人教版等腰三角形的性质
- 格式:ppt
- 大小:787.50 KB
- 文档页数:27
《等腰三角形的性质》说课稿各位评委、老师:你们好!我是车站中学的xxx,我说课的课题是《等腰三角形的性质》,下面,我从教材、教法、学法、教学过程等几个方面对本课的设计进行说明,并就教学效果进行课后反思.一、说教材1.教学内容:《等腰三角形的性质》是人教版数学的八年级上册第十三章第三节《等腰三角形》的第一课时,本节课的主要内容就是研究等腰三角形的两个性质.2.在教材中的地位与作用:本节课是在学生已经学习了三角形的基本概念、全等三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的,在培养学生的思维能力和推理能力等方面有重要的作用;而等腰三角形的性质是今后论证两个角相等、两条线段相等、两条直线垂直的重要依据,也是后续学习等边三角形、菱形、正方形、圆等内容的重要基础.3.教学目标:知识与技能:1.了解等腰三角形的概念.2.掌握等腰三角形性质并运用其进行证明和计算.过程与方法:1.通过亲身观察、证明等腰三角形性质,锻炼推理能力.2.经历折纸活动,培养猜想、探究的能力.情感、态度及价值观:1.从动手操作中,激发数学学习的兴趣.2.从实践活动中,感受数学来源于生活,并应用于生活.4.教学重点与难点:重点:等腰三角形的性质的探索和验证.难点:等腰三角形的性质的应用.5.教学准备:教师课前准备:课件,三角板.学生课前准备:等腰三角形纸片.二、说教法《新课程标准》要求课堂教学要充分体现以学生发展为本的精神,因此结合学生实际情况及教材内容,我主要采用了以下教学方法:教师启发引导、学生动手操作、观察、分析、猜想、验证得出等腰三角形的性质;教师规范板书,指导学生性质的文字语言、图形语言、符号语言;学生课堂完成练习题,教师点评并规范格式方法.针对猜想的得出,主要采用教师提问学生回答的问答法的学习方法;针对性质2的证明,主要采用类比法的教学方式;针对有难度练习题,主要采用合作探究教学方式.三、说学法《数学课程标准》指出:数学的抽象结论,应以观察、实验为前提,几何教学应该把实验方法与逻辑分析结合起来.通过学生动手实践,培养学生的观察能力、分析能力;通过自主探索,调动学生思维的积极性,使学生自主地获取知识;通过合作交流,学生分组讨论,使学生在沟通中创新,在交流中发展,在合作中获得新知.四、说教学过程(一)回顾与引入各小组展示各组课前准备的三角形纸片.(设计意图:通过让学生动手剪纸,获得图形的直观感受,并为下面的折纸操作做好铺垫,为学生提供参与数学活动的时间和空间,调动学生的主观能动性,激发其好奇心和求知欲.)教师提问:你们的三角形纸片都是怎么剪成的?(课堂实录片段)(有的同学是先画一个等腰三角形再剪,由此回顾等腰三角形的定义)1.回顾:学生回顾等腰三角形的定义,教师归纳并板书:在△ABC中,AB=AC,像这样有两边相等的三角形叫等腰三角形.结合图形介绍“腰”、“底边”、“顶角”、“底角”等概念.(设计意图:结合自已剪出的等腰三角形和画出的图形学习相关概念,加深印象.)(课堂实录片段)(有的同学是将长方形纸片对折之后剪一个靠近对称轴的角,展开就得到一个等腰三角形.由此引出等腰三角形的轴对称性.)2.引入:教师引入课题:下面,我们利用轴对称的知识来研究等腰三角形的性质.(设计意图:在正式进行探索和发现前,让学生对探索的目标、意义有十分明确的认识,做好探索前的物质准备和精神准备.)(二)猜想与证明1.猜想1:教师引导学生动手把等腰三角形ABC对折,作出等腰三角形ABC和折痕AD.找出其中重合的线段和角,并填在书上的表格中.(课堂实录片段)拿掉折痕,只关注三角形ABC的边角.①AB=AC →两条腰相等②B=∠C →两个底角相等(设计意图:将两个性质分开探究、简化进行猜想的过程.)教师引导学生用文字语言归纳出猜想1:猜想1 等腰三角形的两个底角相等;(设计意图:在这个过程中训练学生文字语言与符号语言的互换,培养学生自主探究的学习品质和观察分析、归纳概括的能力,发展形象思维.)2.猜想1的证明:教师引导学生根据猜想1的条件和结论画出相应的图形,写出已知和求证,师生共同分析证明思路,提出以下两个问题引导学生思考证明方法:①如何证明两个角相等?②如何构造两个全等的三角形?(课堂实录片段)(设计意图:引导学生在全等三角形的基础上完成这一证明.同时做不同的辅助线得出这一证明的三种不同方法.)3.性质1:在学生证明的基础上,教师板书性质1:等腰三角形的两个底角相等.(“等边对等角”).并强调符号语言的表达.4.猜想2:(课堂实录片段)由性质一的三种证明方法所做的三条辅助线实际是同一条线段,同时也回顾性质一的猜想过程,对剩下的相等线段、相等角进行分析,进而得出第二个猜想:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.(设计意图:在性质一完全得证后探究性质二,将本节课两个重要的内容分开,降低学生的掌握难度.)5.猜想2的证明:猜想2这个命题的符号语言对学生来说有难度,于是我设计了一个填空题.如图,① 已知:AB=AC ∠BAD=∠CAD (即AD 是顶角的角平分线), 求证: ② 已知AB=AC BD=BC (即AD 是底边上的中线), 求证:③ 已知AB=AC AD ⊥BC (即AD 是底边上的高线)求证:(设计意图:弱化将这一命题条件、结论区分清楚的难度,引导学生将语言文字转化为符号文字.)(课堂实录片段)类比猜想1的证明,探究猜想2的证明.选三个明天中的一个进行证明.6.性质2:在学生证明的基础上,教师板书性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.(“三线合一”).并强调符号语言的表达.(第(二)环节设计意图:等腰三角形的性质的探索与验证是本节课的重点,本环节中,充分调动学生的主观能动性,让学生大胆猜想、小心求证,经历性质证明的过程,增强理性认识,体验性质的正确性和辅助线在几何论证中的作用,在学生的自主探索中,完成了重点知识的教学,突出了教学重点,培养了学生的合情推理能力和演绎推理的能力.)(三)应用与提高1.课件出示:练习1(1)△ABC 中, AB =AC , ∠A =36°, 则∠B = °;(2)△ABC 中, AB =AC , ∠B =36°, 则∠A = °;(3)已知等腰三角形的一个内角为70°,则它的另外两个内角的度数分别是 .(设计意图:应用“等边对等角”,结合三角形内角和求三角形的角.第三问在第一二问的铺垫下应用分类思想.)2.课件出示:例:如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD.求△ABC 各角的度数.(设计意图:课本例题,使学生认识到从复杂图形中分解出 等腰三角形是利用性质解决问题的关键,培养学生数形结合的能力和方程的思想.)B AC D3.课件出示:练习2如图,在△ABC 中,AB=AC ,D 、E 在AC 、AB 上,BC=BD,AD=DE=EB,求∠A 的度数.(设计意图:在讲解例题的基础上让学生再练习一个同类型题目,巩固解决这一题型的方法步骤,进一步培养学生数形结合能力,强化方程思想的应用.)4.课件出示:练习3如图⑴∵AB=AC ,AD ⊥BC∴∠_=∠_,_=_;⑵∵AB=AC ,BD=DC∴∠_=∠_,_⊥_;⑶∵AB=AC ,AD 平分∠BAC∴_⊥_,_=_(设计意图:让学生再次理解和运用等腰三角形的“三线合一”性质,再次以填空的形式强化三线合一的符号表达形式,及时巩固所学知识,了解学生的学习效果,增强学生应用知识的能力.)5.课件出示:练习4如图,在△ABC 中,AB=AC ,点D 、E 在BC 上,且AD=AE.求证:BD =CE.