA =a -c ,CB =b -c ,即AC ⊥BC ,又OA ⊥OB ,所以O ,A ,C ,B 四点共圆.当且仅当OC 为圆的直径时,|c |最大,且最大值为 2. [答案] (1)D (2)C——————————规律·总结——————————————————————利用数形结合求最值的方法步骤第一步:分析数理特征,确定目标问题的几何意义.一般从图形结构、图形的几何意义分析代数式是否具有几何意义.第二步:转化为几何问题. 第三步:解决几何问题. 第四步:回归代数问题.第五步:回顾反思.应用几何意义数形结合法解决问题需要熟悉常见的几何结构的代数形式,主要有:(1)比值——可考虑直线的斜率;(2)二元一次式——可考虑直线的截距;(3)根式分式——可考虑点到直线的距离;(4)根式——可考虑两点间的距离.3.对于任意x ∈R ,函数f (x )表示-x +3,32x +12,x 2-4x +3中的较大者,则f (x )的最小值是( )A .2B .3C .8D .-1解析:选A 分别画出y =-x +3,y =32x +12,y =x 2-4x+3三个函数的图像,如图所示,得到三个交点A (0,3),B (1,2),C (5,8).函数f (x )的表达式为f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x +3,0<x ≤1,32x +12,1<x ≤5,x 2-4x +3,x >5,f (x )的图像是图中的实线部分,图像的最低点是B (1,2),所以函数f (x )的最小值是2.4.当0<x <π2,函数f (x )=1+cos 2x +4sin 2x sin 2x 的最小值为( )A .-4B .-2 2C .4D .2 2解析:选D f (x )=1+cos 2x +2(1-cos 2x )sin 2x =3-cos 2x0-(-sin 2x ),它表示点(0,3)与点(-sin 2x ,cos 2x )连线的斜率,而点(-sin 2x ,cos 2x )在x ∈⎝⎛⎭⎫0,π2时是圆x 2+y 2=1的左半圆(不含端点),数形结合可知当过(0,3)的直线与该半圆相切时,斜率最小,即f (x )最小.设切线方程为y =kx +3,则|3|k 2+1=1⇒k =22或k =-22(舍),故f (x )的最小值为2 2.1.应用数形结合的思想应注意以下数与形的转化(1)集合的运算及韦恩图; (2)函数及其图像;(3)数列通项及求和公式的函数特征及函数图像; (4)方程(多指二元方程)及方程的曲线;(5)对于研究距离、角或面积的问题,直接从几何图形入手进行求解即可;(6)对于研究函数、方程或不等式(最值)的问题,可通过函数的图像求解(函数的零点、顶点是关键点),做好知识的迁移与综合运用.2.运用数形结合的思想分析解决问题时,应把握以下三个原则 (1)等价性原则在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞,有时,由于图形的局限性,不能完整地表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,但它同时也是抽象而严格证明的诱导.(2)双向性原则在数形结合时,既要进行几何直观的分析,又要进行代数抽象的探索,两方面相辅相成,仅对代数问题进行几何分析(或仅对几何问题进行代数分析)在许多时候是很难行得通的.例如,在解析几何中,我们主要是运用代数的方法来研究几何问题,但是在许多时候,若能充分地挖掘利用图形的几何特征,将会使得复杂的问题简单化.(3)简单性原则就是找到解题思路之后,至于用几何方法还是用代数方法或者兼用两种方法来叙述解题过程,则取决于哪种方法更为简单,而不是去刻意追求代数问题运用几何方法,几何问题运用代数方法.[数学思想专练(二)]一、选择题1.不等式x 2-log a x <0,在x ∈⎝⎛⎭⎫0,12时恒成立,则a 的取值范围是( ) A .0<a <1 B.116≤a <1 C .a >1D .0<a ≤116解析:选B 不等式x 2-log a x <0转化为x 2<log a x ,由图形知0<a <1且⎝⎛⎭⎫122≤log a 12,所以a ≥116,所以116≤a <1.2.