逻辑判断专题训练四
- 格式:docx
- 大小:33.56 KB
- 文档页数:5
初中一年级奥数逻辑推理专题训练
引言
逻辑推理是解题过程中必不可少的一种技能。
在初中一年级阶段,通过培养和训练学生的逻辑思维能力,可以帮助他们提高问题解决能力和研究成绩。
本文将介绍初中一年级奥数逻辑推理专题训练,旨在帮助学生掌握基本的逻辑推理技巧。
专题训练内容
1. 数字序列推理
- 学生将会解决一系列数字序列问题,例如找规律、填空或推断下一个数字。
通过这种训练,学生可以培养观察和推理能力,并提高对数字规律的把握。
2. 图形推理
- 学生将会面对一些图形序列或者图形问题,需要观察图形特征、推断规律,并给出正确的答案。
这样的训练有助于培养学生的观察力和图形思维能力。
3. 逻辑判断
- 学生将会通过阅读一些逻辑问题或情境,进行判断、推理和
比较。
这样的训练可以提高学生的逻辑思维能力和语言表达能力。
训练方法
1. 练题目
- 学生可以通过做大量的练题来提高逻辑推理能力。
可以使用
教材中的题目,也可以寻找相关的练题目进行训练。
2. 小组合作
- 学生可以组成小组,相互讨论和解答问题,互相研究和提高。
3. 案例分析
- 借助实际案例,让学生运用逻辑推理技巧解决问题,培养他
们的实践能力和创新思维。
总结
初中一年级奥数逻辑推理专题训练是培养学生逻辑思维能力的
重要手段。
通过数字序列推理、图形推理和逻辑判断等训练方法,
学生可以提高观察力、推理能力和问题解决能力。
希望这种训练能
够帮助学生在逻辑推理方面取得更好的成绩。
以上为初中一年级奥数逻辑推理专题训练的简要介绍。
【基础回顾】
一.命题的概念
在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.
二.四种命题及其关系
.四种命题
即:如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互为逆命题;
如果一个命题的条件和结论分别是原命题的条件和结论的否定,那么这两个命题叫做互否命题,这个命题叫做原命题的否命题;
如果一个命题的条件和结论分别是原命题的结论和条件的否定,那么这两个命题叫做互为逆否命题,这个命题叫做原命题的逆否命题。
.四种命题间的逆否关系
.四种命题的真假关系
()两个命题互为逆否命题,它们有相同的真假性;
()两个命题为互逆命题或互否命题,它们的真假性没有关系.
【典型例题】
例.已知是两个命题,若“”是假命题,则()
.都是假命题.都是真命题
.是假命题,是真命题.是真命题,是假命题
【答案】
【解析】
例.给出下列命题:其中正确命题的序号是()
①已知,若,则,
②不存在实数,使
③是函数的一个对称轴中心
④已知函数.
.①②.②④.①③.④
【答案】
【解析】
试题分析:
④因为在锐角三角形中,,所以,;则有
,;又因为函数
在上为减函数,所以.故正确.
考点:向量的线性运算;三角函数的基本关系式;函数的图像和性质.
例.下列说法中正确的是()
()“”是“函数是奇函数”的充要条件。
⼀、基础题型 1.所有市场经济搞得好的国家都是因为法律秩序⽐较好。
其实建⽴市场并不难,⼀旦放开,⼈们受利益的驱使,市场很快就能形成,但是,⼀个没有秩序的市场⼀旦形成,再来整治就⾮常困难了。
所以( )。
A. 市场调节是“⽆形的⼿”,市场⾃发地处于稳定、均衡的状态 B. 要建⽴市场经济体制,必须⾼度重视法制建设 C. 市场经济的优越之处就在于它能使⼈们受利益驱使,因⽽能调动⼈的积极性 D. 市场只有依靠法制才能形成 2.过去⼈们都认为知识就是⼒量,⼤多数教师都传授具体知识。
教师教、学⽣听,学⽣被动地接受知识。
新的教育观念认为:学⽣必须掌握独⽴探索的⽅法,获得不断深造的能⼒,具有与集体合作的品质,与他⼈合作解决问题的社交能⼒,具备⾃如表达思想的能⼒等等。
这意味着( )。
A. 旧的传统教育观念不教授学习⽅法 B. 知识本⾝没有多⼤的⼒量 C. 掌握⽅法⽐掌握知识更重要 D. 新旧两种教育观念是互相⽭盾,互不相容的 3.⽥径场上正在进⾏100⽶决赛。
参加决赛的是A、B、C、D、E、F六个⼈。
关于谁会得冠军,看台上甲、⼄、丙谈了⾃⼰的看法。
⼄认为,冠军不是A就是B。
丙坚信,冠军绝不是C。
甲则认为,D、F都不可能取得冠军。
⽐赛结束后,⼈们发现他们三个中只有⼀个⼈的看法是正确的,请问谁是100⽶赛冠军?()A. AB. BC. CD. E 4.⼩说离不开现实⽣活,没有深⼊体验⽣活的⼈是不可能写出优秀作品的。
因此( )。
A. 诗⼈、⼩说家不可能年轻B. 创作⼩说都是⽼⼈们的事C. 要创作⼩说必须有⾜够的⽣活经验D. 作⼩说要靠运⽓ 5.羌特勒是⼀种野⽣的蘑菇,⽣长在能为它提供所需糖分的寄主树⽊——例如道格拉斯冷杉下⾯。
反过来,羌特勒在地下的根茎细丝可以分解这些糖分,并为其寄主提供养分和⽔分。
正是因为这种互惠的关系,采割道格拉斯冷杉下⾯⽣长的羌特勒会给这种树⽊造成严重的伤害。
下⾯哪⼀个如果正确,对上⾯的结论提出了有⼒的质疑?() A. 近年来,野⽣蘑菇的采割数量⼀直在增加 B. 羌特勒不仅⽣长在道格拉斯冷杉树下,也⽣长在其他寄主树⽊下⾯ C. 许多种野⽣蘑菇只能在森林⾥找到,它们不能轻易在别处被种植 D. 对野⽣蘑菇的采割激发了这些蘑菇将来的⽣长 6.⼀家飞机发动机制造商开发出了⼀种新的发动机,其所具备的安全性能是早期型号的发动机所缺乏的,⽽早期模型仍然在⽣产。
高中数学第一章集合与常用逻辑用语考点专题训练单选题1、设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}答案:D分析:解方程求出集合B,再由集合的运算即可得解.由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.2、已知集合M={x|x=m−56,m∈Z},N={x|x=n2−13,n∈Z},P={x|x=p2+16,p∈Z},则集合M,N,P的关系为()A.M=N=P B.M⊆N=PC.M⊆N P D.M⊆N,N∩P=∅答案:B分析:对集合M,N,P中的元素通项进行通分,注意3n−2与3p+1都是表示同一类数,6m−5表示的数的集合是前者表示的数的集合的子集,即可得到结果.对于集合M={x|x=m−56,m∈Z},x=m−56=6m−56=6(m−1)+16,对于集合N={x|x=n2−13,n∈Z},x=n2−13=3n−26=3(n−1)+16,对于集合P={x|x=p2+16,p∈Z},x=p2+16=3p+16,由于集合M,N,P中元素的分母一样,只需要比较其分子即可,且m,n,p∈Z,注意到3(n−1)+1与3p+1表示的数都是3的倍数加1,6(m−1)+1表示的数是6的倍数加1,所以6(m−1)+1表示的数的集合是前者表示的数的集合的子集,所以M⊆N=P.故选:B.3、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可.根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.4、设a,b是实数,集合A={x||x−a|<1,x∈R},B={x||x−b|>3,x∈R},且A⊆B,则|a−b|的取值范围为()A.[0,2]B.[0,4]C.[2,+∞)D.[4,+∞)答案:D分析:解绝对值不等式得到集合A,B,再利用集合的包含关系得到不等式,解不等式即可得解.集合A={x||x−a|<1,x∈R}={x|a−1<x<a+1},B={x||x−b|〉3,x∈R}={x|x<b−3或x>b+3}又A⊆B,所以a+1≤b−3或a−1≥b+3即a−b≤−4或a−b≥4,即|a−b|≥4所以|a−b|的取值范围为[4,+∞)故选:D5、设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈M B.3∈M C.4∉M D.5∉M答案:A分析:先写出集合M,然后逐项验证即可由题知M={2,4,5},对比选项知,A正确,BCD错误故选:A6、已知集合A={(x,y)|x,y∈N∗,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.6答案:C分析:采用列举法列举出A∩B中元素的即可.由题意,A∩B中的元素满足{y≥xx+y=8,且x,y∈N∗,由x+y=8≥2x,得x≤4,所以满足x+y=8的有(1,7),(2,6),(3,5),(4,4),故A∩B中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.7、已知集合A={(x,y)||x|+|y|≤2,x∈Z,y∈Z},则A中元素的个数为()A.9B.10C.12D.13答案:D分析:利用列举法列举出集合A中所有的元素,即可得解.