(设计意图:本题考察学生对“三线合一”这一性质的灵活运用,体现这一性质有时候可以代替证全等的方法证线段相等.)(第(三)环节设计意图:等腰三角形的性质的应用,是这节课的难点,本环节就是通A B CDE过运用这一性质解决有关问题,让学生在解答活动中提高运用知识和技能的能力,在掌握重点知识的同时,获得成功的体验,建立学习的自信心.)(四)小结与作业请学生总结:(1)本节课学习了哪些主要内容?(2)我们是怎么探究等腰三角形的性质的?(3)本节课你学到了哪些证明线段相等或角相等的方法?(通过对本节课的回顾,增强学生对等腰三角形的理解和对轴对称图形的理解,培养学生“学习——总结——学习——反思”的良好习惯,同时通过自我的评价来获得成功的快乐,提高学生学习的自信心.)作业:课本77面练习1、2、3(五)板书设计13.3等腰三角形第一课时等腰三角形的性质1.定义:有两边相等的三角形叫做等腰三角形.△ABC 中,AB =AC2.三角形的性质:性质1 “等边对等角”.在△ABC 中,∵AB =AC∴∠B=∠C性质2 “三线合一”.①∵AB =AC,AD平分∠BAC∴AD平分BC,AD⊥BC②∵AB =AC,AD平分BC∴AD平分∠BAC,AD⊥BC④∵AB =AC,AD⊥BC∴AD平分BC,AD平分∠BAC五、课后反思现代数学教学观念要求学生从“学会”向“会学”转变.所以本节课在教学设计上,我尝试将两个性质的探究分开进行,降低学生自主探究的难度.先让学生通过剪纸来认识等腰三角形;再通过折纸注意等腰三角形的相等边、相等角,从而得出等腰三角形的两个底角相等之一猜想;然后运用全等三角形的知识加以论证,再由性质1的不同证明方法关注等腰三角形对折的折痕,猜想这条线段既是等腰三角形顶角的角平分线,也是底边上的高,也是底边上的中线,再类比性质1的证明进行证明得出性质2.但在教学过程中还需要注意以下几点:1.学生参与了知识的形成过程,但有些学生没有投入到自主探索过程中.改进:教师引导,学生为主体,放手让学生展示、学生说.2.师生间、学生间的互动不够多.改进:增加谈论环节,共同提高;3.由于课堂时间的原因,性质2的证明只提了思路,学生课堂上没有完全完成.改进:分组证明,集中展示.以上是我关于《等腰三角形的性质》这一节的教学设计,不足之处,请各位评委老师批评指正,谢谢大家.。
等腰三角形性质及判定(基础)【学习目标】1. 掌握等腰三角形的性质,并能利用它证明两个角相等、两条线段相等以及两条直线垂直.2. 掌握等腰三角形的判定定理.3. 熟练运用等腰三角形的判定定理与性质定理进行推理和计算.【要点梳理】要点一、等腰三角形的定义有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC中,AB=AC,则它叫等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.要点诠释:等腰直角三角形的两个底角相等,且都等于45°.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=1802A︒-∠.要点二、等腰三角形的性质1.等腰三角形的性质性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).2.等腰三角形的性质的作用性质1证明同一个三角形中的两角相等.是证明角相等的一个重要依据.性质2用来证明线段相等,角相等,垂直关系等.3.等腰三角形是轴对称图形等腰三角形底边上的高(顶角平分线或底边上的中线)所在直线是它的对称轴,通常情况只有一条对称轴.要点三、等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理. 【典型例题】类型一、等腰三角形中有关度数的计算题1、如图,在△ABC中,D在BC上,且AB=AC=BD,∠1=30°,求∠2的度数.【答案与解析】解:∵AB=AC∴∠B =∠C∵AB=BD∴∠2=∠3∵∠2=∠1+∠C∴∠2=∠1+∠B∵∠2+∠3+∠B=180°∴∠B=180°-2∠2∴∠2=∠1+180°-2∠2∴3∠2=∠1+180°∵∠1=30°∴∠2=70°【总结升华】解该题的关键是要找到∠2和∠1之间的关系,显然∠2=∠1+∠C,只要再找出∠C与∠2的关系问题就好解决了,而∠C=∠B,所以把问题转化为△ABD的角之间的关系,问题就容易的多了.关于角度问题可以通过建立方程进行解决.举一反三:【变式】已知:如图,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.【答案】解:∵AC=BC=BD,AD=AE,DE=CE,∴设∠ECD=∠EDC=x,∠BCD=∠BDC=y,则∠AED=∠ADE=2x,∠A=∠B=180°-4x在△ABC中,根据三角形内角和得,x+y+180°-4x+180°-4x=180°①又∵A、D、B在同一直线上,∴2x+x+y=180°②由①,②解得x=36°∴∠B=180°-4x=180°-144°=36°.类型二、等腰三角形中的分类讨论2、在等腰三角形中,有一个角为40°,求其余各角.【思路点拨】唯独等腰三角形的角有专用名词“顶角”“底角”,别的三角形没有,然而此题没有指明40°的角是顶角还是底角,所以要分类讨论.【答案与解析】解:(1)当40°的角为顶角时,由三角形内角和定理可知:两个底角的度数之和=180°-40°=140°,又由等腰三角形的性质可知:两底角相等,故每个底角的度数1140702=⨯︒=︒;(2)当40°的角为底角时,另一个底角也为40°,则顶角的度数=180°-40°-40°=100°.∴其余各角为70°,70°或40°,100°.【总结升华】条件指代不明,做此类题应分类讨论,把可能出现的情况都讨论到,别遗漏.3、已知等腰三角形的周长为13,一边长为3,求其余各边.【答案与解析】解:(1)3为腰长时,则另一腰长也为3,底边长=13-3-3=7;(2)3为底边长时,则两个腰长的和=13-3=10,则一腰长1105 2=⨯=.这样得两组:①3,3,7 ②5,5,3.而由构成三角形的条件:两边之和大于第三边可知:3+3<7,故不能组成三角形,应舍去.∴等腰三角形的周长为13,一边长为3,其余各边长为5,5.【总结升华】唯独等腰三角形的边有专用名词“腰”“底”,别的三角形没有,此题没有说明边长为3的边是腰还是底,所以做此题应分类讨论.同时结合三角形内角和定理、三角形两边之和大于第三边、两边之差小于第三边,来验证讨论哪些情况符合,哪些情况不符合,从而决定取舍,最后得到正确答案.举一反三:【变式】已知等腰三角形的底边BC=8cm,且|AC-BC|=2cm,那么腰AC的长为( ). A.10cm或6cm B.10cm C.6cm D.8cm或6cm【答案】A;解:∵ |AC-BC|=2cm,∴ AC-BC=±2.又BC=8cm.∴ AC=10cm或6cm.∴ AB=10cm或6cm.类型三、等腰三角形性质和判定综合应用EA C F4、已知:如图,△ABC 中,∠ACB =45°,AD⊥BC 于D ,CF 交AD 于点F ,连接BF 并延长交AC 于点E,∠BAD =∠FCD . 求证:(1)△ABD≌△CFD;(2)BE⊥AC.【思路点拨】此题由等腰三角形的判定知AD =DC ,易证△ABD ≌△CFD ,要证BE ⊥AC ,只需证∠BEC =90°即可,DF =BD ,可知∠FBD =45°,由已知∠ACD =45°,可知∠BEC =90°. 【答案与解析】证明:(1) ∵ AD⊥BC,∴ ∠ADC=∠FDB=90°.∵ 45ACB ∠=︒,∴ 45ACB DAC ∠=∠=︒ ∴ AD=CD∵ BAD FCD ∠=∠,∴ △ABD≌△CFD(2)∵△ABD≌△CFD∴ BD=FD.∵ ∠FDB=90°,∴ 45FBD BFD ∠=∠=︒.