江苏专版2018高考数学大一轮复习第三章导数及其应用17曲线的切线课件文
- 格式:ppt
- 大小:15.03 MB
- 文档页数:45
江苏专版高考数学一轮复习第三章导数及其应用第一节导数的概念及导数的运算教案文含解析苏教版第一节 导数的概念及导数的运算1.导数的概念 (1)平均变化率一般地,函数f (x )在区间[x 1,x 2]上的平均变化率为f x 2-f x 1x 2-x 1.(2)函数y =f (x )在x =x 0处的导数 ①定义:设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,此值ΔyΔx =f x 0+Δx -f x 0Δx无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称该常数A为函数f (x )在x =x 0处的导数,记作f ′(x 0).②几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).(3)函数f (x )的导函数若f (x )对于区间(a ,b )内任一点都可导,则f (x )在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的导函数.2.基本初等函数的导数公式原函数导函数f (x )=x α f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x (a >0,且a ≠1)f ′(x )=a x ln_a f (x )=e xf ′(x )=e xf (x )=log a x (a >0,且a ≠1)f ′(x )=1x ln af (x )=ln xf ′(x )=1x3.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[Cf (x )]′=Cf ′(x )(C 为常数);(3)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (4)⎣⎢⎡⎦⎥⎤f x g x ′=f ′x g x -f x g ′x g 2x (g (x )≠0).[小题体验]1.设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为________. 解析:由f (x )=x ln x 得f ′(x )=ln x +1.根据题意知ln x 0+1=2,所以ln x 0=1,因此x 0=e. 答案:e2.曲线y =x 3-x +3在点(1,3)处的切线方程为________. 答案:2x -y +1=03.已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=_____.解析:由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,所以f ′(3)=-13,因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),所以g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.答案:01.利用公式求导时要特别注意不要将幂函数的求导公式(x α)′=αx α-1与指数函数的求导公式(a x)′=a xln a 混淆.2.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者.3.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.[小题纠偏]1.函数y =x cos x -sin x 的导数为________.解析:y ′=(x cos x )′-(sin x )′=x ′cos x +x (cos x )′-cos x =cos x -x sin x -cos x =-x sin x .答案:-x sin x2.已知直线y =-x +1是函数f (x )=-1a·e x图象的切线,则实数a =________.解析:设切点为(x 0,y 0),则f ′(x 0)=-1a·e 0x=-1,所以ex =a ,又-1a·e 0x=-x 0+1,所以x 0=2,a =e 2.答案:e 23.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a =________.解析:因为y =x 3,所以y ′=3x 2,设过(1,0)的直线与y =x 3相切于点(x 0,x 30),则在该点处的切线斜率为k =3x 20,所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30,又(1,0)在切线上,则x 0=0或x 0=32,当x 0=0时,由y =0与y =ax 2+154x -9相切,可得a =-2564,当x 0=32时,由y =274x -274与y =ax 2+154x -9相切,可得a =-1.答案:-1或-2564考点一 导数的运算基础送分型考点——自主练透[题组练透]求下列函数的导数. (1)f (x )=x 3+x ; (2)f (x )=sin x +x ; (3)f (x )=e x cos x ; (4)f (x )=x -1x-ln x . 