(2013·西城模拟)已知f (x )=⎩⎪⎨⎪⎧x +3,x ≤1,-x 2+2x +3,x >1,则函数g (x )=f (x )-e x 的零点个数为( )A .1B .2C .3D .4解析:选B 函数g (x )=f (x )-e x 的零点即为函数f (x )与y =e x 的图像交点的个数,如图所示,作出函数f (x )与y =e x 的图像,由图像可知两个函数图像有两个交点,∴函数g (x )=f (x )-e x 有两个零点.3.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))+1的零点个数是( )A .4B .3C .2D .1解析:选A 令x +1=0,得x =-1,令log 2x =0,得x =1;令F (x )=f (f (x ))+1,则F (x )=⎩⎪⎨⎪⎧x +3,x ≤-1,log 2(x +1)+1,-1<x ≤0,log 2x +2,0<x ≤1,log 2(log 2x )+1,x >1.作出函数y =F (x )的图像如图所示,有4个零点.4.已知平面向量a 、b ,|a |=1,|b |=3,且|2a +b |=7,则向量a 与向量a +b 的夹角为( )A.π2B.π3C.π6D .π解析:选B ∵|2a +b |2=4|a |2+4a ·b +|b |2=7,|a |=1,|b |=3, ∴4+4a ·b +3=7,即a ·b =0,∴a ⊥b . 如图所示,a 与a +b 的夹角为∠COA , ∵tan ∠COA =|CA ||OA |=31,∴∠COA =π3,即a 与a +b 的夹角为π3. 5.以椭圆的右焦点F 2为圆心作一个圆,使此圆过椭圆的中心,交椭圆于M ,N 两点,若直线MF 1(F 1为椭圆的左焦点)是圆F 2的切线,则椭圆的离心率为( )A .2- 3 B.3-1 C.22D.32解:选B 如图,易知|MF 2|=c ,∵|MF 1|+|MF 2|=2a ,∴|MF 1|=2a -c .在△F 1MF 2中,∵MF 1⊥MF 2,又|F 1F 2|=2c ,∴(2a -c )2+c 2=(2c )2,即2a 2-2ac -c 2=0.方程两边同除以-a 2得e 2+2e -2=0,解得e =3-1.6.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)解析:选C 画出函数f (x )的图像,再画出直线y =d (0<d <1),如图所示,直观上知0<a <1,1<b <10,10<c <12,再由|lg a |=|lg b |,得-lg a =lg b ,从而得ab =1,则10<a bc <12.二、填空题7.如果函数y =1+4-x 2(|x |≤2)的图像与函数y =k (x -2)+4的图像有两个交点,那么实数k 的取值范围是________.解析:函数y =1+4-x 2的值域为[1,3],将y -1=4-x 2两边平方,得x 2+(y -1)2=4,考虑到函数的值域,函数y =1+4-x 2的图像是以(0,1)为圆心,2为半径的上半圆,半圆的端点为点A (-2,1)和点B (2,1);函数y =k (x -2)+4是过定点P (2,4)的直线.画出两函数的图像如图所示,易得实数k 的范围是⎝⎛⎦⎤512,34.答案:⎝⎛⎦⎤512,348.已知1a +2b =1(a >0,b >0),当ab 取最小值时,方程2-2x =b -bax |x |的实数解的个数是________.解析:1ab =12⎝⎛⎭⎫1a ·2b ≤12·⎝ ⎛⎭⎪⎫1a +2b 22=18,当1a =2b ,即a =2,b =4时等号成立,则方程1-x =2-x |x |,在同一坐标系作出y 1=-(x -1)和y 2=2-x |x |的草图,交点个数为1,即方程的解的个数为1.答案:19.已知函数f (x )=⎩⎪⎨⎪⎧e -x -2,x ≤0,2ax -1,x >0(a 是常数且a >0).对于下列命题:①函数f (x )的最小值是-1;②函数f (x )在R 上是单调函数;③若f (x )>0在⎣⎡⎭⎫12,+∞上恒成立,则a 的取值范围是a >1;④对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝⎛⎭⎫x 1+x 22<f (x 1)+f (x 2)2. 其中正确命题的序号是________.