∵ 45ACB ∠=︒, ∴ 90BEC ∠=︒. ∴ BE⊥AC.【总结升华】本题主要考查全等三角形判定定理及性质,垂直的性质,三角形内角和定理,等腰直角三角形的性质等知识点,关键在于熟练的综合运用相关的性质定理,通过求证△ABD≌△CFD,推出BD=FD ,求出∠FBD=∠BFD=45°. 举一反三:【变式】如图所示,在直角梯形ABCD 中,∠ABC =90°,AD ∥BC ,AB =BC ,E 是AB 的中点,CE ⊥BD .(1)求证:BE =AD ;(2)求证:AC 是线段ED 的垂直平分线;(3)△DBC 是等腰三角形吗?并说明理由.【答案】(1)证明: ∵ AD ∥BC ,∠ABC =90°,∴ ∠BAD =∠ABC =90°. 又∵ EC ⊥BD ,∴ ∠BEC +∠DBE =90°,∠BEC +∠BCE =90°. ∴ ∠DBE =∠BCE .在△DAB 与△EBC 中,,,,BAD EBC AB BC ABD BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ △DAB ≌△EBC(ASA). ∴ AD =BE .(2)证明:连接AC ,ED .∵ E 为AB 的中点,∴ BE =AE .又∵ AD =BE(已证),∴ AE =AD 且∠A =90°.△AED 为等腰三角形. ∴ ∠AED =∠ADE(等边对等角), 即∠AED =∠ADE =45°.又∵ AB =BC ,AD ∥BC ,∠ABC =90°. ∴ ∠BAC =∠BCA(等边对等角).∴ ∠BAC =∠BCA =1(18090)452︒-︒⨯=︒. ∴ 45CAD BAC ∠=∠=︒.由等腰三角形性质.可知AC 垂直平分ED ,即AC 是线段ED 的垂直平分线.(3)解:△DBC 是等腰三角形.理由如下:由(2)得CD =CE .由(1)可得CE =BD , ∴ CD =BD .∴ △DBC 是等腰三角形. 【巩固练习】一.选择题1. 已知一个等腰三角形两边长分别为5,6,则它的周长为( )A .16B .17C .16或17D .10或122. 若一个三角形的三个外角度数比为2:3:3,则这个三角形是( ) A. 等腰三角形 B. 等边三角形 C. 直角三角形 D. 等腰直角三角形3. 将两个全等的且有一个角为30°的直角三角形拼成如图所示形状,两条长直角边在同一条直线上,则图中等腰三角形的个数是( )A. 4个B. 3个C. 2个D. 1个4. 如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,交AB于D,交AC于E,那么下列结论正确的有( )①△BDF,△CEF都是等腰三角形;②DE=DB+CE;③AD+DE+AE=AB+AC;④BF=CF.A.1个B.2个C.3个D.4个∆沿过D的直线折叠,使点A落在BC上F处,若5. 如图,D是AB边上的中点,将ABCB∠=︒,则BDF50∠度数是()A.60° B.70° C.80° D.不确定6. 如图,ΔABC中,AB=AC,∠BAC=108°,若AD、AE三等分∠BAC,则图中等腰三角形有()A.4个B.5个C.6个D.7个二.填空题7.如图,△ABC中,D为AC边上一点,AD=BD=BC,若∠A=40°,则∠CBD=_____°.8. 等腰三角形的顶角比其中一个底角大30°,则顶角的度数为.9. 如图,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBA交AC于点D,DE⊥AB于E.若△ADE的周长为8cm,则AB =_________cm.10. 等腰三角形的一个角是70°,则它的顶角的度数是 .11. 如图,△ABC中,BO、CO分别平分∠ABC、∠ACB,OM∥AB,ON∥AC,BC=10cm,则ΔOMN的周长=______cm.12. 如图,四边形ABCD中,AB=AD,∠B=∠D,若CD=1.8cm,则BC=______.三.解答题13.已知:如图,ΔABC中,AB=AC,D是AB上一点,延长CA至E,使AE=AD.试确定ED与BC的位置关系,并证明你的结论.14. 已知:如图,AD是∠BAC的平分线,∠B=∠EAC,EF⊥AD于F.求证:EF平分∠AEB.15. 如图,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别为∠BAC、∠ABC的角平分线,求证:BQ+AQ=AB+BP.【答案与解析】一.选择题1. 【答案】C;【解析】注意分类讨论.2. 【答案】D;【解析】三个外角度数分别为360°×=90°,360°×=135°,135°,所以三角形为等腰直角三角形.3. 【答案】B;4. 【答案】C ;【解析】①②③正确.5. 【答案】C;【解析】AD=DF=BD,∠B=∠BFD=50°,BDF∠=180°-50°-50°=80°.6. 【答案】C;【解析】△ABD,△ADE,△ACE,△ABE,△ACD,△ABC为等腰三角形.二.填空题7. 【答案】20;【解析】∠A=∠ABD=40°,∠BDC=∠C=80°,所以∠CBD=20°.8. 【答案】80°;【解析】设顶角为x,则底角为x-30°,所以x+x-30°+x-30°=180°,x=80°.9. 【答案】8;【解析】DE=DC,AC=BC=BE,△ADE的周长=AD+DE+AE=AC+AE=AB=8.10.【答案】70°或40o;【解析】这个角可能是底角,也可能是顶角.11.【答案】10;【解析】OM=BM,ON=CN,∴△OMN的周长等于BC.12.【答案】1.8cm;【解析】连接BD,∠ABD=∠ADB,因为∠B=∠D,所以∠CBD=∠CDB,所以CD=BD.三.解答题13.【解析】证明:ED⊥BC;延长ED,交BC边于H,∵AB=AC,AE=AD.∴设∠B=∠C=x,则∠EAD=2x,∴∠ADE=1802902xx ︒-=︒-即∠BDH=90°-x∴∠B+∠BDH=x+90°-x=90°,∴∠BHD=90°,ED⊥BC.14.【解析】证明:∵AD 是∠BAC 的平分线, ∴∠BAD =∠CAD 又∵∠B =∠EAC ,∴∠B +∠BAD =∠EAC +∠CAD ,即∠ADE =∠DAE ∵EF ⊥AD , ∴∠AFE =∠DFE在Rt △AEF 和Rt △DEF 中ADE DAE AFE DFE EF =EF ∠=∠⎧⎪∠=∠⎨⎪⎩∴Rt △AEF ≌Rt △DEF (AAS )∴∠AEF =∠DEF ,即EF 平分∠AEB . 15.【解析】证明:延长AB 至E ,使BE =BP ,连接EP∵在△ABC 中,∠BAC =60°,∠ACB =40°, ∴∠ABC =80°∴∠E =∠BPE =802︒=40° ∵AP 、BQ 分别为∠BAC 、∠ABC 的角平分线, ∴∠QBC =40°,∠BAP =∠CAP ∴BQ =QC (等角对等边) 在△AEP 与△ACP 中,EAP CAP E C AP AP ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEP ≌△ACP (AAS ) ∴AE =AC∴AB +BE =AQ +QC ,即AB +BP =AQ +BQ.。
