人教A版数学高二选修2-2 高二理科试验班数学周练习(导数、推理与证明)
- 格式:doc
- 大小:327.00 KB
- 文档页数:5
第二章 推理与证明综合检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.锐角三角形的面积等于底乘高的一半; 直角三角形的面积等于底乘高的一半; 钝角三角形的面积等于底乘高的一半; 所以,凡是三角形的面积都等于底乘高的一半. 以上推理运用的推理规则是( ) A .三段论推理 B .假言推理 C .关系推理 D .完全归纳推理 [答案] D[解析] 所有三角形按角分,只有锐角三角形、Rt 三角形和钝角三角形三种情形,上述推理穷尽了所有的可能情形,故为完全归纳推理.2.数列1,3,6,10,15,…的递推公式可能是( )A.⎩⎪⎨⎪⎧a 1=1,a n +1=a n +n (n ∈N *)B.⎩⎪⎨⎪⎧a 1=1,a n =a n -1+n (n ∈N *,n ≥2)C.⎩⎪⎨⎪⎧a 1=1,a n +1=a n +(n -1)(n ∈N *)D.⎩⎪⎨⎪⎧a 1=1,a n =a n -1+(n -1)(n ∈N *,n ≥2)[答案] B[解析] 记数列为{a n },由已知观察规律:a 2比a 1多2,a 3比a 2多3,a 4比a 3多4,…,可知当n ≥2时,a n 比a n -1多n ,可得递推关系⎩⎪⎨⎪⎧a 1=1,a n -a n -1=n (n ≥2,n ∈N *).3.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,因为( )A .大前提错误B .小前提错误C .推理形式错误D .不是以上错误 [答案] C[解析] 大小前提都正确,其推理形式错误.故应选C. 4.用数学归纳法证明等式1+2+3+…+(n +3)=(n +3)(n +4)2(n ∈N *)时,验证n =1,左边应取的项是( )A .1B .1+2C .1+2+3D .1+2+3+4 [答案] D[解析] 当n =1时,左=1+2+…+(1+3)=1+2+…+4,故应选D.5.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意实数x 都成立,则( )A .-1<a <1B .0<a <2C .-12<a <32D .-32<a <12[答案] C[解析] 类比题目所给运算的形式,得到不等式(x -a )⊗(x +a )<1的简化形式,再求其恒成立时a 的取值范围.(x -a )⊗(x +a )<1⇔(x -a )(1-x -a )<1 即x 2-x -a 2+a +1>0 不等式恒成立的充要条件是 Δ=1-4(-a 2+a +1)<0 即4a 2-4a -3<0 解得-12<a <32.故应选C.6.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14[答案] D[解析] 项数为n 2-(n -1)=n 2-n +1,故应选D. 7.已知a +b +c =0,则ab +bc +ca 的值( ) A .大于0 B .小于0 C .不小于0 D .不大于0 [答案] D[解析] 解法1:∵a +b +c =0, ∴a 2+b 2+c 2+2ab +2ac +2bc =0, ∴ab +ac +bc =-a 2+b 2+c 22≤0.解法2:令c =0,若b =0,则ab +bc +ac =0,否则a 、b 异号,∴ab +bc +ac =ab <0,排除A 、B 、C ,选D.8.已知c >1,a =c +1-c ,b =c -c -1,则正确的结论是( )A .a >bB .a <bC .a =bD .a 、b 大小不定 [答案] B[解析] a =c +1-c =1c +1+c ,b =c -c -1=1c +c -1,因为c +1>c >0,c >c -1>0, 所以c +1+c >c +c -1>0,所以a <b .9.若凸k 边形的内角和为f (k ),则凸(k +1)边形的内角和f (k +1)(k ≥3且k ∈N *)等于( )A .f (k )+π2B .f (k )+πC .f (k )+32πD .f (k )+2π [答案] B[解析] 由凸k 边形到凸(k +1)边形,增加了一个三角形,故f (k +1)=f (k )+π.10.若sin A a =cos B b =cos C c,则△ABC 是( )A .等边三角形B .有一个内角是30°的直角三角形C .等腰直角三角形D .有一个内角是30°的等腰三角形 [答案] C[解析] ∵sin A a =cos B b =cos C c,由正弦定理得,sin A a =sin B b =sin C c ,∴sin B b =cos B b =cos C c =sin Cc,∴sin B =cos B ,sin C =cos C ,∴∠B =∠C =45°, ∴△ABC 是等腰直角三角形.11.若a >0,b >0,则p =(ab )a +b2与q =a b ·b a 的大小关系是( ) A .p ≥q B .p ≤q C .p >q D .p <q [答案] A若a >b ,则a b >1,a -b >0,∴pq >1;若0<a <b ,则0<a b <1,a -b <0,∴pq >1;若a =b ,则pq=1,∴p ≥q .12.设函数f (x )定义如下表,数列{x n }满足x 0=5,且对任意的自然数均有x n +1=f (x n ),则x 2011=( )A.1 B .2 C .4 D .5 [答案] C[解析] x 1=f (x 0)=f (5)=2,x 2=f (2)=1,x 3=f (1)=4,x 4=f (4)=5,x 5=f (5)=2,…,数列{x n }是周期为4的数列,所以x 2011=x 3=4,故应选C.二、填空题(本大题共4个小题,每小题4分,共16分.将正确答案填在题中横线上)13.半径为r 的圆的面积S (r )=πr 2,周长C (r )=2πr ,若将r 看作(0,+∞)上的变量,则(πr 2)′=2πr .①①式可用语言叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R 的球,若将R 看作(0,+∞)上的变量,请你写出类似于①式的式子:______________________________,你所写的式子可用语言叙述为__________________________.[答案] ⎝ ⎛⎭⎪⎫43πR 3′=4πR 2;球的体积函数的导数等于球的表面积函数.14.已知f (n )=1+12+13+…+1n(n ∈N *),用数学归纳法证明f (2n)>n2时,f (2k +1)-f (2k )=________.[答案] 12k +1+12k +2+…+12k +1[解析] f (2k +1)=1+12+13+…+12k +1f (2k)=1+12+13+…+12kf (2k +1)-f (2k)=12k +1+12k +2+…+12k +1.15.观察①sin 210°+cos 240°+sin10°cos40°=34;②si n 26°+cos 236°+sin6°cos36°=34.两式的结构特点可提出一个猜想的等式为________________.[答案] sin 2α+cos 2(30°+α)+sin αcos(30°+α)=34[解析] 观察40°-10°=30°,36°-6°=30°, 由此猜想:sin 2α+cos 2(30°+α)+sin αcos(30°+α)=34.可以证明此结论是正确的,证明如下:sin 2α+cos 2(30°+α)+sin α·cos(30°+α)=1-cos2α2+1+cos(60°+2α)2+12[sin(30°+2α)-sin30°]=1+12[cos(60°+2α)-cos2α]+12sin(30°+2α)-12=1+12[-2sin(30°+2α)sin30°]+12sin(30°+2α)-12=34-12si n(30°+2α)+12sin(30°+2α)=34. 16.设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a +b 、a -b 、ab 、ab∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集F ={a +b 2|a ,b ∈Q }也是数域.有下列命题:①整数集是数域;②若有理数集Q ⊆M ,则数集M 必为数域; ③数域必为无限集; ④存在无穷多个数域.其中正确命题的序号是________.(把你认为正确命题的序号都填上)[答案] ③④[解析] 考查阅读理解、分析等学习能力.①整数a =2,b =4,ab不是整数;②如将有理数集Q ,添上元素2,得到数集M ,则取a =3,b =2,a +b ∉M ;③由数域P 的定义知,若a ∈P ,b ∈P (P 中至少含有两个元素),则有a +b ∈P ,从而a +2b ,a +3b ,…,a +nb ∈P ,∴P 中必含有无穷多个元素,∴③对.④设x 是一个非完全平方正整数(x >1),a ,b ∈Q ,则由数域定义知,F ={a +b x |a 、b ∈Q }必是数域,这样的数域F 有无穷多个.三、解答题(本大题共6个小题,共74分.解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)已知:a 、b 、c ∈R ,且a +b +c =1. 求证:a 2+b 2+c 2≥13.[证明] 由a 2+b 2≥2ab ,及b 2+c 2≥2bc ,c 2+a 2≥2ca . 三式相加得a 2+b 2+c 2≥ab +bc +ca .∴3(a 2+b 2+c 2)≥(a 2+b 2+c 2)+2(ab +bc +ca )=(a +b +c )2. 由a +b +c =1,得3(a 2+b 2+c 2)≥1, 即a 2+b 2+c 2≥13.18.(本题满分12分)证明下列等式,并从中归纳出一个一般性的结论.2cos π4=2,2cos π8=2+2,2cos π16=2+2+2,……[证明] 2cos π4=2·22= 22cos π8=21+cosπ42=2·1+222=2+ 2 2cos π16=21+cosπ82=21+122+22=2+2+ 2…19.(本题满分12分)已知数列{a n }满足a 1=3,a n ·a n -1=2·a n -1-1.(1)求a 2、a 3、a 4;(2)求证:数列⎩⎨⎧⎭⎬⎫1a n -1是等差数列,并写出数列{a n }的一个通项公式.