山东省滨州市惠民县2017-2018学年八年级上学期期末数学试题(原卷版)
- 格式:doc
- 大小:145.50 KB
- 文档页数:6
FDBCAE 八年级数学试题上学期期末考试一、选择题(每小题3分,共30分) 1.下列图形中轴对称图形是( )A B C D2,.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有( )A.6个B.5个C.4个D.3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A.15或16B.16或17C.15或17D.15.16或174.如图,△ACB ≌△A'CB',∠BCB'=30°,则∠ACA'的度数为( )A.20°B.30°C.35°D.40°5, 等腰三角形的两边长分别为5cm 和 10cm ,则此三角形的周长是( )A.15cmB. 20cmC. 25cmD.20cm 或25cm6.如图,已知∠CAB =∠DAB ,则添加下列一个条件不能使△ABC ≌△ABD 的是( ) A.AC =AD B.BC =BD C.∠C =∠D D.∠ABC =∠ABD7.如图,已知在△ABC 中,CD 是AB 边上的高,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( )A.10B.7C.5D.4 8.若()22316m x x+-+是完全平方式,则m 的值等于( )A. 3B. -5C.7D. 7或-19.如图,在△ABC 中,AB =AC ,BE=CD ,BD =CF ,则∠EDF 的度数为 ( ) A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠第10题 10.如上图,等腰Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:① DF =DN ;② △DMN 为等腰三角形;③ DM 平分∠BMN ;④ AE =32EC ;⑤ AE =NC ,其中正确结论的个数是( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分)11.计算:()()312360.1250.2522⨯-⨯⨯- = 12,在实数范围内分解因式:3234a ab - = 13.若2,3,mn xx ==则2m nx+=14.若A (x ,3)关于y 轴的对称点是B (﹣2,y ),则x=__________,y=__________,点A 关于x 轴的对称点的坐标是__________.15,如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC 的周长为 _________第15题图 第17题图16,已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为17.如图,∠AOB =30°,点P 为∠AOB 内一点,OP =8.点M 、N 分别在OA 、OB 上,则△PMN 周长的最小值为__________18. 如图所示,在△ABC 中,∠A =80°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于A 1点,∠A 1BC 与∠A 1CD 的平分线相交于A 2点,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于A 5点,则∠A 5的度数是 。
2017—2018学年度第一学期期末调研考试八年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。
一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,42.在下列运算中,计算正确的是A.(x5)2=x7B.(x-y)2=x2-y2C.x12÷x3=x9D.x3+x3=x63.数学课上,同学们在练习本上画钝角三角形ABC的高BE时,有一部分学生画出下列四种图形,其中错误的个数为A.1个B.2个C.3个D.4个4.下列轴对称图形中,对称轴条数是四条的图形是A.B.C.D.5.下列关于分式的判断,正确的是A.当x=2时,12xx+-的值为零B.无论x为何值,231x+的值总为正数C .无论x 为何值,31x +不可能得整数值 D .当x≠3时,3x x -有意义6.如图,已知AB=AC ,AD=AE ,若要得到“△ABD ≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是A .BD=CEB .∠ABD=∠ACEC .∠BAD=∠CAED .∠BAC=∠DAE 7.若把分式2x yxy+中的x 和y 都扩大3倍,且x+y≠0,那么分式的值 A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍 8.若x=-2,y=12,则y (x+y )+(x+y )(x -y )-x 2的值等于 A .-2 B .12C .1D .-19.如图,在△ABC 中,DE 是AC 的垂直平分线,AC=6cm ,且△ABD 的周长为13cm ,则△ABC 的周长为A .13cmB .19cmC .10cmD .16cm10.观察等式(2a ﹣1)a+2=1,其中a 的取值可能是A .﹣2B .1或﹣2C .0或1D .1或﹣2或0 11.下列计算中正确的是A .22155b a a b ab -⨯=-- B .32x y x y ya b a b a b+--=+++ C .m m n m n n m n ÷⨯= D .1224171649xy xy a xy a -⎛⎫⎛⎫÷=⎪ ⎪⎝⎭⎝⎭12.如图,C 在AB 的延长线上,CE ⊥AF 于E ,交FB 于D ,若∠F=40°,∠C=20°,则∠FBA 的度数为A .50°B .60°C .70°D .80°13.若y -x=-1,xy=2,则代数式-12x 3y+x 2y 2-12xy 3的值是 A .2 B .-2 C .1 D .-114.图1是一个长为 2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是A .a 2-b 2B .(a -b )2C .(a+b )2D .ab15.如图,△ABC的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC的对称图形,得到△A′B′C′,若点A的对应点A′的坐标是(3,5),那么点B的对应点B′的坐标是A.(0,3)B.(1,2)C.(0,2)D.(4,1)16.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是A.①②④B.①②③C.②③④D.①②二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.一个多边形的每一个外角都为36°,则这个多边形是边形.18.