解:(1)f ′(x )=(x 3+x )′=(x 3)′+(x )′=3x 2+1. (2)f ′(x )=cos x +1.(3)f ′(x )=e xcos x -e xsin x =e x(cos x -sin x ). (4)f ′(x )=1x 2-1x =1-xx2.[谨记通法]求函数导数的3种原则考点二 导数的几何意义题点多变型考点——多角探明[锁定考向]导数的几何意义是把函数的导数与曲线的切线联系在一起,一般不单独考查,在填空题中会出现,有时也体现在解答题中,难度偏小.常见的命题角度有: (1)求切线方程; (2)求切点坐标;(3)求参数的值(范围).[题点全练]角度一:求切线方程1.(2019·泰州检测)若函数f (x )=2x 在点(a ,f (a ))处的切线与直线2x +y -4=0垂直,则该切线方程为________.解析:∵切线与直线2x +y -4=0垂直, ∴切线的斜率是12.∵f (x )=2x ,∴f ′(x )=x12-,∴f ′(a )=a12-=12. 解得a =4,则f (4)=4,故函数f (x )在点(4,4)处的切线方程为x -2y +4=0. 答案:x -2y +4=02.已知曲线y =x 与y =8x的交点为C ,两曲线在点C 处的切线分别为l 1,l 2,则切线l 1,l 2与y 轴所围成的三角形的面积为________.解析:由⎩⎪⎨⎪⎧y =x ,y =8x,解得⎩⎪⎨⎪⎧x =4,y =2,即C (4,2),由y =x ,得y ′=(x )′=12x ,则直线l 1的斜率k 1=14,∴l 1:y =14x +1.同理可得l 2:y =-12x +4,如图,易知S △ABC =12×3×4=6,即所求的面积为6.答案:6角度二:求切点坐标3.(2019·扬州模拟)曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为________.解析:f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,所以P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,符合题意.答案:(1,3)和(-1,3) 角度三:求参数的值(范围)4.(2018·常州高三期末)已知函数f (x )=bx +ln x ,其中b ∈R.若过原点且斜率为k 的直线与曲线y =f (x )相切,则k -b 的值为________.解析:设切点为(x 0,bx 0+ln x 0),f ′(x )=b +1x ,则k =b +1x 0,故切线方程为y -(bx 0+ln x 0)=⎝⎛⎭⎪⎫b +1x(x -x 0),将(0,0)代入,可得x 0=e ,则k =b +1e ,∴k -b =1e .答案:1e[通法在握]与切线有关问题的处理策略(1)已知切点A (x 0,y 0)求斜率k ,即求该点处的导数值,k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)求过某点M (x 1,y 1)的切线方程时,需设出切点A (x 0,f (x 0)),则切线方程为y -f (x 0)=f ′(x 0)(x -x 0),再把点M (x 1,y 1)代入切线方程,求x 0.[演练冲关]1.曲线f (x )=2x -e x与y 轴的交点为P ,则曲线在点P 处的切线方程为________. 解析:曲线f (x )=2x -e x 与y 轴的交点为(0,-1). 且f ′(x )=2-e x,所以f ′(0)=1. 所以所求切线方程为y +1=x ,即x -y -1=0. 答案:x -y -1=02.(2018·南京、盐城高三二模)在平面直角坐标系xOy 中,曲线y =mx +1(m >0)在x=1处的切线为l ,则点(2,-1)到直线l 的距离的最大值为________.解析:把x =1代入y =m x +1,得y =m2, 则切线l 过点⎝ ⎛⎭⎪⎫1,m 2.∵y ′=-m x +12,∴切线的斜率k =y ′|x =1=-m4.∴切线l 的方程为y -m 2=-m4(x -1),即mx +4y -3m =0.∴点(2,-1)到直线l 的距离d =|2m -4-3m |m 2+42=|-4-m |m 2+16=m +4m 2+16=m +42m 2+16=m 2+8m +16m 2+16=1+8mm 2+16= 1+8m +16m≤ 1+82m ·16m=2,当且仅当m =16m,即m =4时取“=”,故所求最大值为 2. 答案: 23.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意得⎩⎪⎨⎪⎧f 0=b =0,f ′0=-aa +2=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, 所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0,所以a ≠-12.所以a 的取值范围为⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫-12,+∞.一抓基础,多练小题做到眼疾手快1.(2019·常州调研)函数f (x )=e x +x 2+sin x 的导函数f ′(x )=________. 答案:e x+2x +cos x2.(2018·镇江调研)函数f (x )=(x +1)2(x -1)在x =1处的导数等于________. 