由题意可知,集合A中的元素有:(−2,0)、(−1,−1)、(−1,0)、(−1,1)、(0,−2)、(0,−1)、(0,0)、(0,1)、(0,2)、(1,−1)、(1,0)、(1,1)、(2,0),共13个.故选:D.8、已知U=R,M={x|x≤2},N={x|−1≤x≤1},则M∩∁U N=()A.{x|x<−1或1<x≤2}B.{x|1<x≤2}C.{x|x≤−1或1≤x≤2}D.{x|1≤x≤2}答案:A分析:先求∁U N,再求M∩∁U N的值.因为∁U N={x|x<−1或x>1},所以M∩C U N={x|x<−1或1<x≤2}.故选:A.多选题9、已知集合A={0,1,2},B={a,2},若B⊆A,则a=()A.0B.1C.2D.0或1或2答案:AB分析:由B⊆A,则B={0,2}或B={1,2},再根据集合相等求出参数的值;解:由B⊆A,可知B={0,2}或B={1,2},所以a=0或1.故选:AB.小提示:本题考查根据集合的包含关系求参数的值,属于基础题.10、已知集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},且x1、x2∈A,x3∈B,则下列判断正确的是()A.x1x2∈A B.x2x3∈BC.x1+x2∈B D.x1+x2+x3∈A答案:ABC分析:本题首先可根据题意得出A表示奇数集,B表示偶数集,x1、x2是奇数,x3是偶数,然后依次对x1x2、x2x3、x1+x2、x1+x2+x3进行判断,即可得出结果.因为集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},所以集合A表示奇数集,集合B表示偶数集,x1、x2是奇数,x3是偶数,A项:因为两个奇数的积为奇数,所以x1x2∈A,A正确;B项:因为一个奇数与一个偶数的积为偶数,所以x2x3∈B,B正确;C项:因为两个奇数的和为偶数,所以x1+x2∈B,C正确;D项:因为两个奇数与一个偶数的和为偶数,所以x1+x2+x3∈B,D错误,故选:ABC.11、已知命题p:∃x∈R,ax2−4x−4=0,若p为真命题,则a的值可以为()A.-2B.-1C.0D.3答案:BCD分析:根据给定条件求出p为真命题的a的取值范围即可判断作答,当a=0时,x=−1,p为真命题,则a=0,当a≠0时,若p为真命题,则Δ=16+16a≥0,解得a≥−1且a≠0,综上,p为真命题时,a的取值范围为a≥−1.故选:BCD12、已知集合A={x∈R|x2−3x−18<0},B={x∈R|x2+ax+a2−27<0},则下列命题中正确的是()A.若A=B,则a=−3B.若A⊆B,则a=−3C.若B=∅,则a≤−6或a≥6D.若B A时,则−6<a≤−3或a≥6答案:ABC分析:求出集合A,根据集合包含关系,集合相等的定义和集合的概念求解判断.A={x∈R|−3<x<6},若A=B,则a=−3,且a2−27=−18,故A正确.a=−3时,A=B,故D不正确.若A⊆B,则(−3)2+a⋅(−3)+a2−27≤0且62+6a+a2−27≤0,解得a=−3,故B正确.当B=∅时,a2−4(a2−27)≤0,解得a≤−6或a≥6,故C正确.故选:ABC.13、已知集合P={1,2},Q={x|ax+2=0},若P∪Q=P,则实数a的值可以是()A.−2B.−1C.1D.0答案:ABD分析:由题得Q⊆P,再对a分两种情况讨论,结合集合的关系得解.因为P∪Q=P,所以Q⊆P.由ax+2=0得ax=−2,当a=0时,方程无实数解,所以Q=∅,满足已知;当a≠0时,x=−2a ,令−2a=1或2,所以a=−2或−1.综合得a=0或a=−2或a=−1.故选:ABD小提示:易错点睛:本题容易漏掉a=0. 根据集合的关系和运算求参数的值时,一定要注意考虑空集的情况,以免漏解.填空题14、已知集合A={x|3≤x<7},C={x|x>a},若A⊆C,求实数a的取值范围_______.答案:(−∞,3)分析:根据集合的包含关系画出数轴即可计算.∵A⊆C,∴A和C如图:∴a<3.所以答案是:(−∞,3).15、若A={x|x2+(m+2)x+1=0,x∈R},且A∩R+=∅,则m的取值范围是__.答案:m>﹣4.解析:根据题意可得A是空集或A中的元素都是小于等于零的,然后再利用判别式以及韦达定理求解即可.解:A∩R+=∅知,A有两种情况,一种是A是空集,一种是A中的元素都是小于等于零的,若A=∅,则Δ=(m +2)2﹣4<0,解得﹣4<m<0 ,①若A≠∅,则Δ=(m +2)2﹣4≥0,解得m≤﹣4或m≥0,又A中的元素都小于等于零∵两根之积为1,∴A中的元素都小于0,∴两根之和﹣(m+2)<0,解得m>﹣2∴m≥0,②由①②知,m>﹣4,所以答案是:m>﹣4.小提示:易错点点睛:本题考查利用交集的结果求参数,本题在求解中容易忽略A=∅的讨论,导致错解,同时本题也可以采取反面考虑结合补集思想求解.16、设集合A={−4,2m−1,m2},B={9,m−5,1−m},又A∩B={9},求实数m=_____.答案:−3分析:根据A∩B={9}得出2m−1=9或m2=9,再分类讨论得出实数m的值.因为A∩B={9},所以9∈A且9∈B,若2m−1=9,即m=5代入得A={−4,9,25},B={9,0,−4},∴A∩B={−4,9}不合题意;若m2=9,即m=±3.当m=3时,A={−4,5,9},B={9,−2,−2}与集合元素的互异性矛盾;当m=−3时,A={−4,−7,9},B={9,−8,4},有A∩B={9}符合题意;综上所述,m=−3.所以答案是:−3解答题17、已知集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0},集合C={x|x2+2x−8=0}.(1)若A∩B={2},求实数a的值;(2)若A∩B≠∅,A∩C=∅,求实数a的值.答案:(1)−3(2)−2分析:(1)求出集合B={2,3},由A∩B={2},得到2∈A,由此能求出a的值,再注意3∉A检验即可;(2)求出集合C={−4,2},由A∩B≠∅,A∩C=∅,得3∈A,由此能求出a,最后同样要注意检验.(1)因为集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0}={2,3},且A∩B={2},所以2∈A ,所以4−2a +a 2−19=0,即a 2−2a −15=0,解得a =−3或a =5.当a =−3时,A ={x |x 2+3x −10=0}={−5,2},A ∩B ={2},符合题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},A ∩B ={2,3},不符合题意.综上,实数a 的值为−3.(2)因为A ={x |x 2−ax +a 2−19=0},B ={2,3},C ={x |x 2+2x −8=0}={−4,2},且A ∩B ≠∅,A ∩C =∅,所以3∈A ,所以9−3a +a 2−19=0,即a 2−3a −10=0,解得a =−2或a =5.当a =−2时,A ={x |x 2+2x −15=0}={−5,3},满足题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},不满足题意.综上,实数a 的值为−2.18、设α:m −1≤x ≤2m ,β:2≤x ≤4,m ∈R ,α是β的必要条件,但α不是β的充分条件,求实数m 的取值范围.答案:[2,3]分析:由题意可知α是β的必要不充分条件,可得出集合的包含关系,进而可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.由题意可知,α是β的必要不充分条件,所以,{x |m −1≤x ≤2m }{x |2≤x ≤4},所以{m −1≤22m ≥4,解之得2≤m ≤3. 因此,实数m 的取值范围是[2,3].。