若x2+2(m-3)x+16是一个完全平方式,那么m应为.19.对于实数a、,b,定义运算⊗如下:a⊗b=()(),0,0bba ab aa ab a-⎧>≠⎪⎨≤≠⎪⎩,例如:2⊗4=2-4=116,计算[4⊗2] =,[2⊗2]×[3⊗2]=.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题满分8分)如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.21.(本题满分9分)先化简,再求值:2214411a aa a a-+⎛⎫-÷⎪--⎝⎭,其中-2<a≤2,请选择一个a的合适整数代入求值.22.(本题满分9分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予证明(结论中不得含有未标识的字母);(2)求证:DC⊥BE.23.(本题满分9分)先阅读以下材料,然后解答问题.将一个多项式分组后,可提公因式或运用公式继续分解的方法是因式分解中的分组分解法,一般的分组分解法有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay)+(bx+by)=a(x+y)+b(x+y)=(x+y)(a+b)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x2-y2-x-y;(2)分解因式:9m2-4x2+4xy-y2;24.(本题满分10分)如图,已知BD平分∠ABC,AB=AD,DE⊥AB,垂足为E.(1)求证:AD∥BC;(2)若DE=6cm,求点D到BC的距离;(3)当∠ABD=35°,∠DAC=2∠ABD时,①求∠BAC的度数;②证明:AC=AD.25.(本题满分11分)随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?26.(本题满分12分)如图1,△ABC是边长为5cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的是速度都为1厘米/秒.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(秒).(1)当运动时间为t秒时,BQ的长为厘米,BP的长为厘米;(用含t 的式子表示)(2)当t为何值时,△PBQ是直角三角形;(3)如图2,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.参考答案及评分标准说明:1.在阅卷过程中,如果考生还有其它正确解法,可参照评分参考酌情给分;2.填空题缺少必有的单位或答案不完整不得分;3.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;4.解答右端所注分数,表示正确做到这一步应得的累积分数.一、(本大题有16小题,共43分.1~10每小题各3分,11~16每小题各2分)二、(本大题有3个小题,共10分.17~18小题个3分;19小题有2个空,每空2分) 17.十;18.-1或7;19.16,.三、(本大题有7小题,共68分)20.解:(1)如图所示:△A1B1C1为所求作的三角形;……………………….……4分(2)如图,……………………………………………………………………..…..……7分点P的坐标为:(0,1).………………………………………………………...………8分21.解:原式=……………………………………………………….2分=……………………………………………………………………………4分=,………………………………………………………………………………………6分当a=-1时,…………………………………………………………………….…………8分原式=.……………………………………………..……………………………9分22.(1)解:△BAE≌△CAD,证明如下:……………………………………………1分∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.……………………………..……………2分∠BAE=∠DAC=90°+∠CAE,………………………………………………………...…4分在△BAE和△DAC中∴△BAE≌△CAD(SAS).………………………………………………………………6分(2)证明:∵△ABC,△DAE是等腰直角三角形,∴∠B=45°,∠BCA=45°,……………………………………………………………..…7分∵△BAE≌△CAD.∴∠DCA=∠B=45°.………………………………………………………………………8分∴∠BCD=∠BCA+∠DCA=90°,∴DC⊥BE.…………………………………………………………………………………9分23.解:(1)原式=(x2-y2)-(x+y)…………………………………………………2分=(x+y)(x-y)-(x+y)…………………………….……………………………….…3分=(x+y)(x-y-1);……………………………………………….………………………4分(2)原式=9m2-(4x2-4xy+y2)……………………………………………………….6分=(3m)2-(2x-y)2…………………………………………………………………….8分=(3m+2x-y)(3m-2x+y). ……………………………………………………….……9分24.(1)证明:∵AB=AD,∴∠ADB=∠ABD…………………………………………………….………..……………1分又∵BD平分∠ABC,即∠ABD=∠DBC,∴∠ADB =∠DBC,…………………………………………………………..……………2分∴AD∥BC;…………………………………………………………………………………3分(2)解:作DF⊥BC交BC的延长线于F.∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DF=DE=6cm;即点D到BC的距离为6cm. ……………………………………………………..……5分(3)①解:∵BD平分∠ABC,∴∠ABC=2∠ABD=70°,…………………………………………………………..….…6分∵AD∥BC,∴∠ACB=∠DAC=70°,……………………………………………………………….…7分∴∠BAC=180°-∠ABC-∠ACB=180°-70°-70°=40°.……………………………8分②证明:∵∠ABC=70°,∠ACB=70°,∴∠ABC=∠ACB,∴AB=AC,…………………………………………………………………………………9分又∵AB=AD,∴AC=AD.………………………………………………………………………………..10分25.解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意得,……………..……………………………………………………..…………1分-=8,…………………………………………..