解析:由f (x )=(x +1)2(x -1)=x 3+x 2-x -1,得f ′(x )=3x 2+2x -1, 所以f ′(1)=3+2-1=4. 答案:43.(2018·苏州暑假测试)曲线y =e x在x =0处的切线方程为____________. 解析:因为y ′=e x,所以y =e x在x =0处的切线斜率k =e 0=1, 因此切线方程为y -1=1×(x -0),即x -y +1=0. 答案:x -y +1=04.已知函数f (x )=1x cos x ,则f (π)+f ′⎝ ⎛⎭⎪⎫π2=________.解析:因为f ′(x )=-1x 2cos x +1x(-sin x ),所以f (π)+f ′⎝ ⎛⎭⎪⎫π2=-1π+2π·(-1)=-3π. 答案:-3π5.(2019·苏州调研)已知函数f (x )=-x 3+ax 2+b (a ,b ∈R)图象上任意一点处的切线的斜率都小于1,则实数a 的取值范围是________.解析:∵f ′(x )=-3x 2+2ax =-3⎝ ⎛⎭⎪⎫x -a 32+a23,当x =a 3时,f ′(x )取到最大值a 23.∴a 23<1,解得-3<a < 3. 答案:(-3,3)6.(2018·苏北四市调研)已知f (x )=x 3-2x 2+x +6,则f (x )在点P (-1,2)处的切线与坐标轴围成的三角形的面积等于________.解析:因为f (x )=x 3-2x 2+x +6,所以f ′(x )=3x 2-4x +1,所以f ′(-1)=8, 故切线方程为y -2=8(x +1),即8x -y +10=0, 令x =0,得y =10,令y =0,得x =-54,所以所求面积S =12×54×10=254.答案:254二保高考,全练题型做到高考达标1.设函数f (x )的导函数为f ′(x ),且f (x )=x 2+2xf ′(1),则f ′(2)=________. 解析:因为f (x )=x 2+2xf ′(1),所以f ′(x )=2x +2f ′(1),令x =1,得f ′(1)=2+2f ′(1),解得f ′(1)=-2,则f ′(x )=2x -4,所以f ′(2)=2×2-4=0.答案:02.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 018)=6,则f ′(-2 018)=________. 解析:因为f ′(x )=4ax 3-b sin x +7. 所以f ′(-x )=4a (-x )3-b sin(-x )+7 =-4ax 3+b sin x +7. 所以f ′(x )+f ′(-x )=14. 又f ′(2 018)=6,所以f ′(-2 018)=14-6=8. 答案:83.(2019·淮安调研)曲线y =1-2x +2在点(-1,-1)处的切线方程为________. 解析:因为y =1-2x +2=x x +2, 所以y ′=x +2-x x +22=2x +22,y ′| x =-1=2,所以曲线在点(-1,-1)处的切线斜率为2, 所以所求切线方程为y +1=2(x +1),即y =2x +1. 答案:y =2x +14.(2018·无锡期末)在曲线y =x -1x(x >0)上一点P (x 0,y 0)处的切线分别与x 轴,y轴交于点A ,B ,O 是坐标原点,若△OAB 的面积为13,则x 0=________.解析:因为y ′=1+1x2,切点P ⎝ ⎛⎭⎪⎫x 0,x 0-1x 0,x 0>0,所以切线斜率k =y ′|x =x 0=1+1x 20,所以切线方程是y -⎝ ⎛⎭⎪⎫x 0-1x 0=⎝ ⎛⎭⎪⎫1+1x 20(x -x 0).令y =0,得x =2x 0x 20+1,即A ⎝ ⎛⎭⎪⎫2x 0x 20+1,0; 令x =0,得y =-2x 0,即B ⎝ ⎛⎭⎪⎫0,-2x 0.所以S △OAB =12·2x 0x 20+1·2x 0=2x 20+1=13,解得x 0= 5.答案: 55.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m =________.解析:因为f ′(x )=1x,所以直线l 的斜率为k =f ′(1)=1, 又f (1)=0,所以切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,解得m =-2. 答案:-26.(2018·淮安高三期中)已知函数f (x )=x 3.设曲线y =f (x )在点P (x 1,f (x 1))处的切线与该曲线交于另一点Q(x 2,f (x 2)),记f ′(x )为函数f (x )的导函数,则f ′x 1f ′x 2的值为________.解析:由f ′(x )=3x 2,得f ′(x 1)=3x 21,所以曲线y =f (x )在点P (x 1,x 31)处的切线方程为y =3x 21x -2x 31,由⎩⎪⎨⎪⎧y =3x 21x -2x 31,y =x 3,解得Q(-2x 1,-8x 31),所以x 2=-2x 1,所以f ′x 1f ′x 2=3x 213x 22=14.答案:147.(2019·南通一调)已知两曲线f (x )=2sin x ,g (x )=a cos x ,x ∈⎝⎛⎭⎪⎫0,π2相交于点P .若两曲线在点P 处的切线互相垂直,则实数a 的值为________.