新人教版初中数学——等腰三角形与直角三角形知识点归纳与典型题解析一、等腰三角形1.等腰三角形的性质定理:等腰三角形的两个底角相等(简称:等边对等角).推论1:等腰三角形顶角平分线平分底边并且垂直于底边,即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.推论2:等边三角形的各个角都相等,并且每个角都等于60°.2.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.推论1:三个角都相等的三角形是等边三角形.推论2:有一个角是60°的等腰三角形是等边三角形.推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.二、等边三角形1.定义:三条边都相等的三角形是等边三角形.2.性质:等边三角形的各角都相等,并且每一个角都等于60°.3.判定:三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.三、直角三角形与勾股定理1.直角三角形定义:有一个角是直角的三角形叫做直角三角形.性质:(1)直角三角形两锐角互余;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半.判定:(1)两个内角互余的三角形是直角三角形;(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.2.勾股定理及逆定理(1)勾股定理:直角三角形的两条直角边a 、b 的平方和等于斜边c 的平方,即:a 2+b 2=c 2. (2)勾股定理的逆定理:如果三角形的三条边a 、b 、c 有关系:a 2+b 2=c 2,那么这个三角形是直角三角形.考向一 等腰三角形的性质1.等腰三角形是轴对称图形,它有1条或3条对称轴. 2.等腰直角三角形的两个底角相等且等于45°.3.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角). 4.等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a . 5.等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A =180°-2∠B ,∠B =∠C =2180A∠-︒.典例1 等腰三角形的一个内角为40°,则其余两个内角的度数分别为( ) A .40°,100° B .70°,70°C .60°,80°D .40°,100°或70°,70°【答案】D【解析】①若等腰三角形的顶角为40°时,另外两个内角=(180°–40°)÷2=70°; ②若等腰三角形的底角为40°时,它的另外一个底角为40°,顶角为180°–40°–40°=100°. 所以另外两个内角的度数分别为:40°、100°或70°、70°.故选D .【名师点睛】考查了等腰三角形的性质和三角形的内角和为180o ,解题关键是分情况进行讨论①已知角为顶角时;②已知角为底角时.典例2 如图,在ABC ∆中,AB =AC ,D 是BC 的中点,下列结论不正确的是( )A.AD BC B.∠B=∠CC.AB=2BD D.AD平分∠BAC【答案】C【解析】因为△ABC中,AB=AC,D是BC中点,根据等腰三角形的三线合一性质可得,A.AD⊥BC,故A选项正确;B.∠B=∠C,故B选项正确;C.无法得到AB=2BD,故C选项错误;D.AD平分∠BAC,故D选项正确.故选C.【名师点睛】此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质.1.等腰三角形的周长为13cm,其中一边长为4cm,则该等腰三角形的底边为__________cm.考向二等腰三角形的判定1.等腰三角形的判定定理是证明两条线段相等的重要依据,是把三角形中的角的相等关系转化为边的相等关系的重要依据.2.底角为顶角的2倍的等腰三角形非常特殊,其底角平分线将原等腰三角形分成两个等腰三角形.典例3 如图,在△ABC中,AB=AC,AD⊥BC于D,E是AB上的一点,EF∥AD交CA的延长线于F.求证:△AEF是等腰三角形.【解析】∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.又∵AD∥EF,∴∠F=∠CAD,∠FEA=∠BAD,∴∠FEA=∠F,∴△AEF是等腰三角形.2.已知在△ABC中,AB=5,BC=2,且AC的长为奇数.(1)求△ABC的周长;(2)判断△ABC的形状.考向三等边三角形的性质1.等边三角形具有等腰三角形的一切性质.2.等边三角形是轴对称图形,它有三条对称轴.3.等边三角形的内心、外心、重心和垂心重合.典例4 如图,在△ABC中,∠B=∠C=60°,点D为AB边的中点,DE⊥BC于E,若BE=1,则AC 的长为__________.【答案】4【解析】∵DE ⊥BC ,∠B =∠C =60°, ∴∠BDE =30°,∴BD =2BE =2,∵点D 为AB 边的中点,∴AB =2BD =4, ∵∠B =∠C =60°,∴△ABC 为等边三角形, ∴AC =AB =4,故答案为:4.【名师点睛】本题主要考查直角三角形的性质、等边三角形的判定和性质,利用直角三角形的性质求得AB =2BD 是解题的关键.3.如图,ABC ∆是等边三角形,点D 在AC 上,以BD 为一边作等边BDE ∆,连接CE . (1)说明ABD CBE ∆≅∆的理由; (2)若080BEC ∠=,求DBC ∠的度数.考向四 等边三角形的判定在等腰三角形中,只要有一个角是60°,无论这个角是顶角还是底角,这个三角形就是等边三角形.典例5 下列推理中,错误的是A .∵∠A =∠B =∠C ,∴△ABC 是等边三角形 B .∵AB =AC ,且∠B =∠C ,∴△ABC 是等边三角形 C .∵∠A =60°,∠B =60°,∴△ABC 是等边三角形D .∵AB =AC ,∠B =60°,∴△ABC 是等边三角形 【答案】B【解析】A,∵∠A=∠B=∠C,∴△ABC是等边三角形,故正确;B,条件重复且条件不足,故不正确;C,∵∠A=60°,∠B=60°,∴∠C=60°,∴△ABC是等边三角形60°,故正确;D,根据有一个角是60°的等腰三角形是等边三角形可以得到,故正确.故选B.4.如图,已知OA=5,P是射线ON上的一个动点,∠AON=60°.当OP=__________时,△AOP为等边三角形.考向五直角三角形在直角三角形中,30°的角所对的直角边等于斜边的一半,这个性质常常用于计算三角形的边长,也是证明一边(30°角所对的直角边)等于另一边(斜边)的一半的重要依据.当题目中已知的条件或结论倾向于该性质时,我们可运用转化思想,将线段或角转化,构造直角三角形,从而将陌生的问题转化为熟悉的问题.典例6 如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若∠B=30°,BD=6,则CD 的长为__________.【答案】3【解析】∵在Rt△ABC中,∠C=90°,∠B=30°,∴∠BAC=60°.又AD平分∠BAC,∴∠BAD=∠CAD=30°,∴∠BAD=∠B=30°,∴AD=BD=6,∴CD=12AD=3,故答案为:3.5.已知直角三角形的两条边分别是5和12,则斜边上的中线的长度为__________.考向六 勾股定理1.应用勾股定理时,要分清直角边和斜边,尤其在记忆a 2+b 2=c 2时,斜边只能是c .若b 为斜边,则关系式是a 2+c 2=b 2;若a 为斜边,则关系式是b 2+c 2=a 2.2.如果已知的两边没有明确边的类型,那么它们可能都是直角边,也可能是一条直角边、一条斜边,求解时必须进行分类讨论,以免漏解.典例7 cm cm ,则这个直角三角形的周长为__________.【答案】【解析】∵直角边长为cm cm ,∴斜边(cm ),∴周长cm ).故答案为:【名师点睛】本题考查了二次根式与三角形边长,面积的综合运用.熟练掌握勾股定理的计算解出斜边是关键6.如图所示,在ABC ∆中,90B ∠=︒,3AB =,5AC =,D 为BC 边上的中点.