………………….……4分解得:x=96,……………..………………5分经检验,x=96是原分式方程的解,且符合题意,……………..………………………6分则2.5x=240,答:高铁列车的平均时速为240千米/小时;………………………………..…………7分(2)780÷240=3.25,则坐车共需要3.25+1=4.25(小时),……………………………………..…………..…9分从9:20到13:40,共计4小时,………………………………...…………………10分因为4小时>4.25小时,所以王先生能在开会之前到达.………………………………………………..………11分26.解:(1)t;(5-t);………………………..………………….…………..………2分(2)∵△ABC是等边三角形,∴∠B=60°.①当∠PQB=90°时,∵∠B=60°,∴∠BPQ=30°,∴PB=2BQ,得5-t=2t,解得,t=,………………………………………………………………………………4分②当∠BPQ=90°时,∵∠B=60°,∴∠BQP=30°,∴BQ=2BP,得t=2(5-t),解得,t=,………………………………………………………………...…………6分∴当t的值为或时,△PBQ为直角三角形;…………………………..………7分(3)∠CMQ不变,∠CMQ=60°理由如下:………………………………….……8分∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=60°,由题意可知:AP=BQ,在△ABQ与△CAP中,,∴△ABQ≌△CAP(SAS),…………………………………………………..………10分∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°,∴∠CMQ不会变化,总为60°.………………………..……………………………12分。
山东省滨州市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)以下列各数为边长,不能组成直角三角形的是()A . 3,4,5B . 4,5,6C . 5,12,13D . 6,8,102. (2分)下列实数中,为无理数的是()A . 0.2B .C .D . -53. (2分) (2019七下·永川期中) 下列说法中正确的是()A . 9的平方根是3B . 4平方根是C . 的算术平方根是4D . -8的立方根是4. (2分)下列二次根式中,取值范围是的是()A .B .C .D .5. (2分) (2016八上·永登期中) 已知点A(4,﹣3),则它到y轴的距离为()A . ﹣3B . ﹣4C . 3D . 46. (2分) (2020七下·越秀期中) 下列说法中,正确的是()A . -(-3)2=9B . |-3|=-3C . =±3D . =7. (2分)如图,七年级(下)教材第4页给出了利用三角尺和直尺画平行线的一种方法,能说明AB∥DE 的条件是()A . ∠CAB=∠FDEB . ∠ACB=∠DFEC . ∠ABC=∠DEFD . ∠BCD=∠EFG8. (2分) (2016七上·乳山期末) 如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,BE=4,则AD的长是()A . 4B . 2C . 6D . 29. (2分) (2018九上·建平期末) 已知一次函数y=mx+n与反比例函数y= 其中m、n为常数,且mn<0,则它们在同一坐标系中的图象可能是()A .B .C .D .10. (2分)(2020·杭州模拟) 已知反比例函数y=的图象在每一个象限内,y随x的增大而增大,那么一次函数y=kx+2的大致图象是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2019七下·濉溪期末) 计算: - =________.12. (1分) (2019八上·漳州月考) 一个正数的平方根为x+3与2x 6,则这个正数是________.13. (1分)(2018·攀枝花) 样本数据1,2,3,4,5.则这个样本的方差是________.14. (1分)计算:= ________15. (1分) (2016八上·抚宁期中) 如图,在△ABC中,AB=AC,AD⊥BC于D,DE⊥AB于E,DF⊥AC于F,若DE=3,则DF=________.16. (1分)(2020·宿迁) 如图,在矩形ABCD中,AB=1,AD= ,P为AD上一个动点,连接BP,线段BA 与线段BQ关于BP所在的直线对称,连接PQ,当点P从点A运动到点D时,线段PQ在平面内扫过的面积为________.三、解答题 (共9题;共65分)17. (5分) (2020八下·延平月考) 计算:.18. (5分)已知关于x、y的二元一次方程组与的解相同,求a、b的值.19. (5分)(2019·周至模拟) 如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.求证:AE∥CF.20. (5分) (2016八上·思茅期中) 为了抓住市文化艺术节的商机,某商店决定购进A,B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.求购进A,B两种纪念品每件各需多少元?21. (5分)解方程:x-=1-22. (10分) (2019八上·铁锋期中) 如图所示,边长为1的正方形网格中,的三个顶点A、B、C 都在格点上.(1)作关于关于x轴的对称图形,(其中A、B、C的对称点分别是D、E、F),并写出点D 坐标;(2) P为x轴上一点,请在图中画出使的周长最小时的点P(不写画法,保留画图痕迹),并直接写出点P的坐标.23. (10分).(1)请在如图的直角坐标系中作出y=2x+1,y=3x的图象;(2)利用你所画的图象,直接写出方程组的解.24. (10分)(2017·润州模拟) 王华、张伟两位同学分别将自己10次数学自我检测的成绩绘制成如下统计图:(1)根据图中提供的数据列出如下统计表:平均成绩(分)中位数(分)众数(分)方差(S2)王华 80 b 80 d张伟 a 85 c 260则a=________,b=________,c=________,d=________,(2)将90分以上(含90分)的成绩视为优秀,则优秀率高的是________.(3)现在要从这两个同学选一位去参加数学竞赛,你可以根据以上的数据给老师哪些建议?25. (10分) (2016九上·兖州期中) 如图,抛物线y=ax2+bx﹣4(a≠0)与x轴交于A(4,0),B(﹣1,0)两点,过点A的直线y=﹣x+4交抛物线于点C.(1)求此抛物线的解析式;(2)在直线AC上有一动点E,当点E在某个位置时,使△BDE的周长最小,求此时E点坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、答案:略13-1、14-1、15-1、16-1、三、解答题 (共9题;共65分)17-1、答案:略18-1、答案:略19-1、20-1、答案:略21-1、22-1、答案:略22-2、答案:略23-1、答案:略23-2、答案:略24-1、24-2、24-3、25-1、答案:略25-2、答案:略。