高考数学《常用逻辑用语》解答题专题训练 (40)1.设命题p:实数x满足x⩽2,或x>6,命题q:实数x满足x2−3ax+2a2<0(其中a>0)(Ⅰ)若a=2,且为真命题,求实数x的取值范围;(Ⅱ)若q是的充分不必要条件,求实数a的取值范围.2.已知命题p:方程2x2+ax−a2=0在[−1,1]上有解;命题q:只有一个实数x满足不等式x2+2ax+2a≤0,若“p∨q”为假命题,求a的取值范围.3.已知命题p:“∀x∈[0,1],a≥2x”,命题q:“∃x∈R,x2+4x+a=0”.若命题“p∧q”是真命题,求实数a的取值范围.4.设a∈R,命题p:∃x∈[1,2],满足(a−1)x−1>0,命题q:∀x∈R,X2+ax+1>0.(1)若命题p∧q是真命题,求a的取值范围;(2)(¬p)∧q为假,(¬p)∨q为真,求a的取值范围.5.已知命题p:{x+2≥0,x−10≤0,命题q:1−m≤x≤1+m,若¬p是¬q的必要不充分条件,求实数m的取值范围.6.已知p:函数y=log2(x2+2x−3)有意义,q:1<2x<4,r:(x−m+1)(x−m−1)<0(Ⅰ)若p且q是真命题,求x的取值范围;(Ⅱ)若p是r的必要条件,求m的取值范围.7.已知p:复数(a−1)+(a−4)i所对应的点在复平面的第四象限内(其中a∈R),q:∀x∈R,x2+2√3x+a≥0(其中a∈R);(1)如果“p∧q”为真,求实数a的取值范围;(2)如果“p∨q”为真,“p∧q”为假,求实数a的取值范围。
8.已知p:对∀x∈[−2,2]函数f(x)=lg(3a−ax−x2)总有意义,q:函数f(x)=13x3−ax2+4x+3在[1,+∞)上是增函数;若命题“p∨q”为真,求a的取值范围.9.已知p:∀x∈R,不等式x2−mx+32>0恒成立,q:椭圆x2m−1+y23−m=1的焦点在x轴上,若“p或q”为真,“p且q”为假,求实数m的取值范围.10.命题p:∀x∈R,ax2+ax−1>0,命题q:3a−1+1<0.(1)若“p或q”为假命题,求实数a的取值范围;(2)若“非q”是“a∈[m,m+1]”的必要不充分条件,求实数m的取值范围.11.已知命题p:x2−8x−20≤0,命题q:1−m≤x≤1+m(m>0),若p是q的充分不必要条件,求实数m的取值范围.12.已知p:关于x的方程x2+mx+1=0有两个不等的负根;q:关于x的方程4x2+4(m−2)x+1=0无实根,若p∨q为真,p∧q为假,求m的取值范围.13.设命题p:实数a满足不等式3a≤9,命题q:x2+3(3−a)x+9≥0的解集为R.已知“p∧q”为真命题,并记为条件r,且条件t:实数a满足m≤a≤m+1,若r是t的必要不充分条件,求2正整数m的值.14.已知p:x2+3x−4≤0,q:(x+1)(x−m)<0.(1)若m=2,命题“p∨q”为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数m的取值范围。
演绎推理逻辑判断专题2007年已经将“演绎推理”改为“逻辑判断”,表述更加科学,更加符合考题的实际,也将对考生的逻辑基础知识提出更高的要求。
一、对当关系的判断根据逻辑方阵中的矛盾关系,可以从一个直言命题为真推出与该直言命题具有矛盾关系的命题为假,也可以从一个直言命题为假推出与该直言命题具有矛盾关系的命题为真。
即一个直言命题和一个与其具有矛盾关系命题的否定之间可以互相推出。
例:某珠宝商店失窃,甲、乙、丙、丁四人涉嫌被拘审。
四人的口供如下:甲:案犯是丙。
乙:丁是案犯。
丙:如果我作案,那么丁是主犯。
丁:作案的不是我。
四个口供中只有一个是假的。
如果以上断定为真,则以下哪项是真的?( ) (2004年中央A类真题)A.说假话的是甲,作案的是乙 B.说假话的是丁,作案的是丙和丁C.说假话的是乙,作案的是丙 D.说假话的是丙,作案的是丙正确答案B。
解析:应用直言命题的矛盾关系来解题,互为矛盾的两个命题必有一真一假,上述命题中乙和丁是互为矛盾的命题,可见必有一假一真,而题干说明四个人的口供只有一个是假的,那么可以断定甲和丙就说的真话。
由甲说的是真话,可推出案犯是丙;由丙说的是真话可推出丁是主犯,可见丙是罪犯,丁是主犯,从而我们再来分析甲和丁之间谁说的是真话和假话,显然可以推断说假话的是丁,所以选择B。
二、计算法有些逻辑试题,需要考生首先进行必要的数字计算,尤其是当题干或备选项中出现了数据或者与数据有关的文字的时候。
做这些题时,考生一定不要怕麻烦,如果考生动手计算计算,答案自然就出来了。
例:在国庆50周年仪仗队的训练营地,某连队一百多个战士在练习不同队形的转换。
如果他们排成五列人数相等的横队,只剩下连长在队伍前面喊口令;如果他们排成七列这样的横队,只有连长仍然可以在前面领队;如果他们排成八列,就可以有两人作为领队了。
在全营排练时,营长要求他们排成三列横队。
以下哪项是最可能出现的情况?A.该连队官兵正好排成三列横队。
高中数学集合与常用逻辑用语专题训练100题(尾部含答案)学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.已知集合{}5,8A =,{}23100B x x x =--≤,则()R A B ⋂=( )A .{}5B .{}8C .{}2,5,8-D .{}2-2.设全集{}3,2,1,0,1,2,3U =---,集合{}1,0,1,2A =-,{}3,2,3B =-,则()UA B =( ) A .{}1,0-B .{}0,1C .{}1,1-D .{}1,0,1-3.已知,a b 都是实数,则“2211log log a b<”是“a b >”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .即不充分也不必要条件4.已知公差为d 的等差数列{an }的前n 项和为Sn ,则“Sn ﹣nan <0,对n >1,n ∈N *恒成立”是“d >0”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .非充分也非必要条件5.已知集合{}1,2,3,4A =,{}2,4,5B =,则A B =( ) A .{}1B .{}2,4C .{}2,3,4D .{}1,2,3,4,56.已知集合{}1,0,1M =-,{}21N y y x ==-,则MN =( )A .0B .{}1,0-C .{}0,1D .{}1,0,1-7.已知集合{}3,2,1,0,1,2,3A =---,{}230B x x =-≤,则A B =( )A .{}1,0,1-B .{}0,1C .{}0,1,2D .1,0,1,28.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (其中AB BC =ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为l ,m ,n ,给出以下两个命题::p l m n =+,2:q m l n =⋅.则下列选项为真命题的是( )A .p q ∧B .()p q ∧⌝C .()p q ⌝∧D .()()p q ⌝∧⌝9.设a ∈R ,则“1a =”是“直线12x ay ++=与30x ay --=垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件10.已知集合{}28xA x =<,集合{}B x x a =>,若A B =∅,则实数a 的取值范围为( ) A .(,2)-∞B .(2,)+∞C .(,3]-∞D .[3,)+∞11.已知集合()(){}20A x a x x a =--<,若2A ∉,则实数a 的取值范围为( ) A .()(),12,-∞+∞ B .[)1,2 C .()1,2 D .[]1,212.设集合402x A xx ⎧⎫-=>⎨⎬+⎩⎭,{2B x x =≤或5}x ,则()R A B =( ) A .{}22x x -<< B .{}22x x -≤≤C .{|4x x ≤或5}x ≥D .{|2x x ≤或5}x ≥13.已知全集U =R ,集合{}216,{3}A x x B x x =<=>∣∣,则()UA B =( )A .()4,3-B .[)3,4C .(]4,3-D .()3,414.已知集合{}2280A x x x =-->,则A =R( )A .[]4,2-B .()4,2-C .()2,4-D .[]2,4-15.已知p :3x y +>,q :1x >且2y >,则q 是p 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件16.已知l ,m 是两条不同的直线,α,β为两个不同的平面,若l β∕∕,l m ∕∕,则“m α⊥”是“αβ⊥”的( )条件. A .充分不必要 B .必要不充分 C .充分必要D .既不充分也不必要17.