解析:f ′(x )=2cos x ,g ′(x )=-a sin x .设点P 的横坐标为x 0,则f (x 0)=g (x 0),f ′(x 0)·g ′(x 0)=-1,即2sin x 0=a cos x 0,(2cos x 0)·(-a sin x 0)=-1,所以4sin 2x 0=1.即 sin x 0=±12,因为x 0∈⎝⎛⎭⎪⎫0,π2,所以sin x 0=12,cos x 0=32,所以a =233.答案:2338.曲边梯形由曲线y =x 2+1,y =0,x =1,x =2所围成,过曲线y =x 2+1(x ∈[1,2])上一点P 作切线,使得此切线从曲边梯形上切出一个面积最大的普通梯形,则这一点的坐标为________.解析:设P (x 0,x 20+1),x 0∈[1,2],则易知曲线y =x 2+1在点P 处的切线方程为y -(x 2+1)=2x 0(x -x 0),所以y =2x 0(x -x 0)+x 20+1,设g (x )=2x 0(x -x 0)+x 20+1,则g (1)+g (2)=-2x 20+6x 0+2,所以S 普通梯形=g 1+g 22×1=-x 20+3x 0+1=-⎝⎛⎭⎪⎫x 0-322+134,所以P 点坐标为⎝ ⎛⎭⎪⎫32,134时,S 普通梯形最大.答案:⎝ ⎛⎭⎪⎫32,1349.(2019·盐城中学月考)求下列函数的导数: (1)y =x 2(ln x +sin x ); (2)y =cos x -x x2; (3)y =x ln x .解:(1)y ′=2x (ln x +sin x )+x 2⎝ ⎛⎭⎪⎫1x+cos x =2x ln x +2x sin x +x +x 2cos x .(2)y ′=-sin x -1x 2-cos x -x ·2xx 4=x -2cos x -x sin xx 3.(3)y ′=⎝ ⎛⎭⎪⎫12·1x ln x +x ·1x =2+ln x 2x .10.已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程;(2)求经过点A (2,-2)的曲线f (x )的切线方程.解:(1)因为f ′(x )=3x 2-8x +5,所以f ′(2)=1,又f (2)=-2,所以曲线在点(2,f (2))处的切线方程为y +2=x -2,即x -y -4=0.(2)设曲线与经过点A (2,-2)的切线相切于点P (x 0,x 30-4x 20+5x 0-4),因为f ′(x 0)=3x 20-8x 0+5,所以切线方程为y -(-2)=(3x 20-8x 0+5)(x -2),又切线过点P (x 0,x 30-4x 20+5x 0-4),所以x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2),整理得(x 0-2)2(x 0-1)=0,解得x 0=2或1,所以经过点A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0.三上台阶,自主选做志在冲刺名校1.已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为________.解析:由f (x )=x 3+ax +14得, f ′(x )=3x 2+a ,f ′(0)=a ,f (0)=14,所以曲线y =f (x )在x =0处的切线方程为y -14=ax . 设直线y -14=ax 与曲线g (x )=-ln x 相切于点(x 0,-ln x 0), g ′(x )=-1x, 所以⎩⎪⎨⎪⎧ -ln x 0-14=ax 0, ①a =-1x 0. ②将②代入①得ln x 0=34, 所以x 0=e 34,所以a =-1e34=-e 34-. 答案:-e34-2.(2018·启东中学高三测试)已知函数f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12和直线l:y=kx+9,且f′(-1)=0.(1)求a的值;(2)是否存在实数k,使直线l既是曲线y=f(x)的切线,又是曲线y=g(x)的切线?如果存在,求出k的值;如果不存在,请说明理由.解:(1)由已知得f′(x)=3ax2+6x-6a,因为f′(-1)=0,所以3a-6-6a=0,解得a=-2.(2)存在,理由如下:由已知得,直线l恒过定点(0,9),若直线l是曲线y=g(x)的切线,则设切点为(x0,3x20+6x0+12).因为g′(x0)=6x0+6,所以切线方程为y-(3x20+6x0+12)=(6x0+6)(x-x0),将(0,9)代入切线方程,解得x0=±1.当x0=-1时,切线方程为y=9;当x0=1时,切线方程为y=12x+9.由(1)知f′(x)=-6x2+6x+12,①由f′(x)=0,得-6x2+6x+12=0,解得x=-1或x=2.当x=-1时,y=f(x)的切线方程为y=-18;当x=2时,y=f(x)的切线方程为y=9,所以y=f(x)与y=g(x)的公切线是y=9.②由f′(x)=12,得-6x2+6x+12=12,解得x=0或x=1.在x=0处,y=f(x)的切线方程为y=12x-11;在x=1处,y=f(x)的切线方程为y=12x-10.所以y=f(x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.。