山东省滨州市—第一学期期末考试八年级数学试题第Ⅰ卷 选择题一、选择题:(本大题共12小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将其字母标号填写在答题栏内) 1.下列图形具有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形 2.已知图中的两个三角形全等,则∠α度数是( )A. 50°B. 58°C. 60°D. 72°3.若等腰三角形中有一个角等于50,则这个等腰三角形的顶角的度数为( )A .50B .80C .65或50D .50或804.下列计算中,结果正确的是 ( ) A .236a a a =· B .()()26a a a =·3 C .()326a a = D .623a a a ÷=5.下列图形中,不是轴对称图形的是( )6.使分式14-x 有意义,则x 的取值范围是( ) A .x ≠ 1 B.x >1 C .x <1 D .x ≠-17.如图,画△ABC 中AB 边上的高,下列画法中正确的是( ) A. B. C. D.8.下列判定两个直角三角形全等的方法,错误的是 ( ) A .两条直角边对应相等 B .斜边和一锐角对应相等 C .斜边和一直角边对应相等D .两锐角对应相等9.下列运用平方差公式计算,错误..的是( )。
A .22))((b a b a b a -=-+ B .1)1)(1(2-=-+x x x C .12)12)(12(2-=-+x x x D .49)23)(23(2-=--+-x x x 10.若分式112x y -=,则分式4543x xy yx xy y+---的值等于( ) A .-35 B .35 C .-45 D .4511.如图,已知△ABC,O 是△ABC 内的一点,连接OB 、OC ,将∠ABO、∠ACO 分别记为∠1、∠2,则∠1、∠2、∠A、∠O 四个角之间的数量关系是( )A .∠1+∠0=∠A+∠2B .∠1+∠2+∠A+∠O=180°C .∠1+∠2+∠A+∠O=360°D .∠1+∠2+∠A=∠O12.如图,AB=AC ,AB 的垂直平分线交AB 于D ,交AC 于E ,BE 恰好平分ABC ∠,有以下结论:(1)ED=EC ;(2)BEC ∆的周长等于2AE+EC ; (3)图中共有3个等腰三角形; (4)36A ∠=,其中正确的共有( )A .4个B .3个C .2个D .1个题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题:13.一个多边形的内角和等于其外角和的3倍,则这个多边形是 边形。
山东省滨州市惠民县2017-2018学年八年级上学期期末数学试题一、单选题(★) 1 . 下列根式中不是最简二次根式的是A.B.C.D.(★★) 2 . 无论 a取何值时,下列分式一定有意义的是A.B.C.D.(★★★) 3 . 如图,,要使,还需添加一个条件,那么在① ;② ;③ ;④ 这四个关系中可以选择的是A.①②③B.①②④C.①③④D.②③④(★★) 4 . 如图是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是A.SSS B.SAS C.ASA D.AAS(★★★) 5 . 如图,, ,则图中等腰三角形的个数是A.5B.6C.8D.9(★) 6 . 下列运算:(1);(2);(3);(4).其中错误的个数是A.1B.2C.3D.4(★★★) 7 . 若,则A等于A.B.C.D.(★) 8 . 练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有① ②③ ④A.1个B.2个C.3个D.4个(★★★) 9 . 关于的分式方程的解,下列说法正确的是A.不论取何值,该方程总有解B.当时该方程的解为C.当时该方程的解为D.当时该方程的解为(★) 10 . 如果把分式中的x和y的值都扩大为原来的3倍,那么分式的值A.扩大为原来的3倍B.扩大6倍C.缩小为原来的12倍D.不变(★★★) 11 . 如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=4,BC=8,则△BC′F的周长为A.12B.16C.20D.24(★★★) 12 . 如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2EC,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AB=3BF,其中正确的结论共有A.①②③B.①③④C.②③D.①②③④二、填空题(★★★) 13 . 在△ABC中,∠C=90°,BC=16,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为_____________.(★★★) 14 . 已知等腰三角形的一个内角为 50°,则顶角为____________.(★★★) 15 . 分解因式:=__________________________________. (★★★) 16 . 若x 2-mx+36是一个完全平方式,则m=____________________.(★) 17 . 当x的值为_______________,分式的值为0.(★★★) 18 . 如果直角三角形的三边长为10、6、 x,则最短边上的高为______.三、解答题(★★★) 19 . (1)计算:.(2)计算:(★★★) 20 . 根据要求,解答下列问题:(1)计算:(2)化简:.(★★★) 21 . 如图,已知点E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足.连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,求证:OE=4EF.(★★★) 22 . 如图,已知 B、 C、 E三点在同一条直线上,△ ABC与△ DCE都是等边三角形.其中线段BD交AC于点G,线段AE交CD于点F.求证:(1)△ACE≌△BCD;(2)△GFC是等边三角形.(★★★★★) 23 . 如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?(★★★)24 . 如图所示,港口A位于灯塔C的正南方向,港口B位于灯塔C的南偏东60°方向,且港口B在港口A的正东方向的135公里处.一艘货轮在上午8时从港口A出发,匀速向港口B航行.当航行到位于灯塔C的南偏东30°方向的D处时,接到公司要求提前交货的通知,于是提速到原来速度的1.2倍,于上午12时准时到达港口B,顺利完成交货.求货轮原来的速度是多少?。