已知集合{}{}220,1,0,1,2,3A x x x B =--<=-,则A B 中的元素个数为( ) A .1B .2C .3D .418.已知直线1:30l ax y +-=,直线()2:2130l a x y a --+=,则“1a =-”是“12l l ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件19.已知集合{}{}2|230,|ln(21)0M x x x N x x =--<=->,则M ∩N =( )A .(1,32)B .(12,32)C .(-1,32)D .(-1,12)20.已知n S 为等比数列{}n a 的前n 项和,且公比1q >,则“51a a >”是“40S >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件21.已知全集{}0,1,2,3,4,5U =,集合{}3A x N x =∈<,集合{}0,3,4,5B =,则()UA B ⋂=( )A .{}4,5B .{}3,4,5C .{}0,4,5D .{}0,3,4,522.若全集{1,2,3,4,5,6}U =,{1,4}M =,{2,3}P =,则集合()()U UM P =( ) A .{1,2,3,4,5,6}B .{2,3,5,6}C .{1,4,5,6}D .{5,6}23.已知集合[]5,4U =-,{}220A x x x =-≤,20x B x x +⎧⎫=≤⎨⎬⎩⎭,则()U A B ⋂=( ) A .∅ B .[]0,2 C .[)2,0-D .[]0,2-24.已知集合A ={}250x x x -≤,B ={}21,x x k k Z =-∈,则A B 中元素的个数为( ) A .2B .3C .4D .525.已知集合M ={1,2,3},{}240,N x x x a a M =-+=∈,若MN ≠∅,则a 的值为( ) A .1B .2C .3D .1或226.“22x ≠是”21x ≠的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件27.已知集合()(){}110A x x x x =-+=,则A =( ) A . {}0,1B . {}1,0-C .{}0,1,2D .{}1,0,1-28.设集合{}N 4M x x =∈<,{}Z 326xN x =∈≤,则MN =( )A .{}1,2,3B .{}0,1C .{}1,2D .{}0,1,229.已知x ∈R ,则“2cos 1x >”是“03x π≤<”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件30.已知不等式组20100x y x y x -≥⎧⎪+-≤⎨⎪≥⎩,构成的平面区域为D .命题p :对()x y D ∀∈,,都有30x y -≥;命题q :(),x y D ∃∈,使得20x y ->.下列命题中,为真命题的是( ) A .()()p q ⌝∧⌝B .p q ∧C .()p q ⌝∧D .()p q ∧⌝31.已知命题:p x ∃,y R ∈,sin()sin sin x y x y +=+;命题:q x ∀,y R ∈,sin sin 1x y ⋅,则下列命题中为真命题的是( ) A .p q ∧B .p q ⌝∧C .()p q ∧⌝D .()p q ⌝∨32.设集合{}1,0,A n =-,{},,B x x a b a A b A ==⋅∈∈.若A B A =,则实数n 的值为( ) A .1-B .0C .1D .233.已知集合{}1,0,1,2A =-,()(){}120B x x x =+-<,则A B ⋃=( ) A .{}0,1B .{}1,2-C .[]1,2-D .()1,2-34.设集合{{},1,0,1A yy B ===-∣,则A B =( ) A .{}1B .{}0,1C .{}1,0-D .{}1,0,1-35.已知集合{}24M x x ==,N 为自然数集,则下列结论正确的是( )A .{}2M =B .2M ⊆C .2M -∈D .M N ⊆36.集合{}12,N A x x x =-≤≤∈,{}1B =,则A B =( ) A .{11x x -≤<或}12x <≤ B .{}1,0,2- C .{}0,2D .{}237.已知命题p :若直线与抛物线只有一个交点,则直线与抛物线相切.命题q :等轴则下列命题为真命题的是( ) A .p 且qB .p 或qC .()p ⌝或qD .p 且()q ⌝38.设命题p :n N ∀∈,33n n >,则命题p 的否定为( )A .n N ∃∈,33n n >B .n N ∃∉,33n n ≤C .n N ∃∈,33n n ≤D .n N ∀∉,33n n >39.“所有可以被5整除的整数,末位数字都是5”的否定是( ) A .所有可以被5整除的整数,末位数字都不是5 B .所有不可以被5整除的整数,末位数字不都是5C .存在可以被5整除的整数,末位数字不是5D .存在不可以被5整除的整数,末位数字是540.已知集合{}22(,)|(0,{(,)|S x y x y T x y y x =+===,则S T ⋃=( )A .{B .{(C .SD .T41.“A B =∅”是“A =∅或B =∅”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件42.已知集合{}14U x x =∈-<<N ,集合{0,1}A =,则UA ( )A .{0,2,3}B .{1,0,2,3}-C .{2,3}D .{2,3,4} 43.已知集合{}2540M x x x =-+<,{1,0,1,2,3}N =-,则MN =( )A .{2,3}B .{0,1,2}C .{1,2,3,4}D .∅44.已知命题:(0,)p x ∀∈+∞,sin 0x x ->;命题:q a ∀∈R ,()22()log a f x x +=在定义域上是增函数.则下列命题中的真命题是( ) A .p q ∧B .p q ⌝∧C .p q ∧⌝D .()p q ⌝∨45.已知集合{}1,3,A m =,{B =,B A ⊆,则m =( ) A .9B .0或1C .0或9D .0或1或946.已知集合{}0,1,2,3A =,{}2B x x =∈>Z ,则A B ⋃=( ) A .NB .ZC .{}0,1,2,3D .()0,∞+47.已知命题:p 若sin sin x y >,则x y >;命题:R q a ∀∈,()()22log a f x x +=在定义域内是增函数.则下列命题中的真命题是( ) A .p q ∧ B .p q ⌝∧ C .p q ∧⌝D .()p q ⌝∨48.若:12p x -≤≤,:11q x -≤≤,则p 为q 的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分又不必要条件49.设全集U Z =,集合{}0,1A =,{}1,0,1,2B =-,则()U A B =( )A .ZB .{}1,2-C .{}0,1D .1,0,1,250.设P :3x <,q :13x ,则p 是q 成立的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件51.“sin cos αα=”是“π2π4k α=+,k ∈Z ”的( ) A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要52.下列说法中正确的是( )A .已知随机变量X 服从二项分布14,3B ⎛⎫⎪⎝⎭.则()89E X =B .“A 与B 是互斥事件”是“A 与B 互为对立事件”的充分不必要条件C .已知随机变量X 的方差为()D X ,则()()2323D X D X -=- D .已知随机变量X 服从正态分布()24,N σ且()60.85P X ≤=,则()240.35P X <≤=53.已知命题:1p Q ∈,命题:q 函数()f x=1的定义域是[)1,+∞,则以下为真命题的是( ) A .p q ∧ B .p q ∨ C .p q ⌝∧D .p q ⌝∨54.“224x y +≥”是“2x ≥且2y ≥”的( )条件. A .必要不充分 B .充分不必要 C .充要D .既不充分也不必要55.“a b =”是“a b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 56.