解析:如图所示,作出函数f (x )的图像,显然f (x )在(-∞,0)上单调递减,而a >0,故f (x )在(0,+∞)上单调递增,所以函数f (x )的最小值为f (0)=-1,故命题①正确;显然,函数f (x )在R 上不是单调函数,②错误;因为f (x )在(0,+∞)上单调递增,故函数f (x )在⎣⎡⎭⎫12,+∞上的最小值为f ⎝⎛⎭⎫12=2a ×12-1=a -1,所以若f (x )>0在⎣⎡⎭⎫12,+∞上恒成立,则a -1>0,即a >1,故③正确;由图像可知在(-∞,0)上对任意x 1<0,x 2<0且x 1≠x 2,恒有f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2成立,故④正确.综上,正确的命题有①③④. 答案:①③④ 三、解答题10.设有函数f (x )=a +-x 2-4x 和g (x )=43x +1,已知x ∈[-4,0]时恒有f (x )≤g (x ),求实数a 的取值范围.解:f (x )≤g (x ), 即a +-x 2-4x ≤43x +1,变形得-x 2-4x ≤43x +1-a ,令y =-x 2-4x , ①y =43x +1-a , ② ①变形得(x +2)2+y 2=4(y ≥0),即表示以(-2,0)为圆心,2为半径的圆的上半圆;②表示斜率为43,纵截距为1-a 的平行直线系. 设与圆相切的直线为AT ,其倾斜角为α,则有tan α=43,0<α<π2, ∴sin α=45,cos α=35, |OA |=2tan ⎝ ⎛⎭⎪⎫π2+α2=2·1-cos ⎝⎛⎭⎫π2+αsin ⎝⎛⎭⎫π2+α= 2·1+sin αcos α=2⎝⎛⎭⎫1+4535=6. 要使f (x )≤g (x )在x ∈[-4,0]恒成立,则②所表示的直线应在直线AT 的上方或与它重合,故有1-a ≥6,即a ≤-5.所以实数a 的取值范围是(-∞,-5].11.已知a >0,函数f (x )=x |x -a |+1(x ∈R ).(1)当a =1时,求所有使f (x )=x 成立的x 的值;(2)当a ∈(0,3)时,求函数y =f (x )在闭区间[1,2]上的最小值.解:(1)因为x |x -1|+1=x ,所以x =-1或x =1.(2)f (x )=⎩⎪⎨⎪⎧x 2-ax +1, x ≥a ,-x 2+ax +1, x <a , (其示意图如图所示)①当0<a ≤1时,x ≥1≥a ,这时,f (x )=x 2-ax +1,对称轴是x =a 2≤12<1, 所以函数y =f (x )在区间[1,2]上递增,f (x )min =f (1)=2-a;②当1<a ≤2时,当x =a 时函数f (x )min =f (a )=1;③当2<a <3时,x ≤2<a ,这时,f (x )=-x 2+ax +1,对称轴是x =a 2∈⎝⎛⎭⎫1,32,f (1)=a ,f (2)=2a -3.因为(2a -3)-a =a -3<0,所以函数f (x )min =f (2)=2a -3.12.设函数F (x )=⎩⎪⎨⎪⎧f (x ),x ≤0,g (x ),x >0,其中f (x )=ax 3-3ax ,g (x )=12x 2-ln x ,方程F (x )=a 2有且仅有四个解,求实数a 的取值范围.解:x ∈(0,1)时,g ′(x )=x -1x <0,x ∈(1,+∞)时,g ′(x )=x -1x>0,所以当x =1时,g (x )取极小值g (1)=12. (1)当a =0时,方程F (x )=a 2不可能有4个解;(2)当a <0时,因为f ′(x )=3a (x 2-1),若x ∈(-∞,0]时,f ′(x )=3a (x 2-1),当x ∈(-1,0]时,f ′(x )>0,当x ∈(-∞,-1)时,f ′(x )<0,所以当x =-1时,f (x )取得极小值f (-1)=2a ,又f (0)=0,所以F (x )的图像如图(1)所示,从图像可以看出F (x )=a 2不可能有4个解.图(1) 图(2)(3)当a >0时,当x ∈(-∞,-1)时,f ′(x )>0,当x ∈(-1,0]时,f ′(x )<0,所以当x =-1时,f (x )取得极大值f (-1)=2a ,又f (0)=0,所以F (x )的图像如图(2)所示,从图像看出方程F (x )=a 2若有4个解,则12<a 2<2a ,所以实数a 的取值范围是⎝⎛⎭⎫22,2.。
第二讲数形结合思想
思想方法诠释
数形结合思想:是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想.通过“以形助数,以数辅形”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维.