[解析] (1)由a n ·a n -1=2·a n -1-1得a n =2-1a n -1,代入a 1=3,n 依次取值2,3,4,得 a 2=2-13=53,a 3=2-35=75,a 4=2-57=97.(2)证明:由a n ·a n -1=2·a n -1-1变形,得 (a n -1)·(a n -1-1)=-(a n -1)+(a n -1-1), 即1a n -1-1a n -1-1=1, 所以{1a n -1}是等差数列.由1a 1-1=12,所以1a n -1=12+n -1, 变形得a n -1=22n -1,所以a n =2n +12n -1为数列{a n }的一个通项公式.20.(本题满分12分)已知函数f (x )=a x+x -2x +1(a >1).(1)证明:函数f (x )在(-1,+∞)上为增函数; (2)用反证法证明方程f (x )=0没有负根.[解析] (1)证法1:任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0,且a x 1>0,又∵x 1+1>0,x 2+1>0,∴f (x 2)-f (x 1)=x 2-2x 2+1-x 1-2x 1+1=(x 2-2)(x 1+1)-(x 1-2)(x 2+1)(x 1+1)(x 2+1)=3(x 2-x 1)(x 1+1)(x 2+1)>0,于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0,故函数f (x )在(-1,+∞)上为增函数.证法2:f ′(x )=a xln a +x +1-(x -2)(x +1)2=a x ln a +3(x +1)2∵a >1,∴ln a >0,∴a xln a +3(x +1)2>0,f ′(x )>0在(-1,+∞)上恒成立,即f (x )在(-1,+∞)上为增函数.(2)解法1:设存在x 0<0(x 0≠-1)满足f (x 0)=0则a x 0=-x 0-2x 0+1,且0<ax 0<1.∴0<-x 0-2x 0+1<1,即12<x 0<2,与假设x 0<0矛盾.故方程f (x )=0没有负数根. 解法2:设x 0<0(x 0≠-1)①若-1<x 0<0,则x 0-2x 0+1<-2,a x 0<1,∴f (x 0)<-1.②若x 0<-1则x 0-2x 0+1>0,a x 0>0, ∴f (x 0)>0.综上,x <0(x ≠-1)时,f (x )<-1或f (x )>0,即方程f (x )=0无负根.21.(本题满分12分)我们知道,在△ABC 中,若c 2=a 2+b 2,则△ABC 是直角三角形.现在请你研究:若c n =a n +b n (n >2),问△ABC 为何种三角形?为什么?[解析] 锐角三角形 ∵c n =a n +b n (n >2),∴c >a, c >b , 由c 是△ABC 的最大边,所以要证△ABC 是锐角三角形,只需证角C 为锐角,即证cos C >0.∵cos C =a 2+b 2-c 22ab,∴要证cos C >0,只要证a 2+b 2>c 2,① 注意到条件:a n +b n =c n ,于是将①等价变形为:(a 2+b 2)c n -2>c n .② ∵c >a ,c >b ,n >2,∴c n -2>a n -2,c n -2>b n -2, 即c n -2-a n -2>0,c n -2-b n -2>0, 从而(a 2+b 2)c n -2-c n =(a 2+b 2)c n -2-a n -b n =a 2(c n -2-a n -2)+b 2(c n -2-b n -2)>0, 这说明②式成立,从而①式也成立.故cos C >0,C 是锐角,△ABC 为锐角三角形.22.(本题满分14分)(2010·安徽理,20)设数列a 1,a 2,…a n ,…中的每一项都不为0.证明{a n }为等差数列的充分必要条件是:对任何n ∈N +,都有1a 1a 2+1a 2a 3+…+1a n a n +1=n a 1a n +1. [分析] 本题考查等差数列、数学归纳法与充要条件等有关知识,考查推理论证、运算求解能力.解题思路是利用裂项求和法证必要性,再用数学归纳法或综合法证明充分性.[证明] 先证必要性.设数列{a n }的公差为d .若d =0,则所述等式显然成立. 若d ≠0,则 1a 1a 2+1a 2a 3+…+1a n a n +1=1d ⎝ ⎛⎭⎪⎫a 2-a 1a 1a 2+a 3-a 2a 2a 3+…+a n +1-a n a n a n +1 =1d ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫1a 1-1a 2+⎝ ⎛⎭⎪⎫1a 2-1a 3+…+⎝ ⎛⎭⎪⎫1a n-1a n +1=1d ⎝ ⎛⎭⎪⎫1a 1-1a n +1=1d a n +1-a 1a 1a n +1=n a 1a n +1. 再证充分性.证法1:(数学归纳法)设所述的等式对一切n ∈N +都成立.首先,在等式1a 1a 2+1a 2a 3=2a 1a 3两端同乘a 1a 2a 3,即得a 1+a 3=2a 2,所以a 1,a 2,a 3成等差数列,记公差为d ,则a 2=a 1+d .假设a k =a 1+(k -1)d ,当n =k +1时,观察如下两个等式1a 1a 2+1a 2a 3+…+1a k -1a k =k -1a 1a k,① 1a 1a 2+1a 2a 3+…+1a k -1a k +1a k a k +1=k a 1a k +1② 将①代入②,得k -1a 1a k +1a k a k +1=ka 1a k +1, 在该式两端同乘a 1a k a k +1,得(k -1)a k +1+a 1=ka k . 将a k =a 1+(k -1)d 代入其中,整理后,得a k +1=a 1+kd . 由数学归纳法原理知,对一切n ∈N ,都有a n =a 1+(n -1)d ,所以{a n }是公差为d 的等差数列.证法2:(直接证法)依题意有1 a1a2+1a2a3+…+1a n a n+1=na1a n+1,①1 a1a2+1a2a3+…+1a n a n+1+1a n+1a n+2=n+1a1a n+1.②②-①得1a n+1a n+2=n+1a1a n+2-na1a n+1,在上式两端同乘a1a n+1a n+2,得a1=(n+1)a n+1-na n+2.③同理可得a1=na n-(n-1)a n+1(n≥2)④③-④得2na n+1=n(a n+2+a n)即a n+2-a n+1=a n+1-a n,由证法1知a3-a2=a2-a1,故上式对任意n∈N*均成立.所以{a n}是等差数列.。
高中数学学习材料鼎尚图文*整理制作《数学选修2-2》推理与证明第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1、 下列表述正确的是( ).①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.①②③B.②③④C.②④⑤D.①③⑤. 2、分析法是从要证明的结论出发,逐步寻求使结论成立的( ) A.充分条件 B.必要条件 C.充要条件 D.等价条件 3、在ABC △中,sin sin cos cos A C A C >,则ABC △一定是( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.不确定 4、下面使用类比推理正确的是 ( )A.直线a,b,c ,若a //b,b //c ,则a //c .类推出:向量a,b,c ,若a //b ,b //c ,则a //cB.同一平面内,直线a,b,c ,若a ⊥c,b ⊥c ,则a //b .类推出:空间中,直线a,b,c ,若a ⊥c,b ⊥c ,则a //b .C.实数,a b ,若方程20x ax b ++=有实数根,则24a b ≥.类推出:复数,a b ,若方程20x ax b ++=有实数根,则24a b ≥.D.以点(0,0)为圆心,r 为半径的圆的方程为222x y r +=.类推出:以点(0,0,0)为球心,r 为半径的球的方程为2222x y z r ++=.5、(1)已知332p q +=,求证2p q +≤,用反证法证明时,可假设2p q +≥;(2)已知a b ∈R ,,1a b +<,求证方程20x ax b ++=的两根的绝对值都小于1.用反证法证明时可假设方程有一根1x 的绝对值大于或等于1,即假设11x ≥,以下结论正确的是( )A.(1)的假设错误,(2)的假设正确B.(1)与(2)的假设都正确C.(1)的假设正确,(2)的假设错误D.(1)与(2)的假设都错误 6、观察式子:213122+<,221151233++<,222111712344+++<,,则可归纳出式子为( )A.22211111(2)2321n n n ++++<-≥ B.22211111(2)2321n n n ++++<+≥ C.222111211(2)23n n n n -++++<≥D.22211121(2)2321n n n n ++++<+≥ 7、已知扇形的弧长为l ,所在圆的半径为r ,类比三角形的面积公式:12S =⨯底⨯高,可得扇形的面积公式为( )A.212rB.212l C.12rl D.不可类比8、定义A D D C C B B A ****,,,的运算分别对应下图中的(1)、(2)、(3)、(4),那么下图中的(A)、(B)所对应的运算结果可能是 ( )(1) (2) (3) (4) (A) (B)A.D A D B **,B.C A D B **,C.D A C B **,D.D A D C **, 9、观察下列各式:211=,22343++=,2345675++++=,2456789107++++++=,,可以得出的一般结论是( )A.2(1)(2)(32)n n n n n ++++++-=B.2(1)(2)(32)(21)n n n n n ++++++-=-C.2(1)(2)(31)n n n n n ++++++-=D.2(1)(2)(31)(21)n n n n n ++++++-=-10、用数学归纳法证明(1)(2)()213(21)n n n n n n +++=-····,从k 到1k +,左边需要增乘的代数式为( )A.2(21)k +B.21k +C.211k k ++ D.231k k ++ 11、正整数按下表的规律排列1 2 5 10 17 4 3 6 11 18 9 8712 19 16 15 14 13 20 2524232221则上起第2009行,左起第2010列的数应为( )A.22009B.22010C.20092010+D.20092010⨯12、为了保证信息安全传输,有一种称为秘密密钥密码系统(Private Key Cryptosystem ),其加密、解密原理如下图:现在加密密钥为)2(log +=x y a ,如上所示,明文“6”通过加密后得到密文“3”,再发送,接受方通过解密密钥解密得到明文“6”.