若集合11,,0,1,44A ⎧⎫=--⎨⎬⎩⎭,{}4xB y y ==,则A B =( )A .{}1,4B .{}0,1,4C .1,0,1,44⎧⎫-⎨⎬⎩⎭D .11,,0,1,44⎧⎫--⎨⎬⎩⎭57.已知集合{}2,3,4,5B =,{}2,1,4,5C =--,非空集合A 满足:A B ⊆,A C ⊆,则符合条件的集合A 的个数为( )A .3B .4C .7D .858.已知△ABC 的三个内角为A ,B ,C ,则“3A π<”是“sin A ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件59.已知集合{}4,5,6,8A =,{}3,5,7,8B =,则A B =( ) A .{}5,8B .5,6C .{}3,6,8D .{}3,4,5,6,7,860.“两个三角形相似”是“两个三角形三边成比例”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件61.集合{}1,0,1,2A =-,{}2log 2B x x =<,则A B =( ) A .{}1,2B .{}1,0,2-C .{}2D .{}1,0-62.l ,m 是两条不重合的直线,α,β是两个不重合的平面,若l α⊂,m β⊂,则“l //m ”是“//αβ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件63.已知全集2{|760}U x N x x =∈-+≤,A ={1,3,4},B ={2,4,6},则(UA )B =( ) A .{2,5}B .{2,6}C .{2,5,6}D .{2,4,5,6}64.设集合{}2120A x x x =+-≤,(){}0.5log 12B x x =->-,则A B =( )A .∅B .(]1,4C .(]1,3D .[]4,3-65.已知命题:R p x ∀∈,ln 10x x -+<,则p ⌝是( ) A .R x ∀∉,ln 10x x -+≥ B .R x ∀∈,ln 10x x -+≥ C .R x ∃∉,ln 10x x -+≥D .R x ∃∈,ln 10x x -+≥66.已知集合{R|2}A y y =∈>,{}R |ln B x y x =∈=,则R ()A B =( ) A .,2]-∞( B .[2,)+∞ C .(0,2]D .(0,2)67.已知集合{}13P x R x =∈≤≤,{}24Q x R x =∈≥,则()RPQ =( )A .[]2,3B .(]2,3-C .[)1,2D .[]1,268.已知集合{}|2,M y y xx ==-∈R ∣,1,7xN y y x ⎧⎫⎪⎪⎛⎫==∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭R ,则( ) A .M N B .N M ⊆ C .M N =RD .N RM69.已知命题:p x R ∀∈,cos 1x <;命题:q x R +∃∈,|ln |0x ≤,则下列命题中为真命题的是( ) A .p q ∧B .p q ⌝∧C .p q ∧⌝D .()p q ⌝∨70.已知平面α,β,直线m ,αβ⊥,则“m α∥”是“m β⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件71.已知集合{|(1)0,}A x x x x =-<∈R ,1{|2,}2B x x x =<<∈R ,集合A B =( ) A .∅B .1{|1,}2x x x <<∈R C .{|22,}x x x -<<∈RD .{|21,}x x x -<<∈R72.若集合201x A xx ⎧⎫+=≤⎨⎬-⎩⎭,{}220B x x x =--<,则()R A B =( ) A .[)1,2 B .(]1,1-C .()1,1-D .()1,273.集合{}12,A x x x N =-≤≤∈,{}1B =,则A B =( ) A .{}1112x x x -≤≤<≤或B .{}1,0,2-C .{}0,2D .{}2 74.已知集合{}21,Z M x x n n ==-∈,{}1,2,3,4,5N =,则M N =( )A .{}1,3,5B .{}1,2,3,4,5C .{}21,Z x x n n =-∈D .∅75.函数()3f x x x =+,则1a >-是()()120f a f a ++>的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件76.已知集合{}2A x x =<,{}2,1,0,1,2B =--,则A B =( )A .{}0,1B .{}1,0,1-C .2,0,1,2D .1,0,1,277.“直线430x y m ++=与圆2220x y x +-=相切”是“1m =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件78.“2263x x +”是“||7x ”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .既不充分也不必要条件 79.已知集合{}{}21,,(1)(6)0A y y k k Z B x x x ==-∈=--≤,则A B =( )A .{}135,, B .{}35, C .[]16,D .∅80.已知集合()(){}22,10M x y x y =++=,()(){},ln 2N x y y x ==+,则M N ⋃=( ) A .{}1,0-B .(){}1,0-C .MD .N81.已知集合{}210A x x =->,{}2|3180B x x x =--<,则A B =( )A .1,62⎛⎫ ⎪⎝⎭B .1,32⎛⎫ ⎪⎝⎭C .()3,6-D .()6,3-82.已知全集{1,0,1,3,4,5,6}U =-,集合{1,1}R =-,{4,5}Q =,则()UR Q ⋃=( ) A .{}1-B .{1,3}-C .{0,3,6}D .{1,0,3,6}-83.已知集合{}{}2|4,,|4A x x x Z B y y =<∈=>,则A B =( )A .()()4,22,4--B .{}3,3-C .()2,4D .{}3二、多选题84.若“260x x --<”是“4a x <<”的充分不必要条件,则实数a 的值可以是( ) A .3-B .2-C .1D .285.下列命题中,真命题有( ) A .“1x ≠”是“1x ≠”的必要不充分条件B .“若6x y +≥,则x ,y 中至少有一个大于3”的否命题C .0x ∃∈R ,0202xx <D .命题“0x ∃<,220x x --<”的否定是“00x ∀≥,20020x x --≥”86.已知a ∈R ,命题“0x ∃>,x a a -<”的否定是( ) A .0x ∀>,x a a -≥ B .0x ∃≤,x a a -< C .0x ∀>,2x a ≥或0x ≤D .0x ∃>,x a a -≥87.下列条件中,为“关于x 的不等式210mx mx -+>对x R ∀∈恒成立”的充分不必要条件的有( ) A .04m ≤< B .02m << C .14m <<D .16m -<<88.下列命题是真命题的是( ) A .所有的素数都是奇数B .有一个实数x ,使2230x x ++=C .命题“x R ∀∈,0x x +≥”的否定是“x R ∃∈,0x x +<”D .命题“x R ∃∈,20x +≤”的否定是“x R ∀∈,20x +>”89.已知幂函数()()41mf x m x =-,则下列选项中,能使得f af b 成立的一个充分不必要条件是( ) A .110ab<< B .22a b > C .ln ln a b > D .22a b >三、解答题90.如图,在 ABC 中,F 是BC 中点,直线l 分别交AB ,AF ,AC 于点D ,G ,E .如果AD =λAB ,AE =μAC ,λ,μ∈R . 求证:G 为 ABC 重心的充要条件是1λ+1μ=3.91.已知函数()()()313x xf x m m R -=--∈是定义域为R 的奇函数.(1)若集合(){}|0A x f x =≥,|0x m B x x m -⎧⎫=<⎨⎬+⎩⎭,求A B ; (2)设()()22332x xg x af x -=+-,且()g x 在[)1,+∞上的最小值为-7,求实数a 的值.92.设全集{2}U xx =≥-∣,{210}A x x =<<∣,{28}B x x =≤≤∣.