要点一利用数形结合思想研究函数的零点、
方程的根、图象的交点问题
[解析](1)函数f(x)=ln x-x-a的零点,即关于x的方程ln x-x-a=0的实根,将方程ln x-x-a=0化为方程ln x=x+a,令y1=ln x,y2=x+a,由导数知识可知,直线y2=x+a与曲线y1=ln x相切时有a=-1,如图所示,若关于x的方程ln x-x-a=0有两个不同的实根,则实数a的取值范围是(-∞,-1).故选B.。
技法强化训练(二) 数形结合思想题组1 利用数形结合思想解决方程的根或函数零点问题 1.方程|x 2-2x |=a 2+1(a >0)的解的个数是( ) A .1 B .2 C .3D .4B [∵a >0,∴a 2+1>1. 而y =|x 2-2x |的图象如图,∴y =|x 2-2x |的图象与y =a 2+1的图象总有2个交点.] 2.已知函数f (x )=|log 2|x ||-⎝⎛⎭⎫12x,则下列结论正确的是( ) A .f (x )有三个零点,且所有零点之积大于-1 B .f (x )有三个零点,且所有零点之积小于-1 C .f (x )有四个零点,且所有零点之积大于1 D .f (x )有四个零点,且所有零点之积小于1A [在同一坐标系中分别作出f 1(x )=|log 2|x ||与f 2(x )=⎝⎛⎭⎫12x 的图象,如图所示,由图象知f 1(x )与f 2(x )有三个交点,设三个交点的横坐标从左到右分别是x 1,x 2,x 3,因为f ⎝⎛⎭⎫-12<0,f ⎝⎛⎭⎫-14>0,所以-12<x 1<-14,同理12<x 2<1,1<x 3<2,即-1<x 1x 2x 3<-18,即所有零点之积大于-1.]3.(2016·广州二模)设函数f (x )的定义域为R ,f (-x )=f (x ),f (x )=f (2-x ),当x ∈[0,1]时,f (x )=x 3,则函数g (x )=|cos(πx )|-f (x )在⎣⎡⎦⎤-12,52上的所有零点的和为( ) A .7 B .6 C .3D .2A [函数g (x )=|cos(πx )|-f (x )在⎣⎡⎦⎤-12,52上的零点为函数h (x )=|cos(πx )|与函数f (x )的交点的横坐标.因为f (-x )=f (x ),f (x )=f (2-x ),所以函数f (x )为关于x =1对称的偶函数,又因为当x ∈[0,1]时,f (x )=x 3,则在平面直角坐标系内画出函数h (x )=|cos(πx )|与函数f (x )在⎣⎡⎦⎤-12,52内的图象,如图所示,由图易得两函数图象共有7个交点,不妨设从左到右依次为x 1,x 2,x 3,x 4,x 5,x 6,x 7,则由图易得x 1+x 2=0,x 3+x 5=2,x 4=1,x 6+x 7=4,所以x 1+x 2+x 3+x 4+x 5+x 6+x 7=7,即函数g (x )=|cos(πx )|-f (x )在⎣⎡⎦⎤-12,52上的零点的和为7,故选A.] 4.(2016·合肥二模)若函数f (x )=a +sin x 在[π,2π]上有且只有一个零点,则实数a =________.1 [函数f (x )=a +sin x 在[π,2π]上有且只有一个零点,即方程a +sin x =0在[π,2π]上只有一解,即函数y =-a 与y =sin x ,x ∈[π,2π]的图象只有一个交点,由图象可得a =1.]5.已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a ,若存在实数b ,使函数g (x )=f (x )-b 有两个零点,则a的取值范围是______________.(-∞,0)∪(1,+∞) [函数g (x )有两个零点,即方程f (x )-b =0有两个不等实根,则函数y =f (x )和y =b 的图象有两个公共点.①若a <0,则当x ≤a 时,f (x )=x 3,函数单调递增;当x >a 时,f (x )=x 2,函数先单调递减后单调递增,f (x )的图象如图(1)实线部分所示,其与直线y =b 可能有两个公共点.②若0≤a ≤1,则a 3≤a 2,函数f (x )在R 上单调递增,f (x )的图象如图(2)实线部分所示,其与直线y =b 至多有一个公共点.