(1)求BD 、AD 的长度;(2)将ABC ∆折叠,使A 与D 重合,得折痕EF ;求AE 、BE 的长度.1.直角三角形两直角边长分别为6和8,则此直角三角形斜边上的中线长是 A .3B .4C .7D .52.如图,ABC △是等边三角形,0,20BC BD BAD =∠=,则BCD ∠的度数为A .50°B .55°C .60°D .65°3.如图是“人字形”钢架,其中斜梁AB =AC ,顶角∠BAC =120°,跨度BC =10m ,AD 为支柱(即底边BC 的中线),两根支撑架DE ⊥AB ,DF ⊥AC ,则DE +DF 等于A .10mB .5mC .2.5mD .9.5m4.如图,ABC ∆是边长为1的等边三角形,BDC ∆为顶角120BDC ∠=︒的等腰三角形,点M 、N 分别在AB 、AC 上,且60MDN ∠=︒,则AMN ∆的周长为A.2 B.3 C.1.5 D.2.55.如图,△ABC中,D、E两点分别在AC、BC上,AB=AC,CD=DE.若∠A=40°,∠ABD:∠DBC=3:4,则∠BDE=A.24°B.25°C.30°D.35°6.已知等腰三角形的一边长等于4,一边长等于9,则它的周长为A.22 B.17C.17或22 D.267.如图,△ABC中,AB=AC=5,BC=6,点D在BC上,且AD平分∠BAC,则AD的长为A.6 B.5C.4 D.38.如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC是等腰三角形,则符合条件是点C共有A .8个B .9个C .10个D .11个9.如图,Rt △ABC 中,∠B =90〬,AB =9,BC =6,,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段AN 的长等于A .5B .6C .4D .310.将一个有45°角的三角尺的直角顶点C 放在一张宽为3 cm 的纸带边沿上,另一个顶点A 在纸带的另一边沿上,测得三角尺的一边AC 与纸带的一边所在的直线成30°角,如图,则三角尺的最长边的长为A .6B .C .D .11.三角形的三边a ,b ,c (b ﹣c )2=0;则三角形是_____三角形. 12.如图,等腰△ABC 中,AB =AC =13cm ,BC =10cm ,△ABC 的面积=________.13.已知等腰三角形一腰上的高与另一腰的夹角为35°,则这个等腰三角形顶角的度数为__________. 14.若一个等腰三角形的周长为26,一边长为6,则它的腰长为__________.15.如图,在ABC △中,AB AC =,D 、E 分别是BC 、AC 上一点,且AD AE =,12EDC ∠=︒,则BAD ∠=__________.16.如图,已知△ABC是等边三角形,点B,C,D,E在同一直线上,且CG=CD,DF=DE,则∠EFD=__________°.17.如图,在矩形ABCD中,AB=5,BC=7,点E是AD上的一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD的平分线上时,CA1的长为__________.18.如图,在Rt△ABC中,点E在AB上,把△ABC沿CE折叠后,点B恰好与斜边AC的中点D 重合.(1)求证:△ACE为等腰三角形;(2)若AB=6,求AE的长.19.如图,一架2.5 m 长的梯子斜立在竖直的墙上,此时梯足B 距底端O 为0.7 m .(1)求OA 的长度;(2)如果梯子顶端下滑0.4米,则梯子将滑出多少米?20.ABC ∆与DCE ∆有公共顶点C (顶点均按逆时针排列),AB AC =,DC DE =,180BAC CDE ∠+∠=︒,//DE BC ,点G 是BE 的中点,连接DG 并延长交直线BC 于点F ,连接,AF AD .(1)如图,当90BAC ∠=︒时, 求证:①BF CD =; ②AFD ∆是等腰直角三角形.(2)当60BAC ∠=︒时,画出相应的图形(画一个即可),并直接指出AFD ∆是何种特殊三角形.21.已知:如图,有人在岸上点C 的地方,用绳子拉船靠岸,开始时,绳长CB =10米,CA ⊥AB ,且CA =6米,拉动绳子将船从点B 沿BA 方向行驶到点D 后,绳长CD (1)试判定△ACD 的形状,并说明理由; (2)求船体移动距离BD 的长度.1.如图,在OAB △和OCD △中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为A .4B .3C .2D .12.在△ABC 中,AB =AC ,∠A =40°,则∠B =__________.3.如图,在△ABC 中,AB =AC ,点D ,E 都在边BC 上,∠BAD =∠CAE ,若BD =9,则CE 的长为__________.4.如图,在四边形ABCD 中,AB CD ∥,连接AC ,BD .若90ACB ∠=︒,AC BC =,AB BD =,则ADC ∠=__________︒.5.腰长为5,高为4的等腰三角形的底边长为__________.6.若等腰三角形的一个底角为72︒,则这个等腰三角形的顶角为__________.7.如图,△ABC 中,AB =BC ,∠ABC =90°,F 为AB 延长线上一点,点E 在BC 上,且AE =CF ,若∠BAE =25°,则∠ACF =__________度.8.如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G .(1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.9.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D .(1)若∠C =42°,求∠BAD 的度数;(2)若点E 在边AB 上,EF ∥AC 交AD 的延长线于点F .求证:AE =FE .10.如图,在△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 上,BD =CE ,BE 、CD 相交于点O .求证:(1)DBC ECB △≌△; (2)OB OC =.11.如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,连结AD ,BE 平分∠ABC 交AC 于点E ,过点E 作EF ∥BC 交AB 于点F . (1)若∠C =36°,求∠BAD 的度数.(2)若点E 在边AB 上,EF ∥AC 叫AD 的延长线于点F .求证:FB =FE .12.在ABC △中,90BAC ∠=︒,AB AC =,AD BC ⊥于点D .(1)如图1,点M ,N 分别在AD ,AB 上,且90BMN ∠=︒,当30AMN =︒∠,2AB =时,求线段AM 的长;(2)如图2,点E ,F 分别在AB ,AC 上,且90EDF ∠=︒,求证:BE AF =; (3)如图3,点M 在AD 的延长线上,点N 在AC 上,且90BMN ∠=︒,求证:AB AN +=.1.【答案】4cm 或5cm【解析】当长是4cm 的边是底边时,腰长是12(13–4)=4.5, 三边长为4cm ,4.5cm ,4.5cm ,等腰三角形成立;当长是4cm 的边是腰时,底边长是:13–4–4=5cm ,等腰三角形成立. 故底边长是:4cm 或5cm .故答案是:4cm 或5cm【名师点睛】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论,不要漏解. 2.【解析】(1)由题意得:5−2<AB <5+2,即:3<AB <7,∵AB 为奇数,∴AB =5, ∴△ABC 的周长为5+5+2=12. (2)∵AB =AC =5, ∴△ABC 是等腰三角形. 