求UA ,()U AB ⋂,A B ,()UA B93.已知a ∈R ,集合(){}222log log 2A x R x x =∈≥,集合()(){}10B x R x x a =∈--<. (1)求集合A ; (2)若RB A ⊆,求a 的取值范围.94.设全集为R ,{3A x x =≤或}9x ≥,{}29B x x =-<≤. (1)求A B ,A B ; (2)求()R B A .95.已知函数()22f x x x a =-+,()5g x ax a =+-(1)若函数()y f x =在区间[]1,0-上存在零点,求实数a 的取值范围;(2)若对任意的[]11,3x ∈-,总存在[]21,3x ∈-,使得()()12f x g x =成立,求实数a 的取值范围. 四、填空题96.命题“0x R x ∈∃,”的否定是___________. 97.若命题p :x ∀∈R ,2240ax x -+为真命题,则实数a 的取值范围为___________.98.写出一个能说明“若函数()f x 为奇函数,则()00f =”是假命题的函数:()f x =_________.99.已知全集U =R ,集合{}()3,,0A x x B ∞=≤-=-,则A B =________.100.已知集合{}2Z,4A x x x =∈<,{}1,2B =-,则A B ⋃=_________.参考答案:1.B 【解析】 【分析】求出集合B ,利用交集和补集的定义可求得结果. 【详解】因为{}{}2310025B x x x x x =--≤=-≤≤,则{R 2B x x =<-或}5x >,因此,(){}R 8A B ⋂=. 故选:B. 2.D 【解析】 【分析】 求出{}2,1,0,1UB =--即得解.【详解】 由题设,{}2,1,0,1UB =--,则(){}1,0,1U A B ⋂=-,故选:D. 3.C 【解析】 【分析】利用对数函数的单调性,结合充分性和必要性的讨论,即可判断和选择. 【详解】因为2log y x =在()0,+∞是单调增函数,又2211log log a b<, 故可得110a b<<,则0a b >>,故a b >,满足充分性; 若a b >,不妨取2,1a b =-=-,显然110,0a b <<,故2211log ,log a b没有意义, 故必要性不成立; 综上所述,“2211log log a b<”是“a b >”的充分不必要条件. 故选:C .【解析】 【分析】 将()112n n n S na d -=+,an =a 1+(n ﹣1)d 代入Sn ﹣nan <0,并化简,再结合n 的取值范围,即可求解. 【详解】解:()112n n n S na d -=+,an =a 1+(n ﹣1)d , 则Sn ﹣nan ()112n n na d -=+-na 1﹣n (n ﹣1)d ()12n n d -=-,则“Sn ﹣nan <0,对n >1,n ∈N *恒成立”,故d >0, 若d >0,则Sn ﹣nan ()12n n d -=-<0,对n >1,n ∈N *恒成立,故“Sn ﹣nan <0,对n >1,n ∈N *恒成立”是“d >0”的充分必要条件. 故选:C . 5.B 【解析】 【分析】根据交集的知识确定正确答案. 【详解】依题意集合{}1,2,3,4A =,{}2,4,5B =,所以{}2,4A B =. 故选:B 6.D 【解析】 【分析】首先求集合N ,再求M N ⋂. 【详解】211y x =-≥-,即{}1N y y =≥-,{}1,0,1M =-,所以{}1,0,1M N ⋂=-. 故选:D【解析】 【分析】解出集合B ,利用交集的定义可求得结果. 【详解】因为{}{230B x x x x =-≤=≤,因此,{}1,0,1A B =-.故选:A. 8.A 【解析】 【分析】根据题意,求得,,l m n ,判断命题,p q 的真假,再结合逻辑连接词判断复合命题的真假即可. 【详解】根据题意可得圆弧BE ,EG ,GI 对应的半径分别为,,AB BC AB AB DG --, 也即,,2AB BC AB AB BC --, 则弧长,,l m n 分别为()(),,2222AB BC AB AB BC πππ--,则()()2222m n BC AB AB BC AB l πππ+=-+-==,故命题p 为真命题;()(22222222227448AB AB ln AB AB BC BC BC BC BC πππ⎛⎫=-⨯=⨯-=- ⎪⎝⎭,而(2222221748AB m BC BC BCππ⎛⎫=-=- ⎪⎝⎭,故2ln m =,命题q 为真命题. 则p q ∧为真命题,()p q ∧⌝,()p q ⌝∧,()()p q ⌝∧⌝均为假命题. 故选:A. 9.A 【解析】 【分析】利用直线垂直的判断条件可求1a =±,从而可得正确的选项. 【详解】直线12x ay ++=与30x ay --=垂直,则210,1a a -==±, ∈“1a =”是“直线12x ay ++=30x ay --=垂直”的充分不必要条件. 故选:A. 10.D 【解析】 【分析】先求出集合A ,B ,再由A B =∅求出实数a 的取值范围. 【详解】{}{}{}{}328223,x x A x x x x B x x a =<=<=<=>.又A B =∅,所以a 的取值范围为[3,)+∞. 故选:D 11.D 【解析】 【分析】利用元素与集合的关系求解. 【详解】 因为2A ∉,所以()()2220a a --≥, 解得12a ≤≤. 故选:D . 12.B 【解析】 【分析】求解分式不等式解得集合A ,再求补集和交集即可. 【详解】 因为402x x ->+,即()()420x x -+>,解得2x <-或4x >,故{|2A x x =<-或4}x >, 则A R{|24}x x =-≤≤,则()R A B ={|22}x x -≤≤.故选:B.13.C 【解析】 【分析】先化简集合A ,求得UB ,再去求()U A B ∩即可解决.【详解】因为{}216{44},{3}A xx x x B x x =<=-<<=>∣∣∣, 所以{}3UB x x =∣,则()(]4,3U A B ⋂=-.故选:C. 14.D 【解析】 【分析】根据不等式的解法,求得集合A ,结合补集的概念及运算,即可求解. 【详解】由不等式2280x x -->,可得(4)(2)0x x -+>,解得2x <-或4x >, 即集合{|2x x <-或4}x >,所以[]{|24}2,4A x x =-≤≤=-R.故选:D. 15.A 【解析】 【分析】直接按照充分条件必要条件的定义判断即可. 【详解】若1x >且2y >,则3x y +>,反之则不然,比如0,4x y ==,故q 是p 的充分不必要条件. 故选:A. 16.A 【解析】 【分析】根据空间中的平行关系与垂直关系,结合充分条件和必要条件的定义即可得出答案. 【详解】解:因为l β∕∕,l m ∕∕, 当m α⊥,则l α⊥,又因为l β∕∕,则在平面β内存在一条直线a 使得a α⊥,再根据面面垂直的判定定理可得αβ⊥,故“m α⊥”可以推出“αβ⊥”, 当αβ⊥时,m 与α平行相交都有可能,故“αβ⊥”不一定可以推出“m α⊥”, 所以“m α⊥”是“αβ⊥”的充分不必要条件. 故选:A. 17.B 【解析】 【分析】解不等式求得集合A ,由此求得A B ,由此确定正确答案. 【详解】因为{}{}{}22012,1,0,1,2,3A x x x x x B =--<=-<<=-,所以{0,1}A B =,则A B 的元素的个数为2. 故选:B 18.A 【解析】 【分析】由直线垂直得到a 的值,从而求出答案. 【详解】由12l l ⊥得:()2130a a --=,则1a =-或32a =,故1a =-是12l l ⊥的充分不必要条件,即A 选项正确. 故选:A 19.A 【解析】 【分析】解一元二次不等式求集合A ,解对数不等式求集合B ,再应用集合的交运算求M ∩N . 【详解】因为{}23|230|12M x x x x x ⎧⎫=--<=-<<⎨⎬⎩⎭,{}{}ln(21)01N x x x x =-=, 所以M N =(1,32).故选:A 20.C 【解析】 【分析】用定义法,分充分性和必要性两种情况分别求解. 【详解】 由40S >,得1514011a a a a q q q--=>--,因为1q >,所以510a a ->,即51a a >.故必要性满足; 1514411a a a a q S q q--==--.