问:若接受方接到密文为“4”,则解密后得明文为( )A.12B.13C.14D.15第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上.)13、数列2,5,11,20,,47,x …中的x 等于______________. 14、已知经过计算和验证有下列正确的不等式:112>,111123++>,111312372++++>, 111122315++++>,,根据以上不等式的规律,写出一个一般性的不等式 .15、已知命题:“若数列{}n a 是等比数列,且0n a >,则数列12()nn n b a a a n *=∈N 也是等比数列”.可类比得关于等差数列的一个性质为________________________________.16、若数列{}n a 的通项公式)()1(12+∈+=N n n a n ,记)1()1)(1()(21n a a a n f -⋅⋅⋅--=,试通过计算)3(),2(),1(f f f 的值,推测出.________________)(=n f三、解答题(本大题共6小题,共74分,解答应写出必要的文字说明、证明过程及演算步骤.)17、(12分)解密密钥密码加密密钥密码明文密文密文发送明文已知:23150sin 90sin 30sin 222=++2223sin 10sin 70sin 1302++=23125sin 65sin 5sin 222=++通过观察上述两等式的规律,请你写出一般性的命题,并给出的证明.18、(12分)如图(1),在三角形ABC 中,AB AC ⊥,若AD BC ⊥,则2AB BD BC =·;若类比该命题,如图(2),三棱锥A BCD -中,AD ⊥面ABC ,若A 点在三角形BCD 所在平面内的射影为M ,则有什么结论?命题是否是真命题.19、(12分)已知实数a b c d ,,,满足1a b c d +=+=,1ac bd +>,求证a b c d ,,,中至少有一个是负数.20、(12分)已知数列{a n }满足S n +a n =2n +1. (1)写出a 1, a 2, a 3,并推测a n 的表达式; (2)用数学归纳法证明所得的结论.21、(12分)已知命题:“若数列{}n a 为等差数列,且,m n a a a b ==),,(+∈≠N n m n m ,则m n ma nb a m n+-=-”.现已知数列{}),0(+∈>N n b b n n 为等比数列,且,a b m =b b n =),,(+∈≠N n m n m.(1)请给出已知命的证明;(2)类比(1)的方法与结论,推导出m n b +.22、(14分)在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A 由全体二元有序实数组组成,在A 上定义一个运算,记为,对于A 中的任意两个元素(,)a b α=,(,)c d β=,规定:αβ=(,)ad bc bd ac +-.(1)计算:)3,2()4,1(-;(2)请用数学符号语言表述运算满足交换律,并给出证明;(3)若“A 中的元素(,)I x y =”是“对A α∀∈,都有α=I I αα=成立”的充要条件,试求出元素I .参考答案1.D 由归纳推理、演绎推理和类比推理的概念知①③⑤正确.2.A 由分析法的定义知A 正确.3.B 由已知得sin sin cos cos cos()0,A C A C A C -=-+>∴cos()0,A C +< ∴A C +为锐角,得B 为钝角,ABC △为钝角三角形.4.D 若向量b =0,则a //c 不正确;空间内,直线a 与b 可以相交、平行、异面,故B 不正确;方程200(1)0x ix i ++-±=有实根,但24a b ≥不成立;设点(,,)P x y z 是球面上的任一点,由OP r =,得222x y z r ++=,D 正确.5.A 用反证法证明时,假设命题为假,应为全面否定.所以2p q +≤ 的假命题应为.2>+q p6.C 由每个不等式的不等号左边的最后一项的分母和右边的分母以及不等号左边的最后一项的分母的底和指数的乘积减1等于右边分母可知,选C.7.C 三角形的高类比扇形半径,三角形的底类比扇形的弧.8.B 观察知A 表示“︱”,B 表示“□”,C 表示“-”,D 表示“○”,故选B. 9.B 等式右边的底数为左边的项数.10.A 当n k =时,左边=(1)(2)()k k k k ++⋅⋅+1,[(1)1][(1)2][(1)(1)]n k k k k k =+=++++⋅⋅+++当时左边(2)(3)()(1)(2)k k k k k k k k =++⋅⋅⋅+++++(1)(2)(1)(2)()1k k k k k k k k k ++++=++⋅⋅⋅++(1)(2)()[2(21)]k k k k k =++⋅⋅⋅++,∴从k 到1k +,左边需要增乘的代数式为2(21)k +.11.D 由上的规律可知,第一列的每个数为所该数所在行数的平方,而第一行的数则满足列数减1的平方再加1.依题意有,左起第2010列的第一个数为220091+,故按连线规律可知,上起第2009行,左起第2010列的数应为220092009+=20092010⨯.12.C 由其加密、解密原理可知,当x =6时,y =3,从而a =2;不妨设接受方接到密文为“4”的“明文”为b,则有)2(log 42+=b ,从而有14224=-=b .13.32 1547,1220,91120,6511,325=-=-∴=-=-=-x x ,∴32x =14.一般不等式为:1111()23212n n n *++++>∈-N . 15.若数列{}n a 是等差数列,则数列12nn a a a b n +++=也是等差数列.证明如下:设等差数列{}n a 的公差为d ,则12nn a a a b n+++=11(1)2(1)2n n dna d a n n -+==+-,所以数列{}n b 是以1a 为首项,2d为公差的等差数列. 16.2()22n f n n +=+ 22332222141)13(1,31)12(1,21)11(1=+==+==+=a a a 1211113(1)11(1)(1),22222f a =-=-=-+=⨯ 同理1222111324(2)(1)(1)(1)(1)232233f a a =--=--=⨯⨯⨯123222111132435(3)(1)(1)(1)(1)(1)(1)234223344f a a a =---=---=⨯⨯⨯⨯⨯∴222111()(1)(1)[1]23(1)f n n =--⋅⋅⋅-+111111(1)(1)(1)(1)(1)(1)223311n n =-+-+⋅⋅⋅-+++ 1324322 (223341122)n n n n n n ++=⨯⨯⨯⨯⨯⨯⨯=+++ 17.解:一般性的命题为2223sin (60)sin sin (60)2ααα-+++=证明:左边001cos(2120)1cos 21cos(2120)222ααα----+=++003[cos(2120)cos 2cos(2120)]232ααα=--++-=所以左边等于右边18.解:命题是:三棱锥A BCD -中,AD ⊥面ABC ,若A 点在三角形BCD 所在平面内的射影为M ,则有2ABC BCMBCD S S S =△△△·是一个真命题.证明如下: 在图(2)中,连结DM ,并延长交BC 于E ,连结AE ,则有DE BC ⊥.因为AD ⊥面ABC ,,所以AD AE ⊥. 又AM DE ⊥,所以2AE EM ED =·. 于是22111222ABCBCM BCD SBC AE BC EM BC ED S S ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭△△△·····. 19.证明:假设a b c d ,,,都是非负实数,因为1a b c d +=+=, 所以a b c d ,,,[01]∈,,所以2a c ac ac +≤≤,2b cbd bd +≤≤, 所以122a cb dac bd ++++=≤, 这与已知1ac bd +>相矛盾,所以原假设不成立,即证得a b c d ,,,中至少有一个是负数.20.解:(1) a 1=23, a 2=47, a 3=815,猜测 a n =2-n 21(2) ①由(1)已得当n =1时,命题成立;②假设n =k 时,命题成立,即 a k =2-k21, 当n =k +1时,a 1+a 2+……+a k +a k +1+a k +1=2(k +1)+1,且a 1+a 2+……+a k =2k +1-a k ∴2k +1-a k +2a k +1=2(k +1)+1=2k +3, ∴2a k +1=2+2-k 21, a k +1=2-121+k , 即当n =k +1时,命题成立. 根据①②得n ∈N + , a n =2-n21都成立. 21.解:(1)因为在等差数列{a n }中,由等差数列性质得⎩⎨⎧+=+=++mda a nda a n n m m n m ,又,m n a a ab ==,∴m n m n a a nd a b md ++=+⎧⎨=+⎩,得m n m n ma ma mndna nb mnd++=+⎧⎨=+⎩,两式相减得()m n m n a ma nb +-=-,∴m n ma nba m n+-=-.(2)在等比数列{}n b 中,由等比数列的性质得⎪⎩⎪⎨⎧⋅=⋅=++mn n m nm n m qb b qb b ,又,m n b a b b ==, ∴n m n m m n b a q b b q ++⎧=⋅⎪⎨=⋅⎪⎩,得m m mnm n n n mnm n b a q b b q++⎧=⋅⎪⎨=⋅⎪⎩,两式相除得m m nm n n a b b -+=, ∴mm n m nn a b b-+=.22.解:(1))3,2(⊙)14,5()4,1(=-. (2)交换律:αββα=,证明如下:设(,)a b α=,(,)c d β=,则αβ=(,)ad bc bd ac +-,βα=(,)c d (,)a b =(,)cb da db ca +-=(,)ad bc bd ac +-.∴αββα=.(3)设A 中的元素(,)I x y =,对A α∀∈,都有α=IIαα=成立,由(2)知只需I ⊙αα=,即),(y x ⊙=),(b a ),(b a (,)(,)bx ay by ax a b ⇔+-= ①若)0,0(=α,显然有I ⊙αα=成立; ②若)0,0(≠α,则bx ay a ax by b +=⎧⎨-+=⎩,解得01x y =⎧⎨=⎩,∴当对A α∀∈,都有α=II αα=成立时,得(0,0)I =或(0,1)I =,易验证当(0,0)I =或(0,1)I =时,有对A α∀∈,都有α=IIαα=成立∴(0,0)I =或(0,1)I =.。