2016—2017学年第一学期期末学业水平测试八年级数学试题第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.下列图形:线段、角、正方形、圆,其中是轴对称图形个数的为( ) A.1 B. 2C. 3D. 42.某个三角形的三边长有可能是( )A. 20,16,2016B. 2,2,4C. 2,2,2D. 1,2,4 3.如果一个多边形的每一个外角都是60°,那么这个多边形是( )A. 四边形B. 五边形C. 六边形D.八边形 4.若一个等腰三角形的两边长分别是3和7,则它的周长为( )A .17B .15C .13D .13或17 5.下列结论正确的是( )A.分式 有意义的条件是B. 与 的最简公分母是C.-0.000 0064用科学记数法表示为D.等式成立的条件是6.下列等式一定成立的是( )A. B.C. D.7.如果把分式中的x 和y 的值都扩大为原来的2倍,那么分式的值( ) A.扩大为原来的2倍B.扩大4倍C.缩小为原来的2倍D.不变8.已知 , ,则 的值为( )A.4B.C.2D. 9.下列式子由左到右的变形中,是因式分解且结果正确的为( )A. =x (x ﹣5)+ 6B.=(x ﹣2)(x ﹣3) 1(1)x x -22x y x y-+22xy x y -222()()x y x y --20(9)1x -=632a a a ÷=235a a a +=y x x 23y2-5233()()xy xy x y -÷-=-2336(2)6xy x y =2m n x -41214=m x 8=nx 652+-x x 652+-x x 01x x ≠≠或66.410--⨯3x =±C.(x ﹣2)(x ﹣3)=D. =(x + 2)(x + 3) 10.如图,已知△ABE ≌△ACD,且∠B=∠C,则下列结论: (1)∠1=∠2;(2)∠BAD=∠CAE ;(3)AD=AE ;(4)DB=EC. 其中错误的个数为( )A.0B.1C.2D.311.如果多项式能因式分解为 ,那么下列结论正确的是( ) A. B. C. D.12.图(1)是一个长为,宽为 的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分(阴影部分)的面积是( )A. B. C. D.第Ⅱ卷(非选择题)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.等腰三角形的一个角是70°,则它的底角是 . 14.如图,∠1=∠2,要使△ABE ≌△ACE ,还需添加一个条件是 (填上你认为适当的一个条件即可).15.已知 ,则m = .16.当m = 时,分式 的值为零.第12题图(1)第12题图(2)652+-x x 652+-x x 22mx nx --(32)()x x p ++1n =3mnp =2p =-6m =2()b a b >ab2()a b +2()a b -22a b -2(1)(3)32m m m m ---+21119273m m -⨯=2a17.如图,在 中, , 是 的垂直平分线, 交 于 点,交 于 点.已知 ,则 的大小为 . 18.已知,则 = . 三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程. 19.(每小题5分,满分10分)分解因式: (1)22)72()23(+--x x(2)20.(满分8分)当 取何值时, 的值比 的值大3?21.(每小题5分,满分10分)根据要求解答下列问题: (1)符号a b cd称为二阶行列式,规定它的运算法则为:a bcdad bc =-.依据以上法则,化简下列二阶行列式:bb a 42+ba ba 25.0--.(2)先化简,再求值:, 其中1x =-.22.(满分10分)一台汽车开往距离出发地180km 的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地,求汽车原来的速度.Rt ABC △ο90=∠B ED AC AC D BC E ο10=∠BAE C∠21322a a -+13a a-=22882ab b a--13(22)x --1(1)x --x22214()2442x x x x x x x x ----÷++++23.(满分10分)如图,点 是 的交点,点 是 的中点.试判 断和 的位置关系,并给出证明.24.(满分12分)已知:如图,∠B=∠C=90°,M 是BC 的中点,且DM 平分∠ADC. (1)求证:AM 平分∠DAB.(2)试说明线段DM 与AM 有怎样的位置关系?并证明你的结论.A BCDE O第23题图AB E ,AD BC O ,,BAC ABD AC BD ∠=∠=OE AB参考答案一、选择题(本大题12个小题,每小题3分,共36分.请选出唯一正确答案的代号填在下面的答题栏内)二、填空题(本大题6个小题,每小题4分,共24分)13.55°或70°; 14.酌情判分; 15.2; 16.3; 17.40°; 18. 三、解答题(本大题6个小题,共60分) 19.(每小题5分,满分10分)解:(1)原式=[(3x -2)+(2x +7)][(3x -2)-(2x +7)]…………… 2分=(3x -2+2x +7)(3x -2-2x -7) ………………………… 3分 =(5x +5)(x -9) ………………………………………………4分 =5(x +1)(x -9). ……………………………………………5分 (2)原式= ……………………2分. …………………………5分20.(本小题满分8分) 解:根据题意列方程得……………3分 方程两边乘 ,得………………4分 解得 x= ……………6分 检验:当x= 时, ≠0. ……………7分 所以,原分式方程的解为x= . 答:当x 取 时, 的值比 的值大3. ………8分21.(每小题5分,满分10分)21-222(44)a ab b =--+22882ab b a --22(2)a b =--313221x x=+--2(1)x -326(1)x =-+-1161162(1)x -1161(1)x --13(22)x --116解:(1)原式 ……………………2分 222424b ab b a +--= ……………………4分 ab a 22-= . …………………………………5分(2) 原式= ……………2分 = ……………3分= ……………4分当x=-1时原式= = =-1 ……………5分22.(本小题满分10分)解:设汽车原速度为x 千米/时,依题意,得3215.11180180=⎪⎭⎫ ⎝⎛+--x x x . ……………5分 解得60=x ……………8分 经检验60=x 是原方程的解.答:(略). ……………10分 23.(本小题满分10分)解:OE ⊥AB ……………2分证明:在ABC ∆和BAD ∆中AB BABAC ABD AC BD =⎧⎪∠=∠⎨⎪=⎩∴ABC ∆≌BAD ∆ ………………5分 ∴ABC BAD ∠=∠ ………………6分 ∴OA OB = ………………7分 ∴OAB ∆是等腰三角形 ………………8分 又E 是AB 的中点)5.0(4)2)(2(b a b b a b a ---+=2(2)(2)(1)4(2)2x x x x x x x x -+---÷++212x x+22242(2)4x x x x x x x --+++-g 21(1)2(1)-+⨯-112-∴OE⊥AB. ………………10分24.