因为1q >,51a a >,所以40S >.故充分性满足. 所以“51a a >”是“40S >”的充要条件. 故选:C 21.B 【解析】 【分析】利用集合间的基本运算,即可得到答案; 【详解】{}3,4,5UA =,则(){}U 3,4,5AB ⋂=.故选:B. 22.D 【解析】 【分析】计算{}U 2,3,5,6M =,{}U1,4,5,6P =,再计算交集得到答案.【详解】{}U2,3,5,6M =,{}U 1,4,5,6P =,()(){}U U 5,6M P ⋂=.故选:D. 23.C【解析】 【分析】根据解一元二次不等式的方法、解分式不等式的方法,结合集合交集、补集的定义进行求解即可. 【详解】因为{}220[0,2]A x x x =-≤=,[]5,4U =-,所以()U [5,0)(2,4]A =-⋃,又因为[)202,0x B x x +⎧⎫=≤=-⎨⎬⎩⎭, 所以()U A B ⋂=[)2,0-, 故选:C 24.B 【解析】 【分析】解不等式求出{}05A x x =≤≤,从而得到不等式组,求出k 的值,进而得到A B 中的元素,求出答案. 【详解】由250x x -≤得:05x ≤≤,所以{}05A x x =≤≤,又{}21,B x x k k Z ==-∈,令0215k ≤-≤,解得:132k ≤≤,k Z ∈,当1k =时,1x =,当2k =时,3x =,当3k =时,5x =,故A B 中元素的个数为3. 故选:B 25.C 【解析】 【分析】逐一取a 的值为1,2,3进行验算可得. 【详解】当1a =时,由2410x x -+=,得2=x {22N =+,不满足题意;当2a =时,由2420x x -+=,得2x ={22N =+,不满足题意;当3a =时,由2430x x -+=,得1x =或3x =,即{1,3}N =,满足题意.26.B【解析】【分析】先化简两个不等式,再去判断二者间的逻辑关系即可解决.【详解】由22x ≠可得1x ≠;由21x ≠可得1x ≠±则由22x ≠不能得到21x ≠,但由21x ≠ 可得22x ≠故“22x ≠是”21x ≠的必要不充分条件.故选:B27.D【解析】【分析】通过解方程进行求解即可.【详解】因为(1)(1)00x x x x -+=⇒=,或1x =-,或1x =,所以{}1,0,1A =-,故选:D28.D【解析】【分析】先求出集合N ,再求两集合的交集【详解】由326x ≤,得33log 3log 26x ≤,即3log 26x ≤,所以{}3Z|log 26N x x =∈≤,因为{}N |4M x x =∈<所以MN ={}0,1,2,故选:D【解析】【分析】利用必要条件和充分条件的定义判断.【详解】因为x ∈R ,2cos 1x >, 所以1cos 2x >, 解得2233k x k ππππ-+<<+,所以x ∈R ,则“2cos 1x >”是“03x π≤<”的必要不充分条件,故选:B30.B【解析】【分析】 先画出不等式组所表示的平面区域,根据存在性和任意性的定义,结合复合命题的真假性质进行判断即可.【详解】不等式组表示的平面区域D 如图中阴影部分(包含边界)所示.根据不等式组表示的平面区域结合图形可知,命题p 为真命题,命题q 也为真命题,因此选项B 为真命题; 因此p ⌝为假命题,命题q ⌝也为假命题,所以选项ACD 为假命题,故选:B31.A【解析】【分析】先判断命题p ,命题q 的真假,再利用复合命题判断.【详解】 当0,2x y π==时,sin()sin sin x y x y +=+成立所以命题p 为真命题,则p ⌝是假命题;因为x ∀,y R ∈,所以sin 1,sin 1x y ≤,则sin sin 1x y ⋅,故命题q 为真命题,则q ⌝是假命题;所以p q ∧是真命题,p q ⌝∧是假命题, ()p q ∧⌝是假命题,()p q ⌝∨是假命题, 故选:A32.C【解析】【分析】依据集合元素互异性排除选项AB ;代入验证法去判断选项CD ,即可求得实数n 的值.【详解】依据集合元素互异性可知,0,1n n ≠≠-,排除选项AB ;当1n =时,{}1,0,1A =-,{}{},,110B x x a b a A b A ==⋅∈∈=-,,, 满足A B A =.选项C 判断正确;当2n =时,{}1,0,2A =-,{}{},,2,014B x x a b a A b A ==⋅∈∈=-,,, {}0A B A ⋂=≠.选项D 判断错误.故选:C33.C【解析】【分析】解一元二次不等式得集合B ,然后由并集定义计算.【详解】由题意{|12}B x x =-<<,所以{|12}A B x x ⋃=-≤≤.故选:C .34.B【解析】【分析】根据二次根式的定义求得集合A ,然后由交集定义计算.【详解】由已知{|0}A y y =≥,所以{0,1}A B =.故选:B .35.C【解析】【分析】由题设可得{2,2}M =-,结合集合与集合、元素与集合的关系判断各选项的正误即可.【详解】由题设,{2,2}M =-,而N 为自然数集,则2N -∉,2N ∈且2,2M -∈,所以,{}2M ≠⊂,故A 、B 、D 错误,C 正确. 故选:C36.C【解析】【分析】根据集合补集的定义即可求解.【详解】 解:因为{}{}12,N 0,1,2A x x x =-≤≤∈=,{}1B =,所以{}0,2A B =,故选:C.37.C【解析】【分析】根据直线与抛物线的位置关系判断命题p 的真假,利用等轴双曲线的渐近线判断命题q 的真假,再根据含逻辑联结词命题真假的判断方法即可求解.【详解】若直线与抛物线的对称轴平行,则直线与抛物线只有一个交点,但是不算相切,故p 是假命题.因为等轴双曲线的实轴与虚轴相等,所以渐近线的斜率为±1,故q 为假命题.故p 且q 为假命题,p 或q 为假命题,()p ⌝或q 为真命题,p 且()q ⌝为假命题. 故选:C.38.C【解析】【分析】全称量词命题的否定为存在量词命题.【详解】全称量词命题的否定的方法是,全称改存在,否定结论.故命题p 的否定为n N ∃∈,33n n ≤.故选:C39.C【解析】【分析】根据全称量词命题的否定是特称量词命题即可求解.【详解】“所有可以被5整除的整数,末位数字都是5”的否定是:存在可以被5整除的整数,末位数字不是5.故选:C.40.D【解析】【分析】由集合S 的描述确定其点元素,并判断该点元素与集合T 的关系,应用并运算求S T .【详解】依题意,(){}S =,而()T ∈,所以S T T ⋃=.故选:D.41.B【解析】【分析】根据必要不充分条件的定义,前面推不出后面,后面推出前面,即可得到答案;【详解】若A B =∅,则A ,B 没有公共元素,A ,B 不一定是空集;若A =∅或B =∅,则A B =∅.故“A B =∅”是“A =∅或B =∅”的必要不充分条件.故选:B42.C【解析】【分析】直接求出U A .【详解】 因为集合{14}{0,1,2,3}U x x =∈-<<=N∣,集合{0,1}A =,所以{2,3}U A =. 故选:C.43.A【解析】【分析】根据一元二次不等式的解法求集合M ,运用集合间的运算直接求解.【详解】{}{}2|5+40|14M x x x x x =-<=<<,所以{}2,3M N =,故选:A .44.A【解析】【分析】根据命题,p q 的真假,可判断,p q ⌝⌝ 的真假,再根据 “或且非”命题真假的判断方法,可得答案.【详解】设sin ,0,1cos 0y x x x y x '=->=-≥ ,故sin ,0y x x x =->为增函数,则sin 0sin00x x ->-=,故命题:(0,)p x ∀∈+∞,sin 0x x ->为真命题,则p ⌝为假命题,因为2221a +≥> ,故命题:R q a ∀∈,()22()log a f x x +=在定义域上是增函数为真命题,q ⌝为假命题,所以p q ∧为真命题,p q ⌝∧为假命题,p q ∧⌝为假命题,p q ∨为真命题,则()p q ⌝∨为假命题,故选:A45.C【解析】【分析】根据B A ⊆3=m =,根据集合元素的互异性求得答案.【详解】由B A ⊆3=m =,3=时,9m = ,符合题意;m =时,0m =或1m =,但1m = 时,{}1,1B =不合题意,故m 的值为0或9,故选:C46.A【解析】【分析】直接利用并集的定义求解.【详解】解:因为集合{}0,1,2,3A =,{}2B x x =∈>Z ,所以A B ⋃=N .故选:A47.B【解析】【分析】判断命题p 、q 的真假,利用复合命题的真假可得出合适的选项.