2016-2017学年高中数学第二章推理与证明测试理新人教A版选修2-2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第二章推理与证明测试理新人教A版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第二章推理与证明测试理新人教A版选修2-2的全部内容。
第二章 推理与证明微测试1 2。
1。
1合情推理一、选择题:本大题共4小题,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.某小朋友按如下规则练习数数,1大拇指,2食指,3中指,4无名指,5小指,6无名指,7中指,8食指,9大拇指,10食指,...,一直数到2017时,对应的指头是A .小指B .中指C .食指D .大拇指2.已知下列等式:222233+=,333388+=44441515+=55552424+=,1010a a b b+=, 则推测=+b a A .109 B .1033 C .199D .293.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…用你所发现的规律可得20172的末位数字是 A .2 B .4 C .6D .84.设ABC △的三边长分别为a ,b ,c ,ABC △的面积为S ,内切圆半径为r ,则2Sr a b c=++;类比这个结论可知:四面体P ABC -的四个面的面积分别为1S ,2S ,3S ,4S ,内切球的半径为r ,四面体P ABC -的体积为V ,则r = ABCD二、填空题:本大题共3小题,将正确的答案填在题中的横线上.5.在一项田径比赛中,甲、乙、丙三人的夺冠呼声最高.观众A B C 、、做了一项预测:A 说:“我认为冠军不会是甲,也不会是乙”.B 说:“我觉得冠军不会是甲,冠军会是丙”.C 说:“我认为冠军不会是丙,而是甲”.比赛结果出来后,发现A B C 、、三人中有一人的两个判断都对,一人的两个判断都错,还有一人的两个判断一对一错,根据以上情况可判断冠军是_____________. 6.观察下列各式:2251233++<;222111712344+++<;……照此规律,当n ∈*N 时,1(1)n +++. 7.设a ,b ,c 是直角三角形的三边长,斜边上的高为h ,c 为斜边长,则给出四个命题: ①a b c h +>+; ②2222a b c h +<+; ③3333a b c h +>+; ④4444a b c h +<+.其中真命题的序号是_____________,进一步类比得到的一般结论是_____________. 三、解答题:本大题共2小题,解答须写出文字说明、证明过程或演算步骤.8.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为2(1)11222n n n n +=+.记第n 个k 边形数为(,)(3)N n k k ≥,以下列出了部分k 边形数中第n 个数的表达式:正方形数:2(,4)N n n =;六边形数:2(,6)2N n n n =-;……由此推测(,)(3)N n k k ≥的表达式,并求(10,24)N 的值.9.(1)试计算下列各式:(只需写出计算结果,不需写出计算过程)222sin 45sin 105sin 165︒+︒+︒=_____________; 222sin 30sin 90sin 150︒+︒+︒=_____________; 222sin 15sin 75sin 135︒+︒+︒=_____________.(2)通过观察上述各式的计算规律,请你写出一般性的命题,并给出你的证明.1.D 【解析】由题意得,大拇指对应的数是18n +,其中n ∈N ,因为201725281=⨯+,所以数到2017时,对应的指头是大拇指.故选D .2.A 【解析】分析所给的等式,可归纳出等式22(2,)11n n n n n n n n +=≥∈--*N ,在1010a ab b+=中,10a =,210199b =-=,于是109a b +=.故选A . 3.A 【解析】通过观察可知,末尾数字周期为4,201745041=⨯+,故20172的末位数字是2.故选A .4.C 【解析】ABC △的三条边长a ,b ,c 类比为四面体P ABC -的四个面的面积1S ,2S ,3S ,4S ,三角形面积公式中的系12类比为三棱锥体积公式中的系13,从而可知12343VS S r S S +++=.证明如下:以四面体各面为底,内切球心O 为顶点的各三棱锥体积的和为V ,则123411113333V S r S r S r S r =+++,故12343V S S r S S +++=.故选C . 5.甲 【解析】由题知B 、C 的预测截然相反,必一对一错,因为只有一个对,不论B 、C 谁对,A 必是一对一错,假设B 的预测是对的,则丙是冠军,那么A 说冠军也不会是乙也对,这与题目中“还有一人的两个判断一对一错”相矛盾,即假设不成立,所以B 的预测是错误的,则C 的预测是对的,所以甲是冠军.故填甲.6.211n n ++ 【解析】观察所给的几个不等式的左右两边可以看出:不等式的右边的分子是21n +的形式,分母是1n +的形式,故由归纳推理的模式可得该不等式的右边是211n n ++.故填211n n ++.7.②④ ()n n n n a b c h n +<+∈*N 【解析】在直角三角形ABC 中,sin a c A =,cos b c A =,ab ch =,所以sin cos h c A A =.于是(sin cos )n n n n n a b c A A +=+,(1sin cos )n n n n n c h c A A +=+.因为(sin cos 1sin cos )sin 1)1cos )0n n n n n n n n n nn n a b c h c A A A A c A A +--=+--=--<((, 所以n n n n a b c h +<+.891cos(2)1cos(2)1cos 233222ααα---+-=++ 3122[cos(2)cos 2cos(2)]2233αααππ=--+++ 3.2=微测试2 2。
二 推理与证明[A 基础达标]1.若复数a +i1-2i是纯虚数,则实数a 的值为( )A.2B.-12C.15D.-25解析:选A.因为a +i 1-2i =(a +i )(1+2i )(1-2i )(1+2i )=a -2+(2a +1)i5是纯虚数,所以a =2.2.已知复数z 1=12+32i ,z 2=-12+32i ,则z =z 1z 2在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限解析:选 D.因为z 1=12+32i ,z 2=-12+32i ,所以z =12+32i -12+32i =1+3i -1+3i=(1+3i )(-1-3i )(-1+3i )(-1-3i )=12-32i ,所以复数z 在复平面内对应的点为⎝ ⎛⎭⎪⎫12,-32,在第四象限.故选D.3.对于数25,规定第1次操作为23+53=133,第2次操作为13+33+33=55,第3次操作为53+53=250,如此反复操作,则第2 018次操作后得到的数是( )A.25B.250C.55D.133解析:选C.由规定:第1次操作为23+53=133,第2次操作为13+33+33=55,第3次操作为53+53=250,第4次操作为23+53+03=133,……,故操作得到的数值周期出现,且周期为3.又2 018=3×672+2,故第2 018次操作后得到的数等于第2次操作后得到的数,即55,故选C.4.已知命题1+2+22+…+2n -1=2n -1(n ∈N *)及其证明:(1)当n =1时,左边=1,右边=21-1=1,所以等式成立; (2)假设当n =k 时等式成立,即1+2+22+…+2k -1=2k-1,则当n =k +1时,1+2+22+…+2k -1+2k=1-2k +11-2=2k +1-1,所以当n =k +1时等式也成立.由(1)(2),知对任意的正整数n 等式都成立. 则以下说法正确的是( ) A.命题、推理都正确 B.命题正确、推理不正确 C.命题不正确、推理正确 D.命题、推理都不正确解析:选B.命题正确,但证明n =k +1时没有用到假设的结论,故推理不正确. 5.对“a ,b ,c 是不全相等的正数”,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0; ②a =b 与b =c 及a =c 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立. 其中判断正确的个数为( ) A.0 B.1 C.2D.3解析:选B.若(a -b )2+(b -c )2+(c -a )2=0,则a =b =c ,与“a ,b ,c 是不全相等的正数”矛盾,故①正确.a =b 与b =c 及a =c 中最多只能有一个成立,故②不正确.由于“a ,b ,c 是不全相等的正数”,有两种情形:至多有两个数相等或三个数都互不相等,故③不正确.6.已知m ∈R ,复数m +i 1+i -12的实部和虚部相等,则m =.解析:由m +i 1+i -12=(m +i )(1-i )(1+i )(1-i )-12=(m +1)+(1-m )i 2-12=m +(1-m )i2,由已知得m 2=1-m 2,则m =12.答案:127.在平面几何中:△ABC 中∠C 的内角平分线CE 分AB 所成线段的比为AC BC =AEBE.把这个结论类比到空间:在三棱锥A BCD 中(如图),DEC 平分二面角A CD B 且与AB 相交于E ,则得到类比的结论是W.解析:由平面中线段的比转化为空间中面积的比可得AE EB =S △ACDS △BCD.答案:AE EB =S △ACDS △BCD8.