(本小题满分12分)证明:(1)作ME⊥AD. ……………………………………2分∵DM平分∠ADC,∠C=90°,∴ME=MC. ……………………………………4分又M是BC的中点,∴MB=MC. ……………………………………5分∴MB=ME. …………………………………6分又ME⊥AD,∠B=90°,∴点M在∠DAB的平分线上,即AM平分∠DAB. …………………………………7分(2)DM⊥AM,…………………………………8分∵∠B=∠C=90°,∴CD∥AB,…………………………………9分∴∠DAB+∠ADC=180°. …………………………………10分又∵DM平分∠ADC,AM平分∠DAB,∴½(∠DAB+∠ADC)=90°. …………11分∴∠AMD=90°,即MD⊥AM. ………………………………12分。
A B C D 2017--2018学年度八年级 (上)数学期末测试一、选择题(每小题3分,共36分)1.下列平面图形中,不是轴对称图形的是 ( )2.下列运算中,正确的是( )A 、 (x 2)3=x 5B 、3x 2÷2x=xC 、 x 3·x 3=x 6D 、(x+y 2)2=x 2+y 43.已知:在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD :DC =9:7,则D 到AB 边的距离为 ( )A .18B .16C .14D .124.下列各式由左边到右边的变形中,是分解因式的为( )A 、a (x + y) =a x + a yB 、x 2-4x+4=x(x -4)+4C 、10x 2-5x=5x(2x -1)D 、x 2-16+3x=(x -4)(x+4)+3x 5.如图,C F BE ,,,四点在一条直线上,,,D A CF EB ∠=∠=再添一个条件仍不能证明⊿ABC≌⊿DEF的是( )A .AB=DEB ..DF ∥AC C .∠E=∠ABCD .AB ∥DE 6.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( )A .1、2、3B .2、3、4C .3、4、5D .4、5、6 7.已知m 6x =,3n x =,则2m n x-的值为( ) A 、9 B 、 12 C 、 43 D 、34 8.已知:如图,△ABC 与△DEF 是全等三角形,则图中相等的线段的组数是 ( )A .3B . 4C .5D .6(第8题) (第9题) (第10题)9.如图,在∠AOB 的两边上截取AO=BO ,CO=DO ,连接AD ,BC 交于点P ,那么在结论①△AOD ≌△BOC ;②△APC ≌△BPD ;③点P 在∠AOB 的平分线上.其中正确的是 ( )A .只有①B . 只有②C . 只有①②D . ①②③ABE CF D O D C A B P A B D CE α γ β A BF E C D10.如图,D ,E 分别是△ABC 的边BC ,AC ,上的点,若AB=AC ,AD=AE ,则 ( )A .当∠B 为定值时,∠CDE 为定值 B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值11.已知等腰三角形一边长为4,一边的长为10,则等腰三角形的周长为( )A 、14B 、18C 、24D 、18或2412.若分式方程xa x a x +-=+-321有增根,则a 的值是( ) A .1 B .0 C .—1 D .—2二、填空题(每小题3分,共24分)13.用科学记数法表示—0.000 000 0314= .14.如图,△ABC ≌△ADE ,∠EAC =25°,则∠BAD = °15.如图,D ,E 是边BC 上的两点,AD =AE ,请你再添加一个条件: 使△ABE ≌△ACD 16.计算(-3a 3)·(-2a 2)=________________17.已知,2,522-=+=+b ab ab a 那么=-22b a . 18.等腰三角形一腰上的高与另一腰的夹角为40°,则它的顶角的度数为 °.19.如图,△ABC 中,DE 是AC 的垂直平分线,AE =3cm ,△ABD 的周长为13cm ,则△ABC 的周长为__________cm .20.如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,CF 平分∠ACB ,CF ,BE 交于点P ,AC =4cm ,BC =3cm ,AB =5cm ,则△CPB 的面积为 2cm三、解答题(本大题共60分)21.①(5分) 因式分解:33ab b a -B AC D E A C B F E P (第20题) A D B E C B D E C A (第14题) (第15题) (第19题)② (5分)化简求值:[]{})24(32522222b a ab ab b a b a ----其中5.0,3=-=b a22.(5分)如图,A 、B 、C 三点表示3个村庄,为了解决村民子女就近入学问题,计划新建一所小学,要使学校到3个村庄的距离相等,请你在图中有尺规确定学校的位置.(保留作图痕迹,不写画法)23.(7分)一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?24.(8分)如图,BD 平分∠MBN ,A ,C 分别为BM ,BN 上的点,且BC >BA ,E 为BD 上的一点,AE =CE ,求证 ∠BAE +∠BCE =180°C A B · · · B C NDE MAA D BE FC 25.(8分) 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,求△ABC 各角的度数.26.(10分)如图,已知AC ⊥CB ,DB ⊥CB ,AB ⊥DE ,AB =DE ,E 是BC 的中点.(1)观察并猜想BD 和BC 有何数量关系?并证明你猜想的结论.(2)若BD =6cm ,求AC 的长.27.(12分)如图,在△ABC 中,∠ACB =90°,CE ⊥AB 于点E ,AD=AC ,AF 平分∠CAB •交CE 于点F ,DF 的延长线交AC 于点G ,求证:(1)DF ∥BC ;(2)FG =FE .A D C B2017--2018学年度八年级 (上)数学期末测试3参考答案一、选择题(每小题3分,共36分)ACACACBBDACD二、填空题(每小题3分,共24分)13.-3.14×610-14.25°15.∠B=∠C16.65a17.918.5019.19cm20.1.5三、解答题(本大题共60分) 21.①(5分) 因式分解: 33ab b a -=ab(2a -2b )=ab(a+b)(a-b)② (5分)化简求值:[]{})24(32522222b a ab ab b a b a ----其中5.0,3=-=b a 解:原式=[]{})24(32522222b a ab ab b a b a ----=ab(5a-b)=138.522.答案略23.设江水的流速为x 千米/时,则可列方程xx -=+306030100 解得:x=7.5答:江水的流速为7.5千米/时.24.提示(过E 点分别BA 与BC 的垂线,即可证明)25.∠A=36°,∠ABC=∠C=72°26.解(1)BD 和BC 相等。