③若a >1,则a 3>a 2,函数f (x )在R 上不单调,f (x )的图象如图(3)实线部分所示,其与直线y =b 可能有两个公共点.综上,a <0或a >1.]题组2 利用数形结合思想求解不等式或参数范围6.若不等式log a x >sin 2x (a >0,a ≠1)对任意x ∈⎝⎛⎭⎫0,π4都成立,则a 的取值范围为( ) A.⎝⎛⎭⎫0,π4 B .⎝⎛⎭⎫π4,1 C.⎝⎛⎭⎫π4,π2D .(0,1)A [记y 1=log a x (a >0,a ≠1),y 2=sin 2x ,原不等式即为y 1>y 2,由题意作出两个函数的图象,如图所示,知当y 1=log a x 的图象过点A ⎝⎛⎭⎫π4,1时,a =π4,所以当π4<a <1时,对任意x ∈⎝⎛⎭⎫0,π4都有y 1>y 2.] 7.(2016·黄冈模拟)函数f (x )是定义域为{x |x ≠0}的奇函数,且f (1)=1,f ′(x )为f (x )的导函数,当x >0时,f (x )+xf ′(x )>1x,则不等式xf (x )>1+ln|x |的解集是( )【导学号:85952004】A .(-∞,-1)∪(1,+∞)B .(-∞,-1)C .(1,+∞)D .(-1,1)A [令g (x )=xf (x )-ln|x |,则g (x )是偶函数, 且当x >0时,g ′(x )=f (x )+xf ′(x )-1x >0,∴g (x )在(0,+∞)上单调递增. 故不等式xf (x )>1+ln|x |⇔g (|x |)>g (1), ∴|x |>1,解得x >1或x <-1.故选A.]8.若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.⎝⎛⎦⎤-∞,12 [作出y =|x -2a |和y =12x +a -1的简图,依题意知应有2a ≤2-2a ,故a ≤12.]9.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc的取值范围是________.(10,12) [作出f (x )的大致图象.由图象知,要使f (a )=f (b )=f (c ),不妨设a <b <c , 则-lg a =lg b =-12c +6.∴lg a +lg b =0,∴ab =1,∴abc =c . 由图知10<c <12,∴abc ∈(10,12).]10.已知函数f (x )=sin ⎝⎛⎭⎫2ωx +π3的相邻两条对称轴之间的距离为π4,将函数f (x )的图象向右平移π8个单位后,再将所有点的横坐标伸长为原来的2倍,得到g (x )的图象,若g (x )+k =0在x ∈⎣⎡⎦⎤0,π2上有且只有一个实数根,则k 的取值范围是________.【导学号:85952005】⎩⎨⎧⎭⎬⎫k ⎪⎪-12<k ≤12或k =-1 [因为f (x )相邻两条对称轴之间的距离为π4,结合三角函数的图象可知T 2=π4,即T =π2.又T =2π2ω=π2,所以ω=2,f (x )=sin ⎝⎛⎭⎫4x +π3. 将f (x )的图象向右平移π8个单位得到f (x )=sin ⎣⎡⎦⎤4⎝⎛⎭⎫x -π8+π3=sin ⎝⎛⎭⎫4x -π6的图象,再将所有点的横坐标伸长为原来的2倍得到g (x )=sin ⎝⎛⎭⎫2x -π6的图象. 所以方程为sin ⎝⎛⎭⎫2x -π6+k =0. 令2x -π6=t ,因为x ∈⎣⎡⎦⎤0,π2, 所以-π6≤t ≤5π6.若g (x )+k =0在x ∈⎣⎡⎦⎤0,π2上有且只有一个实数根,即y =sin t 与y =-k 在⎣⎡⎦⎤-π6,5π6上有且只有一个交点.如图所示,由正弦函数的图象可知-12≤-k <12或-k =1, 即-12<k ≤12或k =-1.]题组3 利用数形结合解决解析几何问题11.已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( )A .7B .6C .5D .4B [根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4)半径r =1,且|AB |=2m ,因为∠APB =90°,连接OP ,易知|OP |=12|AB |=m .要求m 的最大值,即求圆C 上的点P 到原点O 的最大距离.