观察下列等式:S 1=12n 2+12n , S 2=13n 3+12n 2+16n , S 3=14n 4+12n 3+14n 2, S 4=15n 5+12n 4+13n 3-130n , S 5=An 6+12n 5+512n 4+Bn 2,…可以推测,A -B =.解析:由S 1,S 2,S 3,S 4,S 5的特征,推测A =16.又S k 的各项系数的和为1,所以A +12+512+B =1,所以B =-112.故A -B =16+112=14. 答案:149.已知|x |≤1,|y |≤1,用分析法证明:|x +y |≤|1+xy |. 证明:要证|x +y |≤|1+xy |, 即证(x +y )2≤(1+xy )2, 即证x 2+y 2≤1+x 2y 2, 即证(x 2-1)(1-y 2)≤0, 因为|x |≤1,|y |≤1, 所以x 2-1≤0,1-y 2≥0,所以(x 2-1)(1-y 2)≤0,不等式得证. 10.设f (x )=a x +a -x2,g (x )=a x -a -x2(其中a >0,且a ≠1).(1)5=2+3,请你推测g (5)能否用f (2),f (3),g (2),g (3)来表示; (2)如果(1)中获得了一个结论,请你推测能否将其推广. 解:(1)由f (3)g (2)+g (3)f (2)=a 3+a -32·a 2-a -22+a 3-a -32·a 2+a -22=a 5-a -52,又g (5)=a 5-a -52,因此g (5)=f (3)g (2)+g (3)f (2). (2)由g (5)=f (3)g (2)+g (3)f (2), 即g (2+3)=f (3)g (2)+g (3)f (2), 于是推测g (x +y )=f (x )g (y )+g (x )f (y ). 证明:因为f (x )=a x +a -x2,g (x )=a x -a -x2(大前提).所以g (x +y )=a x +y -a -(x +y )2,g (y )=a y -a -y2,f (y )=a y +a -y2,(小前提及结论)所以f (x )g (y )+g (x )f (y ) =a x +a -x 2·a y -a -y 2+a x -a -x 2·a y +a -y2=a x +y -a -(x +y )2=g (x +y ).故推测正确.[B 能力提升]11.定义:如果函数y =f (x )在定义域内的给定区间[a ,b ]上存在x 0(a <x 0<b ),满足f (x 0)=f (b )-f (a )b -a,则称函数y =f (x )是[a ,b ]上的“平均值函数”,x 0是它的一个均值点,例如y =x 2是[-1,1]上的平均值函数,0就是它的均值点.现有函数f (x )=x 3+mx 是[-1,1]上的平均值函数,则实数m 的取值X 围是.解析:由f (x )=x 3+mx 是[-1,1]上的平均值函数,知关于x 的方程x 3+mx =f (1)-f (-1)1-(-1)在区间(-1,1)上有解,即方程x 3+mx -m -1=0在区间(-1,1)上有解,就是方程m =-x 2-x -1在区间(-1,1)上有解.因为当x ∈(-1,1)时,-x 2-x -1=-⎝ ⎛⎭⎪⎫x +122-34∈⎝ ⎛⎦⎥⎤-3,-34,所以m 的取值X 围是⎝⎛⎦⎥⎤-3,-34. 答案:⎝⎛⎦⎥⎤-3,-3412.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n }.可以推测:(1)b 2 016是数列{a n }中的第项; (2)b 2k -1=(用k 表示). 解析:观察知这些三角形数满足a n =n (n +1)2,n ∈N *,当n =5k -1或n =5k ,k ∈N*时,对应的三角形数是5的倍数,为数列{b n }中的项,将5k -1和5k 列为一组,所以b 2 016是第1 008组的后面一项,即b 2 016是数列{a n }中的第5×1 008=5 040项;b 2k -1是第k 组的前面一项,是数列{a n }中的第5k -1项,即b 2k -1=a 5k -1=5k (5k -1)2.答案:(1)5 040 (2)5k (5k -1)213.设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0. (1)证明:l 1与l 2相交;(2)证明:l 1与l 2的交点在椭圆2x 2+y 2=1上. 证明:(1)假设直线l 1与l 2不相交,则l 1与l 2平行,由直线l 1与l 2的方程可知实数k 1,k 2分别为两直线的斜率,则有k 1=k 2, 代入k 1k 2+2=0,消去k 1,得k 22+2=0,k 2无实数解,这与已知k 2为实数矛盾, 所以k 1≠k 2,即l 1与l 2相交.(2)法一:由方程组⎩⎪⎨⎪⎧y =k 1x +1y =k 2x -1,解得⎩⎪⎨⎪⎧x =2k 2-k 1,y =k 2+k 1k 2-k 1,故l 1与l 2的交点坐标为⎝⎛⎭⎪⎫2k 2-k 1,k 2+k 1k 2-k 1. 而2⎝ ⎛⎭⎪⎫2k 2-k 12+⎝ ⎛⎭⎪⎫k 2+k 1k 2-k 12=8+k 22+k 21+2k 1k 2k 22+k 21-2k 1k 2=k 21+k 22+4k 21+k 22+4=1. 此即表明l 1与l 2的交点在椭圆2x 2+y 2=1上. 法二:l 1与l 2的交点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧y -1=k 1x ,y +1=k 2x ,故知x ≠0.从而⎩⎪⎨⎪⎧k 1=y -1x ,k 2=y +1x .代入k 1k 2+2=0, 得y -1x ·y +1x+2=0, 整理后,得2x 2+y 2=1, 所以交点P 在椭圆2x 2+y 2=1上. 14.(选做题)观察下列各不等式: 1+122<32, 1+122+132<53, 1+122+132+142<74, 1+122+132+142+152<95, …(1)由上述不等式,归纳出一个与正整数n (n ≥2)有关的一般性结论; (2)用数学归纳法证明你得到的结论.解:(1)观察上述各不等式,得到与正整数n 有关的一般不等式为1+122+132+142+…+1n2<2n -1n(n ∈N *,且n ≥2). (2)证明:①当n =2时,由题设可知,不等式显然成立. ②假设当n =k (k ≥2,k ∈N *)时,不等式成立,即 1+122+132+142+…+1k 2<2k -1k , 那么,当n =k +1时,有1+122+132+142+…+1k 2+1(k +1)2<2k -1k +1(k +1)2<2k -1k +1k (k +1)=⎝ ⎛⎭⎪⎫2-1k +⎝ ⎛⎭⎪⎫1k -1k +1=2-1k +1=2(k +1)-1k +1.所以当n =k +1时,不等式也成立.根据①和②,可知不等式对任何n ∈N *且n ≥2都成立.。
高中数学人教新课标A版选修2-2(理科)第二章推理与证明 2.1.2演绎推理同步测试共 14 题一、选择题1、下面说法正确的有()①演绎推理是由一般到特殊的推理;②演绎推理得到的结论一定是正确的;③演绎推理的一般模式是“三段论”形式;④演绎推理得到的结论的正误与大前提、小前提和推理形式有关.A.1个B.2个C.3个D.4个2、《论语·学路》篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足.”上述推理用的是()A.类比推理B.归纳推理C.演绎推理D.以上都不对3、下面几种推理是演绎推理的是()B.猜想数列5,7,9,11,…的通项公式为A.由金、银、铜、铁可导电,猜想:金属都可以C.由正三角形的性质得出正四面体的性质D.半径为的圆的面积,则单位圆的面积4、有这样一段演绎推理“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为( )A.大前提错误B.小前提错误C.推理形式错误D.非以上错误5、有一段演绎推理:“直线平行于平面,则平行于平面内所有直线;已知直线平面,直线∥平面,则∥ ”的结论显然是错误的,这是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误6、下列三句话按“三段论”模式排列顺序正确的是( )①y=cosx(x∈R)是三角函数;②三角函数是周期函数;③y=cosx(x∈R)是周期函数.A.①②③B.②①③C.②③①D.③②①7、“三段论”是演绎推理的一般模式,推理“①矩形是平行四边形;②正方形是矩形;③正方形是平行四边形”中的小前提是()A.①B.②C.③D.以上均错8、在中,,求证:证明: “ .” ,其中,引号包括部分是演绎推理的()A.大前提B.小前提C.结论D.三段论二、填空题9、已知结论“函数y=2x+5的图象是一条直线”,若将其恢复成完整的三段论后,大前提是________.10、“不能被2整除的整数是奇数,35不能被2整除,所以35奇数.”把此演绎推理写成“三段论”的形式.大前提:________,小前提:________,结论:________.11、若定义在区间D上的函数f(x)对于D上的n个值x1, x2, …,x n总满足 [f(x1)+f(x2)+…+f(x n)]≤,称函数f(x)为D上的凸函数.现已知f(x)=sin x在(0,π)上是凸函数,则在△ABC中,sin A+sin B+sin C的最大值是________.三、解答题12、在数列{a n}中,a1=1, a n+1= (n∈N+),归纳猜想这个数列的通项公式,并用三段论加以论证.13、已知:在梯形ABCD中,如图,AB=DC=DA,AC和BD是梯形的对角线.用三段论证明:AC平分∠BCD,DB平分∠CBA.14、将下列演绎推理写成“三段论”的形式.(1)太阳系的大行星都以椭圆形轨道绕太阳运行,海王星是太阳系中的大行星,所以海王星以椭圆形轨道绕太阳运行;(2)菱形的对角线互相平分;(3)函数f(x)=x2-cos x是偶函数.参考答案一、选择题1、【答案】C【解析】【解答】①③④正确,②错误的原因是:演绎推理的结论要为真,必须前提和推理形式都为真.故答案为:C.【分析】①演绎推理是由一般到特殊的推理,显然正确;②演绎推理得到的结论不一定是正确的;故不正确;③演绎推理的一般模式是“三段论”形式;显然正确;④演绎推理得到的结论的正误与大前提、小前提和推理形式有关,显然正确.2、【答案】C【解析】【解答】本题为三段论推理,三段论推理分为大前提、小前提、结论三部分构成,本题采用了这种推理模式.故答案为:C.【分析】本题为三段论推理,三段论推理分为大前提、小前提、结论三部分构成.3、【答案】D【解析】【解答】由演绎推理的定义可知它的推理为由一般到特殊,与归纳推理相反.分析可知:D选项是演绎推理.而A,B为归纳推理,C为类比推理.故答案为:D.【分析】A,B是由特殊到一般,为归纳推理;C是由平面图到空间,为类比推理.只有D是由一般到特殊,为演绎推理.4、【答案】C【解析】【解答】∵大前提的形式:“有些有理数是真分数”,不是全称命题,∴不符合三段论推理形式,∴推理形式错误,故答案为:C.【分析】本题考查的知识点是演绎推理的基本方法及整数的,在使用三段论推理证明中,如果命题是错误的,则可能是“大前提”错误,也可能是“小前提”错误,也可能是推理形式错误,我们分析的其大前提的形式:“有些…”,不难得到结论。