2017—2018学年度第一学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分100分,考试用时90分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共30分)一、选择题:本大题共10个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题选对得3分,满分30分. 1.在下列长度的三条线段中,能组成三角形的是A.1,2,3 B.3,8,4 C.10,6,5 D.2,4,22.下列图形:①角,②线段,③等腰三角形,④直角三角形,其中是轴对称图形的有A.①②③④ B.①②③C.②④D.①③3.△ABC中,若∠B =∠A+10°,∠C=∠B+10°,则下列结论错误的是A.∠C=∠A+20°B.∠A=50°C.∠B的外角是130°D.△ABC是一个锐角三角形4.下列数据能唯一确定三角形的形状和大小的是A.∠A=50°,∠B =60°,∠C=70°B.AB=6,∠B =70°,∠C=60°C.AB=4,BC =5,∠C=60°D.AB=4,BC =5,CA=105.下列运算正确的是A .2222x x x =B .326()x x =C .3412(2)8x x -=D .734()()x x x -÷-=-6.下列各因式分解正确的是A .22(2)(2)(2)x x x -+-=-+B .2221(1)x x x +-=-C .22441(21)x x x -+=-D .242(2)(2)x x x x -=+-7.若分式12x x -+的值为0,则x 应满足的条件是 A .x =-2 B .x =0 C.x =1或x =-2 D .x =18.下列计算错误的是A .0.220.77a b a b a b a b++=--B .3223x y x x y y=C .1a bb a-=--D .123c c c+= 9.如图,为了促进当地旅游发展,某地要在三条公路围成的一块平地上修建一个度假村.要使这个度假村到三条公路的距离相等,应修建在△ABC 的 A .两条中线的交点处B .两条角平分线的交点处C .两条高的交点处D .两条边的垂直平分线的交点处10.如图,△ABC 的周长为30cm ,把△ABC 的边AC 对折,使顶点C 和点A 重合,折痕交BC 边于点D ,交AC 边于点E ,连接AD ,若AE =4cm ,则△ABD 的周长是 A .22 cm B .20 cm C .18 cm D .15 cm(第9题图)第Ⅱ卷(非选择题 共70分)二、填空题:本大题共8个小题,每小题3分,满分24分. 11.点(-7,9)关于y 轴对称的点的坐标是 .12.计算:0220183--+-()= . 13.如果216x kx ++可运用完全平方公式进行因式分解,那么k 的值是 . 14.张明3小时清点完一批图书的一半,李强加入清点另一半图书的工作,两人合作1.2小时清点完另一半图书.如果李强单独清点这批图书需要 小时. 15.一个多边形的内角和比它的外角和的3倍多180°,则它是 边形. 16.如图,∠1=∠2,∠3=∠4,∠BDC =130°,则∠A = .17.在Rt△ABC 中,∠ACB =90°,BC =2.1cm ,CD ⊥AB ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF =4cm ,则AE = cm . 18.如图,∠A =61°,∠C ′=47°,△ABC 与△A ′B ′C ′关于直线l 对称,则∠B =____ .三、解答题:本大题共7个小题,满分46分. 解答时请写出必要的演推过程.19.先化简,再求值:222693293x x x x x x-+-÷--+,其中2018x =-.20.计算:(1)23215)()ab ab a b --÷-(; (2)222)()()6x y x y x y y +-+--(. 21.分解因式:(1)4811m -; (2)43242025ab ab ab -+.22. 两个小组同时开始攀登一座600m 高的山,第一组的攀登速度是第二组的1.2倍,他们比第二组早20min 到达顶峰,两个小组的攀登速度各是多少m/min ?如果山高是h m ,第一组的攀登速度是第二组的a 倍,并比第二组早t min 到达峰顶,则请直接写出两组的攀登速度各是多少m/min ?23. 如图,在平面直角坐标系中,点A 的坐标为(-2,0),△AOB 是等边三角形,点C 为OA 延长线上的一个动点,以BC 为边在第二象限中作等边△BCE ,连接EA 并延长EA 交y 轴于点F .(1)求∠EAB 的度数;(2)如果点C 再向左移动3个单位长度,则点F 的位置变化情况是 .24. 如图,在△ABC 中,AD ⊥BC ,BE ⊥AC ,垂足分别为D ,E ,AD 和BE 相交于点F ,DF =EF ,延长CF 交AB 于点G .(1)图中共有 个等腰三角形,共有 对全等三角形; (2)求证:CG 垂直平分AB .G FEDCBA(第23题图)(第24题图)2017—2018学年第一学期八年级数学试题参考答案及评分标准二、填空题:(每题3分,共24分)11.(7,9); 12.89-; 13.±8; 14.4; 15.九; 16.80°; 17.1.9; 18.72°. 三、解答题:(共46分)19.解:222693293x x x x x x-+-÷--+ =2(3)(3)2(3)(3)3x x x x x x -+-+-- ……………………………………… 4分 = 2x -. ……………………………………… 5分 当2018x =-时,原式=-2018-2=-2020. …………………………… 6分20.解:(1)23215)()ab ab a b --÷-( =362215a b a b a b --÷ ………………………………… 2分=321625a b ---- ………………………………… 3分 =1b. ………………………………… 4分(2)222)()()6x y x y x y y +-+--( =22222446x xy y x y y ++-+- ……………………………………6分 =24xy y -. ……………………………………7分 21.解:(1)4811m -=22(91)(91)m m +- ………………………………… 2分 =2(91)(31)(31)m m m ++-. ………………………………… 4分(2)43242025ab ab ab -+=22(42025)ab b b -+ ………………………………… 5分=22(25)ab b - . ………………………………… 7分 22.