因为|OC |=32+42=5,所以|OP |max =|OC |+r =6,即m 的最大值为6.]12.(2016·衡水模拟)过抛物线y 2=2px (p >0)焦点F 的直线l 与抛物线交于B ,C 两点,l 与抛物线的准线交于点A ,且|AF |=6,AF →=2FB →,则|BC |=( )A.92B .6 C.132D .8A [如图所示,直线与抛物线交于B ,C 两点,与抛物线的准线交于A 点.∵AF →=2FB →,∴F 在A ,B 中间,C 在A ,F 之间,分别过B ,C 作准线的垂线BB 1,CC 1,垂足分别为B 1,C 1.由抛物线的定义可知|BF |=|BB 1|,|CF |=|CC 1|.∵AF →=2FB →,|AF |=6, ∴|FB |=|BB 1|=3. 由△AFK ∽△ABB 1可知, |FK ||BB 1|=|AF ||AB |,∴|FK |=2. 设|CF |=a ,则|CC 1|=a ,由△ACC 1∽△AFK ,得|CC 1||FK |=|AC ||AF |.∴a 2=6-a 6,∴a =32. ∴|BC |=|BF |+|FC |=3+32=92.]13.已知P 是直线l :3x +4y +8=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A ,B 是切点,C 是圆心,则四边形P ACB 面积的最小值为________.22 [从运动的观点看问题,当动点P 沿直线3x +4y +8=0向左上方或右下方无穷远处运动时,直角三角形P AC 的面积S Rt △P AC =12|P A |·|AC |=12|P A |越来越大,从而S 四边形P ACB 也越来越大;当点P 从左上、右下两个方向向中间运动时,S 四边形P ACB 变小,显然,当点P 到达一个最特殊的位置,即CP 垂直于直线l 时,S 四边形P ACB 应有唯一的最小值,此时|PC |=|3×1+4×1+8|32+42=3,从而|P A |=|PC |2-|AC |2=2 2.所以(S 四边形P ACB )min =2×12×|P A |×|AC |=2 2.]14.已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B . (1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y =k (x -4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.[解] (1)圆C 1的方程x 2+y 2-6x +5=0可化为(x -3)2+y 2=4,所以圆心坐标为(3,0).2分(2)设A (x 1,y 1),B (x 2,y 2)(x 1≠x 2), M (x 0,y 0),则x 0=x 1+x 22,y 0=y 1+y 22.由题意可知直线l 的斜率必存在,设直线l 的方程为y =tx . 将上述方程代入圆C 1的方程,化简得(1+t 2)x 2-6x +5=0.5分由题意,可得Δ=36-20(1+t 2)>0(*),x 1+x 2=61+t 2,所以x 0=31+t 2,代入直线l 的方程,得y 0=3t1+t 2.6分因为x 20+y 20=9+t 22+9t 2+t 22=+t 2+t 22=91+t 2=3x 0,所以⎝⎛⎭⎫x 0-322+y 20=94. 由(*)解得t 2<45,又t 2≥0,所以53<x 0≤3.所以线段AB 的中点M 的轨迹C 的方程为⎝⎛⎭⎫x -322+y 2=94⎝⎛⎭⎫53<x ≤3.8分 (3)由(2)知,曲线C 是在区间⎝⎛⎦⎤53,3上的一段圆弧.如图,D ⎝⎛⎭⎫53,253,E ⎝⎛⎭⎫53,-253,F (3,0),直线L 过定点G (4,0).联立直线L 的方程与曲线C 的方程,消去y 整理得(1+k 2)x 2-(3+8k 2)x +16k 2=0. 令判别式Δ=0,解得k =±34,由求根公式解得交点的横坐标为x H ,I =125∈⎝⎛⎦⎤53,3.11分 由图可知:要使直线L 与曲线C 只有一个交点,则k ∈[k DG ,k EG ]∪{k GH ,k GI },即k ∈⎣⎡⎦⎤-257,257∪⎩⎨⎧⎭⎬⎫-34,34.12分。