第二章 2.1 2.1.1一、选择题1.下列推理是归纳推理的是( B )A .F 1,F 2为定点,动点P 满足|PF 1|+|PF 2|=2a >|F 1F 2|,得P 的轨迹为椭圆B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积S =πr 2,猜想出椭圆x 2a 2+y 2b 2=1的面积S =πab D .科学家利用鱼的沉浮原理制造潜艇解析 由归纳推理的定义知B 是归纳推理,故选B .2.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( C )A .28B .76C .123D .199解析 利用归纳推理,a +b =1,a 2+b 2=3,a 3+b 3=4=3+1,a 4+b 4=4+3=7,a 5+b 5=7+4=11,a 6+b 6=11+7=18,a 7+b 7=18+11=29,a 8+b 8=29+18=47,a 9+b 9=47+29=76,a 10+b 10=76+47=123,规律为从第三组开始,其结果为前两组结果的和.3.下列哪个平面图形与平行六面体作为类比对象较为合适( C )A .三角形B .梯形C .平行四边形D .矩形4.下面使用类比推理正确的是( C )A .“若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”B .“(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”C .“(a +b )c =ac +bc ”类推出“a +b c =a c +b c(c ≠0)” D .“(ab )n =a n b n ”类推出“(a +b )n =a n +b n ”解析 A 可以类推,但类似于3的数字不能为0;B 和D 中,加法与乘法不是同一级运算,不能类推,故选C .5.如图所示是一串按一定规律排列的珠子,如果按这种规律往下排列,那么第36颗珠子的颜色是( A )A .白色B .黑色C .白色可能性大D .黑色可能性大 解析 由题图可知,三白二黑周而复始相继排列.因为36=5×7+1,所以第36颗珠子的颜色与第一颗珠子的颜色相同,即白色.6.已知x ∈(0,+∞),观察下列不等式:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,…,类似有x +a x n ≥n +1(n ∈N *),则a =( B ) A .n 2 B .n n C .(n +1)2 D .(n +1)n解析 由规律可知,当n =3时,有x +a x 3≥4, 而x +a x 3=x 3+x 3+x 3+a x 3≥44x 3·x 3·x 3·a x 3=44a 33, 所以当a =33时有x +a x3≥4.由此归纳a =n n . 二、填空题7.对大于或等于2的正整数m 的n (n =2,3)次方有如下分解方式:22=1+3, 23=3+5,32=1+3+5, 33=7+9+11,42=1+3+5+7,43=13+15+17+19,… …根据上述分解规律,得52=1+3+5+7+9,若m 3(m ≥2,m ∈N *)的分解中最小的数是73,则m 的值为__9__.解析 m 3的分解中,最小的数依次为3,7,13,…,m 2-m +1,…,由m 2-m +1=73,m ≥2,m ∈N *,得m =9.8.定义:分子为1且分母为正整数的分数称为单位分数.我们可以把1拆分为若干个不同的单位分数之和.如:1=12+13+16,1=12+14+16+112,1=12+15+16+112+120,…,依此类推可得:1=12+16+112+1m +1n +130+142+156+172+190+1110+1132+1156,其中m ≤n ,m ,n ∈N *,则m ,n 的值分别为__13,20__.解析 第四个式子为1=12+16+16+112+120+130,其中16+130=15,再从两个方面寻找规律:一是除第二项外分母依次为1×2,2×3,3×4,4×5,…,二是通过观察发现第二项的分母应该是最后一项分母分解为两个相邻正整数乘积时的较大因数,因此类推的式子是1=12+113+16+112+120+130+…+112×13, 所以1m =113,1n =120,故m =13,n =20. 9.观察下列不等式:1>12,1+12+13>1,1+12+13+…+17>32,1+12+13+…+115>2,1+12+13+…+131>52,…,由此猜测第n 个不等式为 1+12+13+…+12n -1>n 2(n ∈N *). 解析 不等式左边式子的各项分母依次是1,2,3,…,最后一项分母的确定是关键,将不等式右边的数写成n 2的形式,通过观察得出左边式子最后一项的分母为2n -1. 三、解答题10.对任意正整数n ,猜想2n 与n 2的大小.解析 当n =1时,21>12;当n =2时,22=22;当n =3时,23<32;当n =4时,24=42;当n =5时,25>52;当n =6时,26>62;……由此归纳猜想:当n =3时,2n <n 2;当n ∈N *,且n ≠3时,2n ≥n 2.11.设{a n }是集合{2t +2s |0≤s <t 且s ,t ∈Z }中所有的数从小到大排列组成的数列,即a 1=3,a 2=5,a 3=6,a 4=9,a 5=10,a 6=12,…,将数列{a n }各项按照上小下大,左小右大的原则写成如下的三角形数表.35 69 10 12— — — —— — — — —…(1)写出这个三角形数表的第四行与第五行中的各数;(2)求a 100.解析 (1)第四行的数分别为17,18,20,24,第五行的数分别为33,34,36,40,48.(2)设n 为a n 的下标,三角形数表第一行第一个元素下标为1.第二行第一个元素下标为2×(2-1)2+1=2. 第三行第一个元素下标为3×(3-1)2+1=4. ……第t 行第一个元素下标为t ·(t -1)2+1.第t 行第x 个元素下标为t ·(t -1)2+x , 该元素等于2t +2x -1.而100=14×132+9,所以a 100是三角形数表中第14行的第9个元素,故a 100=214+28.12.根据图中的图形及相应的点的个数,分别画出第4个、第5个图形,并写出相应的点的个数. (1)(2)解析 如图所示. (1)(2)由Ruize收集整理。
第二章推理与证明2.1 合情推理与演绎推理2.1.2 演绎推理A级基础巩固一、选择题1.演绎推理是由()A.部分到整体,个别到一般的推理B.特殊到特殊的推理C.一般到特殊的推理D.一般到一般的推理解析:由演绎推理的定义和特征可知C正确,故选C.答案:C2.有一段演绎推理是这样的:“若直线平行于平面,则平行于平面内所有直线,已知直线b在平面α外,直线a在平面α内,直线b∥平面α,则直线b∥直线a.”结论显然是错误的,这是因为() A.大前提错误B.小前提错误C.推理形式错误D.非以上错误解析:若直线平行平面α,则该直线与平面内的直线平行或异面,故大前提错误.答案:A3.《论语·子路》篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足.”所以,名不正,则民无所措手足.上述推理用的是() A.类比推理B.归纳推理C.演绎推理D.一次三段论解析:这是一个复合三段论,从“名不正”推出“民无所措手足”,连续运用五次复式三段论,属演绎推理形式.答案:C4.下面几种推理过程是演绎推理的是()A.两条直线平行,同旁内角互补,如果∠A和∠B是两条平行线的同旁内角,那么∠A+∠B=180°B.由平面三角形的性质,推测空间四面体的性质C.某高校共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人D.在数列{a n}中,a1=1,a n=12⎝⎛⎭⎪⎫a n-1+1a n-1(n≥2),由此归纳出{a n}的通项公式解析:选项A中的推理是演绎推理,选项B中的推理是类比推理,选项C、D中的推理是归纳推理.答案:A5.有这样一段演绎推理:“有些有理数是真分数,整数是有理数,则整数是真分数.”结论显然是错误的,这是因为() A.大前提错误B.小前提错误C.推理形式错误D.非以上错误解析:用小前提“S是M”,判断得到的结论“S是P”时,大前提“M 是P ”必须是所有的M ,而不是部分,因此此推理不符合演绎推理规则.答案:C二、填空题6.用演绎推理证明“y =sin x 是周期函数”时的大前提为___________,小前提为________________.解析:用演绎推理证明“y =sin x 是周期函数”时的大前提是“三角函数是周期函数”,小前提是“y =sin x 是三角函数”.答案:三角函数是周期函数 y =sin x 是三角函数7.在求函数y =log 2 x -2的定义域时,第一步推理中大前提是当a 有意义时,即a ≥0;小前提是log 2 x -2有意义;结论是_______.解析:要使函数有意义,则log 2 x -2≥0,解得x ≥4,所以函数y =log 2 x -2的定义域是[4,+∞).答案:函数y =log 2 x -2的定义域是[4,+∞)8.关于函数f (x )=lg x 2+1|x |(x ≠0),有下列命题:①其图象关于y 轴对称;②当x >0时,f (x )为增函数;③f (x )的最小值是lg 2;④当-1<x <0,或x >1时,f (x )是增函数;⑤f (x )无最大值,也无最小值.其中正确结论的序号是________.解析:易知f (-x )=f (x ),所以f (x )为偶函数,其图象关于y 轴对称,①正确;当x >0时,f (x )=lg x 2+1|x |=lg ⎝ ⎛⎭⎪⎫x +1x ;因为在g (x )=lg ⎝ ⎛⎭⎪⎫x +1x 在(0,1)上是减函数,在(1,+∞)上是增函数,所以f (x )在(0,1)上是减函数,在(1,+∞)上是增函数,故②不正确;而f(x)有最小值lg 2,所以③正确;④也正确;⑤不正确.