3.【答案】(1)见解析;(2)20°.【解析】(1)由060ABC DBE ∠=∠=,得ABD CBE ∠=∠,由,AB BC BD BE ==, 得ABD CBE ∆≅∆(SAS );(2)由ABD CBE ∆≅∆,得060BCE A ∠=∠=,所以00000180180806040CBE BEC BCE ∠=-∠-∠=--=, 所以000060604020DBC CBE ∠=-∠=-=.【名师点睛】本题主要考查全等三角形的判定和性质以及三角形内角和定理,先证明三角形全等是解决本题的突破口. 4.【答案】5【解析】已知∠AON =60°,当OP =OA =5时,根据有一个角为60°的等腰三角形为等边三角形,可得△AOP 为等边三角形.故答案为:5. 5.【答案】6或6.5【解析】分两种情况:①5和12是两条直角边,根据勾股定理求得斜边为13,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6.5;②5是直角边,12为斜边,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6,故答案为:6或6.5.6.【答案】(1)BD =2,AD =2)136AE =,56BE = 【解析】(1)∵在ABC ∆中,90B ∠=︒,3AB =,5AC =, ∴在Rt ABC ∆中,222225316BC AC AB =-=-=, ∴4BC =,又∵D 为BC 边上的中点, ∴122BD DC BC ===, ∴在Rt ABD ∆中,222222133AD AB BD =+=+=,∴AD =(2)ABC ∆折叠后如图所示,EF 为折痕,连接DE ,设AE x =,则DE x =,3BE x =-,在Rt BDE ∆中,222BE BD DE +=,即()22232x x -+=,解得:136x =, ∴136AE =, ∴135366BE =-=. 【名师点睛】本题主要考查了勾股定理的应用,也考查了折叠的性质.是常见中考题型.1.【答案】D【解析】∵两直角边分别为6和8,∴斜边10=, ∴斜边上的中线=12×10=5,故选D . 【名师点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理的应用,熟记性质是解题的关键. 2.【答案】A 【解析】ABC △是等边三角形,AC AB BC ∴==,又BC BD =,AB BD ∴=,∴20BAD BDA ∠=∠=︒0180CBD BAD BDA ABC ∴∠=-∠-∠-∠0000018020206080=---=,BC BD =,∴11(180)(18080)5022BCD CBD ∠=⨯︒-∠=⨯︒-︒=︒,故选A .【名师点睛】本题考查了等边三角形、等腰三角形的性质、等边对等角以及三角形内角和定理,熟练掌握性质和定理是正确解答本题的关键. 3.【答案】B【解析】∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°, ∵DE ⊥AB ,DF ⊥AC ,垂足为E ,F ,∴DE =12BD ,DF =12DC , ∴DE +DF =12BD +12DC =12(BD +DC )=12B C .∴DE +DF =12BC =12×10=5m .故选B . 【名师点睛】本题考查等腰三角形和直角三角形的性质,熟练掌握相关知识点是解题关键. 4.【答案】A【解析】如图所示,延长AC 到E ,使CE =BM ,连接DE ,∵BD =DC ,∠BDC =120°,∴∠CBD =∠BCD =30°, ∵∠ABC =∠ACB =60°,∴∠ABD =∠ACD =∠DCE =90°,在△BMD 和△CED 中,90BD CDDBM DCE BM CE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△BMD ≌△CED (SAS ),∴∠BDM =∠CDE ,DM =DE , 又∵∠MDN =60°,∴∠BDM +∠NDC =60°, ∴∠EDC +∠NDC =∠NDE =60°=∠NDM , 在△MDN 和△EDN 中,DM DEMDN NDE DN DN =⎧⎪∠=∠⎨⎪=⎩,∴△MDN ≌△EDN (SAS ), ∴MN =NE =NC +CE =NC +BM ,所以△AMN 周长=AM +AN +MN =AM +AN +NC +BM =AB +AC =2. 故选A.【名师点睛】本题考查全等三角形的判定和性质,做辅助线构造全等三角形,利用等边三角形的性质得到全等条件是解决本题的关键.5.【答案】C【解析】∵AB=AC,CD=DE,∴∠C=∠DEC=∠ABC,∴AB∥DE,∵∠A=40°,∴∠C=∠DEC=∠ABC=18040702,∵∠ABD:∠DBC=3:4,∴设∠ABD为3x,∠DBC为4x,∴3x+4x=70°,∴x=10°,∴∠ABD=30°,∵AB∥DE,∴∠BDE=∠ABD=30°,故答案为C.【名师点睛】本题主要考查了等腰三角形的性质:等边对等角和三角形内角和定理求解,难度适中.6.【答案】A【解析】分两种情况:①当腰为4时,4+4<9,所以不能构成三角形;②当腰为9时,9+9>4,9-9<4,所以能构成三角形,周长是:9+9+4=22.故选A.7.【答案】C【解析】∵AB=AC=5,AD平分∠BAC,BC=6,∴BD=CD=3,∠ADB=90°,∴AD=4.故选C.8.【答案】B【解析】如图,①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.故选B.9.【答案】A【解析】设AN=x,由翻折的性质可知DN=AN=x,则BN=9-x.∵D是BC的中点,∴BD=1632⨯=.在Rt△BDN中,由勾股定理得:ND2=NB2+BD2,即x2=(9-x)2+32,解得x=5,AN=5,故选A.10.【答案】D【解析】如图,作AH⊥CH,在Rt △ACH 中,∵AH =3,∠AHC =90°,∠ACH =30°,∴AC =2AH =6,在Rt △ABC 中,AB ==D .11.【答案】等边【解析】三角形的三边a ,b ,c 2()0b c -=,20,()0b c =-=,0,0a b b c ∴-=-=,解得:,a b b c ==,即a b c ==,则该三角形是等边三角形.故答案为:等边.【名师点睛】本题是一道比较好的综合题,考查了算术平方根的非负性、平方数的非负性、等边三角形的定义. 12.【答案】60cm 2.【解析】过点A 作AD ⊥BC 交BC 于点D , ∵AB =AC =13cm ,BC =10cm , ∴BD =CD =5cm ,AD ⊥BC ,由勾股定理得:AD (cm ), ∴△ABC 的面积=12×BC ×AD =12×10×12=60(cm 2).【名师点睛】本题考查的是等腰三角形的性质及勾股定理,能根据等腰三角形的“三线合一”正确的添加辅助线是关键. 13.【答案】55°或125°【解析】如图,分两种情况进行讨论:如图1,当高在三角形内部时,则∠ABD =35°,∴∠BAD =90°–35°=55°; 如图2,当高在三角形外部时,则∠ABD =35°,∴∠BAD =90°–35°=55°; ∴∠CAB =180°–55°=125°, 故答案为55°或125°.【名师点睛】本题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键. 14.【答案】10【解析】①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形; ②当6为底边时,则腰长=(26-6)÷2=10,因为6-6<10<6+6,所以能构成三角形,故腰长为10.