解:设第二组的攀登速度为x m/min ,根据题意,列出方程600600201.2x x+=……………………………… 3分 解得 x =20 ……………………………… 4分经检验,x =20是原方程的解. ……………………………… 5分此时,1.2x =24 ……………………………… 6分 答:第一组的速度为24m/min 第二组的速度为20m/min ;如果山高是h m ,第一组的攀登速度是第二组的a 倍,并比第二组早t min 到达峰顶,则第一组的速度为ah h t -m/min 第二组的速度为ah hat-m/min. …………………… 8分 23.(1)解:∵△AOB 和△BCE 是等边三角形,∴BE =BC ,BA =BO ,∠EBC =∠ABO =∠AOB =60°,…………………… 3分 ∴∠EBC +∠ABC =∠ABO +∠ABC ,即∠EBA =∠CBO ,…………………… 4分 ∴△EBA ≌△CBO (SAS) …………………………………… 5分 ∴∠EAB =∠AOB =60°. …………………………………… 6分(2)如果点C 再向左移动3个单位长度,则点F 的位置变化情况是 保持不变 .…………………………………… 8分24. (1)图中共有 2 个等腰三角形,共有 6 对全等三角形;……2分 (2)证明:∵AD ⊥BC ,BE ⊥AC ,∴∠AEF =∠CEF =90°, ∠BDF =∠CDF =90°,∴∠CEF =∠CDF =90°, ∠AEF =∠BDF =90°,………………3分 在△CEF 和△CDF 中90,CEF CDF EF DF CF CF ∠=∠=︒⎧⎪=⎨⎪=⎩,∴△CEF ≌△CDF (HL) …………………………………… 5分 ∴∠ACG =∠BCG ,CE =CD . ………………………………… 6分 在△AEF 和△BDF 中90,AEF BDF EF DF EFA DFB ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴△AEF ≌△BDF (ASA) …………………………………… 8分 ∴AE =BD ,∴CE +AE =CD +BD ,即AC =BC ,…………………………… 9分 又∠ACG =∠BCG ,∴CG 垂直平分AB . …………………………………… 10分。
2017—2018学年第一学期期末学业水平测试
八年级数学试题
一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1. 下列根式中不是最简二次根式的是
A. B. C. D.
2. 无论a 取何值时,下列分式一定有意义的是
A. B. C.
D. 3. 如图,,要使
,还需添加一个条件,那么在
①
;②;③;④这四个关系中可以选择的是
...
A. ①②③
B. ①②④
C. ①③④
D. ②③④
4. 如图是用直尺和圆规作一个角等于已知角的示意图, 则说明∠A′O′B′=∠AOB 的依据是
A. SSS
B. SAS
C. ASA
D. AAS
5. 如图,,,则图中等腰三角形的个数是
A. 5
B. 6
C. 8
D. 9
6. 下列运算:(1);(2);(3);(4).其中错误的个数是
A. 1
B. 2
C. 3
D. 4
7. 若,则A等于
A. B. C. D.
8. 练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有
①②
③④
A. 1个
B. 2个
C. 3个
D. 4个
9. 关于的分式方程的解,下列说法正确的是
A. 不论取何值,该方程总有解
B. 当时该方程的解为
C. 当时该方程的解为
D. 当时该方程的解为
10. 如果把分式中的x和y的值都扩大为原来的3倍,那么分式的值
A. 扩大为原来的3倍
B. 扩大6倍
C. 缩小为原来的12倍
D. 不变
11. 如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=4,BC=8,则△BC′F的周长为
A. 12
B. 16
C. 20
D. 24
12. 如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2EC,给出下列四个结论:
①DE=DF;②DB=DC;③AD⊥BC;④AB=3BF,其中正确的结论共有
A. ①②③
B. ①③④
C. ②③
D. ①②③④
二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.
13. 在△ABC中,∠C=90°,BC=16,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为_____________.
14. 已知等腰三角形的一个内角为50°,则顶角角的大小为________________.
15. 分解因式:=__________________________________.
16. 若x2-mx+36是一个完全平方式,则m=____________________.
17. 当x的值为_______________,分式的值为0.
18. 如果直角三角形的三边长为10、6、x,则最短边上的高为______.
三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.
19. (1)计算:.
(2)计算:
20. 根据要求,解答下列问题:
(1)计算:
(2)化简:.
21. 如图,已知点E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足.连接CD,且交OE于点F.
(1)求证:OE是CD的垂直平分线.
(2)若∠AOB=60°,求证:OE=4EF.
22. 如图,已知B、C、E三点在同一条直线上,△ABC与△DCE都是等边三角形.其中线段BD交AC于点G,线段AE交CD于点F.
求证:(1)△ACE≌△BCD;(2)△GFC是等边三角形.
23. 如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C-A-B-C的路径运动,且速度为每秒1cm,设出发的时间为t秒.
(1)出发2秒后,求△ABP的周长.
(2)问t满足什么条件时,△BCP为直角三角形?
(3)另有一点Q,从点C开始,按C-B-A-C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
24. 如图所示,港口A位于灯塔C的正南方向,港口B位于灯塔C的南偏东60°方向,且港口B在港口A 的正东方向的135公里处.一艘货轮在上午8时从港口A出发,匀速向港口B航行.当航行到位于灯塔C的南偏东30°方向的D处时,接到公司要求提前交货的通知,于是提速到原来速度的1.2倍,于上午12时准时到达港口B,顺利完成交货.求货轮原来的速度是多少?。