答案:①③④三、解答题9.设m为实数,利用三段论求证方程x2-2mx+m-1=0有两个相异实根.证明:因为如果一元二次方程ax2+bx+c=0(a≠0)的判别式Δ=b2-4ac>0,那么方程有两相异实根.(大前提)一元二次方程x2-2mx+m-1=0的判别式Δ=(2m)2-4(m-1)=4m2-4m+4=(2m-1)2+3>0,(小前提)所以方程x2-2mx+m-1=0有两相异实根.(结论)10.如图所示,已知A,B,C,D四点不共面,M,N分别是△ABD 和△BCD的重心.求证:MN∥平面ACD(写出每一个三段论的大前提、小前提、结论).证明:如图,连接BM,BN,并延长分别交AD,DC于P,Q 两点,连接PQ.因为三角形的重心是中线的交点,(大前提)M ,N 分别是△ABD 和△BCD 的重心,(小前提)所以P ,Q 分别是AD ,DC 的中点.(结论)因为三角形的重心将中线长分成1∶2的两部分,(大前提)M ,N 分别是△ABD 和△BCD 的重心,BP ,BQ 分别是△ABD 和△BCD 的中线,(小前提)所以BM MP =2=BN NQ.(结论) 平行线分线段成比例定理的逆定理,(大前提)BM MP =2=BN NQ,(小前提) 所以MN ∥PQ .(结论)直线与平面平行的判定定理,(大前提)MN ⊄平面ACD ,PQ ⊂平面ACD ,(小前提)所以MN ∥平面ACD .(结论)B 级 能力提升1.有一个“三段论”推理是这样的:对于可导函数f (x ),如果f ′(x 0)=0,那么x =x 0是函数f (x )的极值点.因为函数f (x )=x 3在x =0处的导数值f ′(0)=0,所以x =0是函数f (x )=x 3的极值点.以上推理中( )A .大前提错误B .小前提错误C .推理形式错误D .结论正确解析:可导函数在某点处的导数为0,不一定能得到函数的极值点,因此大前提错误.答案:A2.“三段论”式推理是演绎推理的主要形式,“函数f (x )=2x +5的图象是一条直线”这个推理所省略的大前提是________.答案:一次函数的图象是一条直线3.在数列{a n }中,a 1=2,a n +1=4a n -3n +1,n ∈N *.(1)证明:数列{a n -n }是等比数列;(2)求数列{a n }的前n 项和S n ;(3)证明:不等式S n +1≤4S n 对任意n ∈N *皆成立.(1)证明:因为a n +1=4a n -3n +1,所以a n +1-(n +1)=4(a n -n ),n ∈N *.又a 1-1=1,所以数列{a n -n }是首项为1,公比为4的等比数列.(2)解:由(1)可知a n -n =4n -1,所以a n =4n -1+n .所以数列{a n }的前n 项和S n =4n -13+n (n +1)2. (3)证明:对任意的n ∈N *,S n +1-4S n =4n +1-13+(n +1)(n +2)2-4⎣⎢⎢⎡⎦⎥⎥⎤4n -13+n (n +1)2=-12(3n 2+n -4)≤0. 所以不等式S n +1≤4S n 对任意n ∈N *皆成立.。
第二章 推理与证明本章练测建议用时 实际用时满分 实际得分120分钟150分一、 选择题(本题共8小题,每小题7分,共56分) 1.已知p 是q 的充分不必要条件,则q ⌝是p ⌝的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件 2.设a 、b 、c 都是正数,则1a b +,1b c +,1c a+三个数( )A.都大于2B.至少有一个大于2C.至少有一个不大于2D.至少有一个不小于23.在△ABC 中,,,A B C 所对的边分别为,,a b c ,且cos cos a bA B=,则△ABC 一定是( ) A. 等腰三角形 B. 直角三角形C.等边三角形 D. 等腰直角三角形4.给定正整数n(n ≥2)按下图方式构成三角形数表;第一行依次写上数1,2,3,…,n ,在下面一行的每相邻两个数的正中间上方写上这两个数之和,得到上面一行的数(比下一行少一个数),依次类推,最后一行(第n 行)只有一个数.例如n=6时数表如图所示,则当n=2 007时最后一行的数是( )A .251×22 007 B.2 007×22 006 C.251×22 008 D.2 007×22 005 5.如图,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{a n }(n ∈N *)的前12项(即横坐标为奇数项,纵坐标为偶数项),按如此规律下去,则 a 2 009+a 2 010+a 2 011等于( )A.1 003B.1 005C.1 006D.2 0116.平面内有4个圆和1条抛物线,它们可将平面分成的区域的个数最多是( )A.29B.30C.31D.32 7.下面使用类比推理正确的是A .“若33,a b ⋅=⋅则a b =”类推出“若00a b ⋅=⋅,则a b =B .“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅”C .“若()a b c ac bc +=+”类推出“(0)a b a b c c c c+=+≠”D .“()nnnab a b =”类推出“()nnna b a b +=+ 8.已知函数()y f x =的定义域为D ,若对于任意的1212,()x x D x x ∈≠,都有1212()()()22x x f x f x f ++<,则称()y f x =为D 上的凹函数.由此可得下列函数中的凹函数为( )A.2log y x = B.y x =C.2y x =D.3y x =二、填空题(本题共4小题,每小题5分,共20分) 9.对于等差数列{}n a 有如下命题:“若{}n a 是等差数列,01=a ,t s 、是互不相等的正整数,则有011=---s t a t a s )()(”。
人教a 版数学高二选修2-2习题_第二章_推理与证明_2.1.1合情推理有答案2.1 合情推理与演绎推理2.1.1 合情推理A 级 基础巩固一、选择题1.数列2,5,11,20,x ,47,…中的x 的值为( ) A .27 B .28 C .32 D .33解析:观察知,5-2=3,11-5=6,20-11=9, 所以x -20=12,得x =32. 答案:C2.用火柴棒摆 “金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图需要火柴的根数为( ) A .6n -2 B .8n -2 C .6n +2 D .8n +2解析:从①②③可以看出,从图②开始每个图中的火柴棒都比前一个图中的火柴棒多6根,故火柴棒数成等差数列,第一个图中火柴棒为8根,故可归纳出第n 个“金鱼”图需火柴棒的根数为6n +2.故选C.答案:C3.设n 是自然数,则18(n 2-1)的值( )A .一定是零B .不一定是偶数C .一定是偶数D .是整数但不一定是偶数解析:当n 为偶数时,18(n 2-1)=0为偶数;当n 为奇数时(n =2k +1,k ∈N),18(n 2-1)=18(4k 2+4k )·2=k (k +1)为偶数.所以18(n 2-1)的值一定为偶数.答案:C4.在平面直角坐标系内,方程x a +yb=1表示在x 轴,y 轴上的截距分别为a 和b 的直线,拓展到空间,在x 轴,y 轴,z 轴上的截距分别为a ,b ,c (abc ≠0)的平面方程为( )A.x a +y b +zc=1 B.x ab +y bc +zca=1 C.xy ab +yz bc +zxca=1 D .ax +by +cz =1解析:从方程x a +y b=1的结构形式来看,空间直角坐标系中,平面方程的形式应该是x a +y b +z c=1.答案:A5.已知对正数a 和b ,有下列命题: ①若a +b =1,则ab ≤12;②若a +b =3,则ab ≤32;③若a +b =6,则ab ≤3.根据以上三个命题提供的规律猜想:若a +b =9,则ab ≤( ) A . 2 B.92C .4D .5解析:从已知的三个不等式的右边可以看出,其表现形式为12,32,62,所以若a +b=9,则ab ≤92.答案:B 二、填空题6.已知a 1=1,a n +1>a n ,且(a n +1-a n )2-2(a n +1+a n )+1=0,计算a 2,a 3,猜想a n=________.解析:计算得a2=4,a3=9,所以猜想a n=n2.答案: n27.通过圆与球的类比,由“半径为R的圆的内接矩形中,以正方形的面积为最大,最大值为2R2.”猜想关于球的相应命题为_____________________________________________________.解析:“圆中正方形的面积”类比为“球中正方体的体积”,可得结论.答案:半径为R的内接六面体中以正方体的体积为最大,最大值为839R3.8.西卷)观察分析下表中的数据:解析:三棱锥:F=5,V=6,E=9,得F+V-E=2;五棱锥:F=6,V=6,E=10,得;F+V-E=2;立方体:F=6,V=8,E=12,得F+V-E=2.所以归纳猜想一般凸多面体中,F,V,E所满足的等式F+V-E=2.答案:F+V-E=2三、解答题9.两条直线最多有一个交点,3条直线最多有3个交点,4条直线最多有6个交点,5条直线最多有10个交点,……,试归纳出n条直线最多有多少个交点.解:设直线条数为n,最多交点个数为f(n),则f(2)=1,f(3)=3=1+2,f(4)=6=1+2+3,f(5)=10=1+2+3+4,f(6)=15=1+2+3+4=5,…由此可以归纳出,n条直线交点个数最多为f(n)=1+2+3+…+(n-1)=n(n-1)2.10.设f(x)=13x+3,先分别求出f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳出一个一般结论,并给出证明.解:当x1+x2=1时,f(x1)+f(x2)=33.下面证明:f(x1)+f(x2)=13x1+3+13x2+3=13x1+3+131-x1+3=13x1+3+3x13+3×3x1=13x1+3+3x13(3+3x1)=3+3x13(3+3x1)=33.B级能力提升1.图①、图②、图③、图④分别包含1、5、13和25个互不重叠的单位正方形,按同样的方式构造图形,则第n个图包含的单位正方形的个数是( )图①图②图③图④A.n2-2n+1 B.2n2-2n+1C.2n2+2 D.2n2-n+1解析:观察题中给出的四个图形,图①共有12个正方形,图②共有12+22个正方形;图③共有22+32个正方形;图④共有32+42个正方形;则第n个图中共有(n-1)2+n2,即2n2-2n+1个正方形.