故答案为:10. 15.【答案】24︒【解析】∵ADC ∠是三角形ABD 的外角,AED ∠是三角形DEC 的一个外角,CDE x ∠=︒, ∴ADC BAD B ADE EDC ∠=∠+∠=∠+∠,AED EDC C ∠=∠+∠,B BAD ADE x ∠+∠=∠+︒,AEDC x ∠=∠+︒,∵AB AC =,D 、E 分别在BC 、AC 上,AD AE =,CDE x ∠=︒,∴B C ∠=∠,20ADE AED C ∠=∠=∠+︒,∴C BAD C x x ∠+∠=∠︒++︒,∵12EDC ∠=︒,∴24BAD ∠=︒,故答案为:24︒.16.【答案】15【解析】∵△ABC 是等边三角形,∴∠ACB =60°,∠ACD =120°, ∵CG =CD ,∴∠CDG =30°,∠FDE =150°, ∵DF =DE ,∴∠E =15°.故答案为:15.17.【答案】【解析】如图,过点A 1作A 1M ⊥BC 于点M .∵点A 的对应点A 1恰落在∠BCD 的平分线上,∠BCD =90°,∴∠A 1CM =45°,即△AMC 是等腰直角三角形,∴设CM =A 1M =x ,则BM =7-x .又由折叠的性质知AB =A 1B =5,∴在直角△A 1MB 中,由勾股定理得A 1M 2=A 1B 2-BM 2=25-(7-x )2,∴25-(7-x )2=x 2,解得x 1=3,x 2=4,∵在等腰Rt △A 1CM 中,CA 1A 1M ,∴CA 1.故答案为:18.【答案】(1)见解析;(2)4.【解析】(1)∵把△ABC 沿CE 折叠后,点B 恰好与斜边AC 的中点D 重合, ∴CD =CB ,∠CDE =∠B =90°,AD =CD ,在△ADE 和△CDE 中,90AD CDADE CDE ED ED =⎧⎪∠=∠=⎨⎪=⎩,∴△ADE ≌△CDE (SAS ), ∴EA=EC ,∴△ACE 为等腰三角形; (2)由折叠的性质知:∠BEC =∠DEC , ∵△ADE ≌△CDE ,∴∠AED =∠DEC , ∴∠AED =∠DEC =∠BEC =60°,∴∠BCE =30°,∴12BE CE =, 又∵EA=EC ,∴11223BE AE AB ===,∴AE=4.【名师点睛】本题考查了折叠的性质、全等三角形的判定和性质、等腰三角形的定义和30°角的直角三角形的性质,属于常考题型,熟练掌握上述图形的性质是解题关键. 19.【解析】在直角△ABO 中,已知AB =2.5 m ,BO =0.7 m ,则AO , ∵AO =AA ′+OA ′,∴OA ′=2 m ,∵在直角△A ′B ′O 中,AB =A ′B ′,且A ′B ′为斜边, ∴OB ′=1.5 m ,∴BB ′=OB ′-OB =1.5 m -0.7 m=0.8 m . 答:梯足向外移动了0.8 m .20.【答案】(1)①详见解析;②详见解析;(2)详见解析;【解析】(1)证明:①∵//DE BC ,∴GBF GED ∠=∠. 又,BG EG FGB DGE =∠=∠, ∴(ASA)GBF GED ∆∆≌,∴BF ED =. 又CD ED =,∴BF CD =;②当90BAC ∠=︒时,45ABC ACB ∠=∠=︒, ∵180BAC CDE ︒∠+∠=,∴90CDE ︒∠=.∵//DE BC ,∴90,45BCD CDE ACD ︒︒∠=∠=∠=,∴ABF ACD ∠=∠;又,AB AC BF CD ==,∴()ABF ACD SAS ∆∆≌, ∴,AF AD BAF CAD =∠=∠, ∴BAF FAC CAD FAC ∠+∠=∠+∠ 即90BAC FAD ∠=∠=︒,∴AFD ∆是等腰直角三角形.(2)所画图形如图1或图②,此时AFD ∆是等边三角形.图1 图2 与(1)同理,可证ABF ACD ∆∆≌, ∴AF =AD ,60BAC FAD ∠=∠=︒, ∴△AFD 是等边三角形.【名师点睛】本题考查了等边三角形的判定,等腰三角形的判定和性质,以及全等三角形的判定和性质,平行线的性质,解题的关键是正确找到证明三角形全等的条件,利用全等三角形的性质得到边的关系,角的关系.21.【解析】(1)由题意可得:AC =6 m ,DCm ,∠CAD =90°,可得AD(m ), 故△ACD 是等腰直角三角形.(2)∵AC =6 m ,BC =10 m ,∠CAD =90°, ∴AB(m ), 则BD =AB -AD =8-6=2(m ). 答:船体移动距离BD 的长度为2 m .1.【答案】B【解析】∵40AOB COD ∠=∠=︒,∴AOB AOD COD AOD ∠+∠=∠+∠,即AOC BOD ∠=∠,在AOC △和BOD △中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴AOC BOD △≌△,∴OCA ODB AC BD ∠=∠=,,①正确;∴OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠, ∴40AMB AOB ∠=∠=°,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=°,在OCG △和ODH △中,OCA ODBOGC OHD OC OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴OCG ODH △≌△,∴OG OH =,∴MO平分BMC ∠,④正确,正确的个数有3个,故选B . 2.【答案】70°【解析】∵AB =AC ,∴∠B =∠C , ∵∠A +∠B +∠C =180°,∴∠B =12(180°-40°)=70°.故答案为:70°. 3.【答案】9【解析】∵AB =AC ,∴∠B =∠C ,在△BAD 和△CAE 中,BAD CAE AB ACB C ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BAD ≌△CAE , ∴BD =CE =9,故答案为:9. 4.【答案】105【解析】作DE AB ⊥于E ,CF AB ⊥于F ,如图所示,则DE CF =,∵CF AB ⊥,90ACB ∠=︒,AC BC =,∴12CF AF BF AB ===, ∵AB BD =,∴1122DE CF AB BD ===,BAD BDA ∠=∠, ∴30ABD ∠=︒,∴75BAD BDA ∠=∠=︒,∵AB CD ∥,∴180ADC BAD ∠+∠=︒,∴105ADC ∠=︒,故答案为:105.5.【答案】6或【解析】①如图1,当5AB AC ==,4AD =,则3BD CD ==,∴底边长为6; ②如图2,当5AB AC ==,4CD =时,则3AD =,∴2BD =,∴BC == ③如图3,当5AB AC ==,4CD =时,则3AD ==,∴8BD =,∴BC =∴此时底边长为6或【名师点睛】本题考查了勾股定理,等腰三角形的性质,解题的关键是分三种情况分类讨论. 6.【答案】36°【解析】∵等腰三角形的一个底角为72︒,∴等腰三角形的顶角180727236=︒-︒-︒=︒, 故答案为:36︒.【名师点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键. 7.【答案】70【解析】∵∠ABC =90°,AB =AC ,∴∠CBF =180°–∠ABC =90°,∠ACB =45°, 在Rt △ABE 和Rt △CBF 中,AB CBAE CF=⎧⎨=⎩,∴Rt △ABE ≌Rt △CBF ,∴∠BCF =∠BAE =25°,∴∠ACF =∠ACB +∠BCF =45°+25°=70°,故答案为:70.