答案:B2.观察:(1)tan 100tan 200+tan 200tan 600+tan 600tan 100=1;(2)tan 50tan 100+tan 100tan 750+tan 750tan 50=1.由以上两式成立,推广得到的一般结论是_________________________________________________________________________.解析:由已知两个式子可知,三个角之和为90°,且这三个角都不是90°,由此可得一般结论.答案:若α、β、γ都不是90°,且α+β+γ=90°,则tan αtan β+tan β tan γ+tan αtan γ=1.3.通过计算可得下列等式:23-13=3×12+3×1+1;33-23=3×22+3×2+1;43-33=3×32+3×3+1;……(n+1)3-n3=3×n2+3×n+1.将以上各等式两边分别相加,得(n+1)3-13=3(12+22+…+n2)+3(1+2+3+…+n)+n,即12+22+32+…+n2=16n(n+1)(2n+1).类比上述求法,请你求出13+23+33+…+n3的值.解:因为24-14=4×13+6×12+4×1+1,34-24=4×23+6×22+4×2+1,44-34=4×33+6×32+4×3+1,…(n+1) 4-n4=4×n3+6×n2+4×n+1.将以上各式两边分别相加,得(n+1)4-14=4×(13+23+…n3)+6×(12+22+…+n2)+4×(1+2+…+n)+n.所以13+23+33+…+n3=14=14n2(n+1)2.。
2.1合情推理与演绎推理2.1.1合情推理1.了解合情推理的含义,能利用归纳和类比等进行简单的推理.2.用归纳和类比进行推理,作出猜想.基础梳理1.归纳推理由于某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体,由个别到一般的推理.2.类比推理由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.3.合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理,通俗地说,合情推理是指“合乎情理”的推理.想一想:(1)归纳推理和类比推理的结论一定正确吗?(2)根据给出的数塔猜测123 456×9+7等于() 1×9+2=1112×9+3=111123×9+4=1 1111 234×9+5=11 11112 345×9+6=111 111A.1 111 110B.1 111 111C.1 111 112D.1 111 113(3)已知正三角形内切圆的半径是高的13,把这个结论推广到空间正四面体,类似的结论是____________.(1)解析:归纳推理的前提和结论之间的联系不是必然性的,而是偶然性的,结论不一定正确;而类比推理的结果具有猜测性,也不一定可靠,因此也不一定正确.(2)解析:由数塔猜测应是各位数字都是1的七位数,即1 111 111.故选B.答案:B(3)分析:从方法的类比入手.解析:原问题的解法为等面积法,即S=12ah=3×12×ar⇒r=13h,类比问题的解法应为等体积法,V=13Sh=4×13Sr⇒r=14h,即正四面体的内切球的半径是高的14.答案:正四面体的内切球半径是高的1 4自测自评1.已知a1=3,a2=6且a n+2=a n+1-a n,则a33为(A)A.3B.-3C.6D.-6解析:a3=3,a4=-3,a5=-6,a6=-3,a7=3,a8=6,…,故{a n}以6个项为周期循环出现,a33=a3=3.2.由“若a>b,则a+c>b+c”得到“若a>b,则ac>bc”采用的是(C)A.归纳推理B.演绎推理C.类比推理D.数学证明解析:由加法类比乘法.3.设函数f(x)=xx+2(x>0),观察:f1(x)=f(x)=xx+2,f2(x)=f(f1(x))=x3x+4,f3(x)=f(f2(x))=x7x+8,f4(x)=f(f3(x))=x15x+16,…根据以上事实,由归纳推理可得:当n∈N*且n≥2时,f n(x)=f(f n-1(x))=x.(2-1)x+2基础巩固1.类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列性质,你认为比较恰当的是(D)①各棱长相等,同一顶点上的任意两条棱的夹角都相等②各个面都是全等的正三角形,相邻两个面所成的二面角都相等③各个面都是全等的正三角形,同一顶点上的任意两条棱的夹角都相等A.①B.③C.①②D.①②③2.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 011的末四位数字为(D)A.3 125 B.5 625C.0 625 D.8 1253.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=(D)A.f(x) B.-f(x)C.g(x) D.-g(x)解析:归纳所给出的导函数知,原函数为偶函数,则其导函数为奇函数,根据这一规律可知,f (x )为偶函数,其导函数g (x )必为奇函数,故g (-x )=-g (x ).4.已知x ∈(0,+∞),观察下列几式:x +1x ≥2,x +4x 2=x 2+x 2+4x 4≥3,……,类比有 x +axn ≥n +1(n ∈N *),则a =_______________.解析:根据已知等式类比可得a =n n . 答案: n n 能力提升5.已知对正数a 和b ,有下列命题: ①若a +b =1,则ab ≤12;②若a +b =3,则ab ≤32;③若a +b =6,则ab ≤3.根据以上三个命题提供的规律猜想:若a +b =9,则ab ≤(B ) A .2 B.92C .4D .56.在平面直角坐标系内,方程x a +yb =1表示在x 轴,y 轴上的截距分别为a 和b 的直线,拓展到空间,在x ,y ,z 轴上的截距分别为a ,b ,c (abc ≠0)的直线方程为(A )A.x a +y b +z c =1B.x ab +y bc +zca =1 C.xy ab +yz bc +zxca=1 D .ax +by +cz =17.数列2,5,11,20,x,47,…中的x等于(B)A.28 B.32 C.33 D.27解析:5-2=3,11-5=6,20-11=9推出x-20=12,x=32.故选B.8.(2014·高考陕西卷)观察分析下表中的数据:.解析:①三棱锥:F=5,V=6,E=9,得F+V-E=5+6-9=2;②五棱锥:F=6,V=6,E=10,得F+V-E=6+6-10=2;③立方体:F=6,V=8,E=12,得F+V-E=6+8-12=2;所以归纳猜想一般凸多面体中,F,V,E所满足的等式是:F+V-E =2,故答案为F+V-E=2.答案:F+V-E=29.点P是三角形ABC内切圆的圆心,半径是r,三角形ABC的面积是12(AB+BC+CA)r.类比写出三棱锥SABC的一个相似的结论.解析:假设点P是三棱锥SABC内切球的球心,半径是R,则三棱锥SABC体积是13(S△SAB+S△SBC+S△SCA+S△ABC)R.10.两条直线最多有一个交点,3条直线最多有3个交点,4条直线最多有6个交点,5条直线最多有10个交点,……,试归纳出n 条直线最多有多少个交点.解析:设直线条数为n ,最多交点个数为f (n ),则 f (2)=1, f (3)=3=1+2, f (4)=6=1+2+3, f (5)=10=1+2+3+4, f (6)=15=1+2+3+4+5, ……由此可以归纳出,n 条直线交点个数最多为 f (n )=1+2+3+…+(n -1)=n (n -1)2.。
高二理科试验班下学期数学周练习4(导数、推理与证明)
(时间100分钟 满分100分)
一、选择题(每小题4分,满分40分)
1.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”,其结论显然是错误的,原因是( )
A .大前提错误
B .小前提错误
C .推理形式错误
D .非以上错误 2.用三段论推理命题:“任何实数的平方大于0,因为a 是实数,所以20a >,你认为这个推理( ) A .大前题错误 B .小前题错误 C .推理形式错误 D .是正确的
3.用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )
A .a ,b ,c 中至少有两个偶数
B .a ,b ,c 中至少有两个偶数或都是奇数
C .a ,b ,c 都是奇数
D .a ,b ,c 都是偶数
4.观察按下列顺序排列的等式:9011⨯+=,91211⨯+=,92321⨯+=,93431⨯+=,…,猜想第()n n +∈N 个等式应为( )
A .9(1)109n n n ++=+
B .9(1)109n n n -+=-
C .9(1)101n n n +-=-
D .9(1)(1)1010n n n -+-=-
5.已知2()
(1),(1)1()2f x f x f f x +==+ *x N ∈(),猜想(f x )的表达式为( )
A .4()22x f x =+
B .2
()1
f x x =+
C .1
()1
f x x =+ D .2()21f x x =+
6.设)()(,sin )('
010x f x f x x f ==,'21()(),,f x f x ='1()()n n f x f x +=,n ∈N ,则2011()f x =( )
A .sin x
B .-sin x
C .cos x
D .-cos x
7.图1是一个水平摆放的小正方体木块,图2,图3是由这样的小正方体木块叠放而成的,按照这样的规律放下去,至第七个叠放的图形中,小正方体木块总数是( ) A.25 B.66 C.91 D.120
8.甲、乙、丙3人进行擂台赛,每局2人进行单打比赛,另1人当裁判,每一局的输方当下一局的裁判,由原来的裁判向胜者挑战.比赛结束后,经统计,甲共打了5局,乙共打了6局,而丙当了2局裁判,那么整个比赛共进行了( ) A .9局 B .11局 C .13局 D .18局
9.一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮住的部分有( )颗
A .3
B .5
C .10
D .27
-<-
,b b a。