【名师点睛】本题考查了等腰直角三角形的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键. 8.【解析】(1)∵CAF BAE ∠=∠,∴BAC EAF ∠=∠,∵AE AB AC AF ==,, ∴BAC EAF △≌△, ∴EF BC =.(2)∵65AB AE ABC =∠=︒,, ∴18065250BAE ∠=︒-︒⨯=︒, ∴50FAG ∠=︒, ∵BAC EAF △≌△, ∴28F C ∠=∠=︒, ∴502878FGC ∠=︒+︒=︒.【名师点睛】本题主要考查全等三角形证明与性质,等腰三角形性质,旋转性质等知识点,比较简单,基础知识扎实是解题关键. 9.【解析】(1)∵AB =AC ,AD ⊥BC 于点D ,∴∠BAD =∠CAD ,∠ADC =90°,又∠C =42°,∴∠BAD =∠CAD =90°-42°=48°. (2)∵AB =AC ,AD ⊥BC 于点D , ∴∠BAD =∠CAD , ∵EF ∥AC , ∴∠F =∠CAD , ∴∠BAD =∠F ,∴AE =FE .10.【解析】(1)∵AB =AC ,∴∠ECB =∠DBC ,在DBC △与ECB △中,BD CE DBC ECB BC CB =⎧⎪∠=∠⎨⎪=⎩,∴DBC △≌ECB △.(2)由(1)DBC △≌ECB △, ∴∠DCB =∠EBC , ∴OB =OC .11.【解析】(1)∵AB AC =,∴C ABC ∠=∠,∵36C ∠=︒, ∴36ABC ∠=︒,∵D 为BC 的中点,∴AD BC ⊥,∴90903654BAD ABC ∠=-∠=-︒=︒︒︒. (2)∵BE 平分ABC ∠,∴ABE EBC ∠=∠, 又∵EF BC ∥,∴EBC BEF ∠=∠, ∴EBF FEB ∠=∠, ∴BF EF =.【名师点睛】本题考查等腰三角形的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.【解析】(1)∵90BAC ∠=︒,AB AC =,AD BC ⊥,∴AD BD DC ==,45ABC ACB ∠=∠=︒,45BAD CAD ∠=∠=︒, ∵2AB =,∴AD BD DC ===,∵30AMN ∠=︒,∴180903060BMD ∠=︒-︒-︒=︒, ∴30BMD ∠=︒,∴2BM DM =,由勾股定理得,222BM DM BD -=,即222(2)DM DM -=,解得DM =∴AM AD DM =-=(2)∵AD BC ⊥,90EDF ∠=︒,∴BDE ADF ∠=∠,在BDE △和ADF △中,B DAF DB DA BDE ADF ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴BDE ADF △≌△, ∴BE AF =.(3)如图,过点M 作//ME BC 交AB 的延长线于E ,∴90AME ∠=︒,则AE =,45E ∠=︒,∴ME MA =,∵90AME ∠=︒,90BMN ∠=︒, ∴BME AMN ∠=∠,在BME △和AMN △中,E MAN ME MA BME AMN ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴BME AMN △≌△,∴BE AN =,∴AB AN AB BE AE +=+==.【名师点睛】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质、直角三角形 的性质,掌握全等三角形的判定定理和性质定理是解题的关键.。
等腰三角形的性质完整版课件一、教学内容本节课的教学内容选自人教版小学数学四年级下册第七章《几何图形》的第三节《等腰三角形》。
本节内容主要让学生掌握等腰三角形的性质,包括等腰三角形的定义、底角相等、顶角与底角的关系等。
二、教学目标1. 让学生掌握等腰三角形的性质,能够识别和判断等腰三角形。
2. 培养学生动手操作、观察、推理的能力。
3. 培养学生合作学习、积极思考的学习态度。
三、教学难点与重点重点:等腰三角形的性质及其应用。
难点:等腰三角形底角相等的证明。
四、教具与学具准备教具:多媒体课件、黑板、粉笔、三角板。
学具:每人一套三角形模型、彩色笔。
五、教学过程1. 实践情景引入:教师展示一组三角形模型,让学生观察并说出哪些是等腰三角形。
学生通过观察,能够发现等腰三角形的特征。
2. 探究等腰三角形的性质:(1)教师引导学生分组讨论,让学生通过动手操作,观察等腰三角形的特征。
(2)学生分组讨论,发现等腰三角形的底角相等,顶角与底角的关系。
3. 例题讲解:教师展示例题,引导学生运用等腰三角形的性质解决问题。
例题:已知一个三角形是等腰三角形,两个底角分别是45度和40度,求这个三角形的顶角。
学生独立解答,教师进行讲解和点评。
4. 随堂练习:教师布置随堂练习题,学生独立完成,教师进行点评和讲解。
练习题:1. 判断题:等腰三角形的两个底角相等。
()2. 选择题:一个三角形的两个底角分别是30度和60度,这个三角形可能是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 钝角三角形5. 课堂小结:六、板书设计等腰三角形的性质:1. 等腰三角形:两腰相等的三角形。
2. 底角相等:等腰三角形的两个底角相等。
3. 顶角与底角的关系:等腰三角形的顶角等于两个底角之和减去180度。
七、作业设计1. 判断题:判断下列三角形是否为等腰三角形。
(1)底角为45度的等腰三角形。
()(2)腰长为10cm,底边长为8cm的三角形。
()2. 应用题:已知一个等腰三角形的底角为30度,求这个三角形的顶角。
等腰三角形的性质完整课件一、教学内容本节课的教学内容来源于人教版小学数学五年级下册第117页至119页,主要讲述了等腰三角形的性质。
具体内容包括:1. 等腰三角形的定义;2. 等腰三角形的两底角相等;3. 等腰三角形的底边中线、高、角平分线合一;4. 等腰三角形的应用。
二、教学目标1. 让学生掌握等腰三角形的定义及其性质;2. 培养学生运用等腰三角形的性质解决实际问题的能力;3. 培养学生的观察能力、动手操作能力和团队协作能力。
三、教学难点与重点重点:等腰三角形的性质及应用;难点:等腰三角形底边中线、高、角平分线合一的证明。
四、教具与学具准备教具:黑板、粉笔、课件;学具:三角板、量角器、直尺、圆规、剪刀、彩笔。
五、教学过程1. 实践情景引入:让学生观察教室里的等腰三角形物品,如三角形桌椅、三角形黑板等,引导学生发现等腰三角形的特征。
2. 讲解等腰三角形的定义:等腰三角形是指有两边相等的三角形。
3. 证明等腰三角形两底角相等:通过实际操作,让学生用三角板、量角器等工具,测量等腰三角形两底角的度数,发现两底角相等。
4. 讲解等腰三角形底边中线、高、角平分线合一的性质:引导学生观察等腰三角形底边上的中线、高、角平分线,发现它们交于同一点。
5. 应用练习:让学生运用等腰三角形的性质解决实际问题,如计算等腰三角形的面积、判断一个三角形是否为等腰三角形等。
六、板书设计板书内容:等腰三角形的性质1. 等腰三角形的定义2. 等腰三角形两底角相等3. 等腰三角形底边中线、高、角平分线合一七、作业设计三角形1:底边为6cm,两腰分别为5cm、5cm;三角形2:底边为8cm,两腰分别为7cm、7cm;三角形3:底边为10cm,两腰分别为8cm、8cm。
答案:三角形1是等腰三角形,因为两腰相等;三角形2是等腰三角形,因为两腰相等;三角形3不是等腰三角形,因为两腰不相等。
2. 题目:已知一个等腰三角形的底边长为12cm,腰长为5cm,求该等腰三角形的面积。