【详解】对于命题p ,取0x =,53y π=,则sin 0sin x y =>=x y <,p 为假命题, 对于命题q ,R a ∀∈,222a +≥,则函数()()22log a f x x +=在定义域内为增函数,q 为真命题.所以,p q ∧、p q ∧⌝、()p q ⌝∨均为假命题,p q ⌝∧为真命题.故选:B.48.C【解析】【分析】根据充分,必要条件的定义判断即可.【详解】对于p ,如果x =1.5,则q 不能成立,如果11x -≤≤ ,则x 必然在[]1,2-- 区间内,因此p 为q 的必要不充分条件;故选:C.49.B【解析】【分析】根据集合交并补的运算规则运算即可.【详解】U A 就是整数中去掉0,1剩下的那些数,∈ (){}1,2U A B ⋂=-.故选:B.50.B【解析】【分析】由条件推结论可判断充分性,由结论推条件可判断必要性.由3x <不能推出13x ,例如2x =-,但13x 必有3x <,所以p :3x <是q :13x 的必要不充分条件.故选:B.51.B【解析】【分析】由sin cos αα=得ππ4k α=+,再根据必要条件,充分条件的定义判断即可. 【详解】解:当sin cos αα=时,ππ4k α=+,k ∈Z , 反之,当π2π4k α=+,k ∈Z 时,sin cos αα=, 所以“sin cos αα=”是“π2π4k α=+,k ∈Z ”的必要不充分条件. 故选:B52.D【解析】【分析】按照有关定义以及数学期望和方差的计算公式即可.【详解】对于A ,已知随机变量14,3X B ⎛⎫ ⎪⎝⎭,则()14433E X =⨯=,故A 错误; 对于B ,根据互斥事件和对立事件的定义,“A 与B 是互斥事件”并不能推出“A 与B 互为对立事件”,相反“A 与B 互为对立事件”必能推出“A 与B 是互斥事件”,故B 错误;对于C ,根据方差的计算公式,()()234D X D X -=,故C 错误;对于D ,根据正态分布的对称性,随机变量()24,X N σ,()60.85P X ≤=, 所以()20.15P X ≤=,所以()240.35P X <≤=,故选:D.53.B【解析】【分析】推导出命题p 是真命题,命题q 是假命题,从而p q ∧是假命题,p q ∨是真命题,p q ⌝∧是假命题,p q ⌝∨是假命题.【详解】因为命题:1p Q ∈是真命题, 因为函数()f x=的定义域为()1,+∞,所以命题:q 函数()f x =的定义域是[)1,+∞是假命题,所以在A 中,p q ∧是假命题,故A 错误;在B 中,p q ∨是真命题,故B 正确;在C 中,p q ⌝∧是假命题,故C 错误;在D 中,p q ⌝∨是假命题,故D 错误.故选:B .54.A【解析】【分析】根据给定条件,判断互逆关系的两个命题真假,再结合充分条件、必要条件的定义判断作答.【详解】因1,x y =224x y +≥成立,即“224x y +≥”不能推出“2x ≥且2y ≥”, 而当2x ≥且2y ≥时,22222284x y +≥+=≥,即“2x ≥且2y ≥”能推出“224x y +≥”, 所以“224x y +≥”是“2x ≥且2y ≥”的必要不充分条件.故选:A55.B【解析】【分析】利用充分条件、必要条件的定义结合向量相等与其模相等的意义直接判断作答.【详解】 当a b =时,因向量a ,b 的方向不一定相同,则a 与b 不一定相等,当a b =时,必有a b =, 所以“a b =”是“a b =”的必要不充分条件.故选:B56.A【解析】【分析】由交集的运算直接求解即可.【详解】因为()0,B =+∞,所以{}1,4A B ⋂=.故选:A57.A【解析】【分析】列举出满足条件的非空集合A ,可得结果.【详解】由题意可知,满足条件的非空集合A 有:{}4、{}5、{}4,5,共3个.故选:A.58.A【解析】【分析】结合三角函数的性质,利用充分性与必要性的定义,可得出答案.【详解】A 是△ABC 的三个内角,()0,πA ∴∈当sin A <时,由()0,πA ∈,可得π03A <<或2ππ3A <<,所以“3A π<”是“sin A <”的充分不必要条件. 故选:A59.A【解析】【分析】直接利用交集的定义求解.【详解】解:因为集合{}4,5,6,8A =,{}3,5,7,8B =,所以A B ={}5,8.故选:A60.C【解析】【分析】根据相似三角形的性质,结合充分条件、必要条件的判定方法,即可求解.【详解】根据相似三角形的性质得,由“两个三角形相似”可得到“两个三角形三边成比例”,即充分性成立;反之:由“两个三角形三边成比例”可得到“两个三角形相似”,即必要性成立,所以“两个三角形相似”是“两个三角形三边成比例”的充分必要条件.故选:C.61.A【解析】【分析】先根据对数的单调性求出集合B ,再求交集.【详解】由2log 2x <可得,04x <<,所以{}04B x x =<<又{}1012A =-,,,,{}12A B ⋂=,62.D【解析】【分析】根据给定条件,举例判断面面位置关系的命题,再结合充分条件、必要条件的定义判断作答.【详解】长方体1111ABCD A B C D -中,平面ABCD ,平面11ABB A 分别视为平面α,β,直线CD ,11A B 分别为直线l ,m ,显然有l //m ,而α与β相交,即l //m 不能推出//αβ;长方体1111ABCD A B C D -中,平面ABCD ,平面1111D C B A 分别视为平面α,β,直线CD ,11A D 分别为直线l ,m ,显然有//αβ,而l 与m 是异面直线,即//αβ不能推出l //m ,所以“l //m ”是“//αβ”的既不充分也不必要条件.故选:D63.D【解析】【分析】先化简全集,再根据集合的运算求解即可.【详解】2{|760}{1,2,3,4,5,6}U x N x x =∈-+≤=,则{2,5,6}U A =,所以(){2,4,5,6}U A B ⋃=.故选:D64.C【解析】分别化简集合A ,B ,再取交集即可.【详解】()(){}[]4304,3A x x x =+-≤=-, 由()20.50.5l 5og 12log 0-->-=x .,又函数0.5log y x =在定义域上单调递减, 得210.5410x x -⎧-<=⎨->⎩,解得:14x <<,即()(]1,51,3B A B =⇒⋂=, 故选:C.65.D【解析】【分析】由全称命题的否定可得出结论.【详解】命题p 为全称命题,该命题的否定为:p x ⌝∃∈R ,ln 10x x -+≥,故选:D.66.C【解析】【分析】求出函数ln y x =的定义域可得集合B ,再利用交集、补集的定义计算作答.【详解】因集合{R|2}A y y =∈>,则R (,2]A =-∞,函数ln y x =有意义,有0x >,则(0,)B =+∞,所以R ()(0,2]A B ⋂=.故选:C67.C【解析】【分析】先求解集合Q 中的不等式,结合集合的交集、补集运算,即得解【详解】由题意,2{|4}{|2Q x R x x x =∈≥=≥或2}x故{|22}R Q x x =-<<则(){|12}[1,2)R P Q x x =≤<=故选:C68.C【解析】【分析】根据绝对值的意义解出集合M ,根据指数函数的性质解出集合N ,结合集合之间的关系即可得出结果.【详解】 由20y x =-≤,得M={y |y ≤0}, 由1()07x y =>,得N ={y |y >0},所以{}0R N y y =≤, 所以R M N =故选:C .69.B【解析】【分析】先判定命题p 和q 的真假,再结合复合命题的真假判定方法,即可求解.【详解】当2,x k k Z π=∈,可得cos 1x =,所以命题“:p x R ∀∈,cos 1x <”为假命题,则p ⌝为真命题;当1x =时,可得|ln |0x =,所以命题“:q x R +∃∈,|ln |0x ≤”为真命题,q ⌝为假命题, 所以命题“p q ∧”,“p q ∧⌝”,“()p q ⌝∨”为假命题,“p q ⌝∧”为真命题.故选:B.70.D【解析】【分析】利用线面平行垂直的判定定理及性质定理判断即可.【详解】由题,若m α∥,则m 与平面β,可以平行,相交或者m 在平面内,故充分性不满足; 若m β⊥,则m 可以平行α,也可包含于α,故必要性不满足.故选:D71.B【解析】【分析】解不等式确定集合A ,然后由集合交集的定义计算.【详解】由已知{|01}A x x =<<,所以1{|1}2A B x x =<<. 故选:B .72.A【解析】【分析】分别求出集合A ,B ,根据集合的交集和补集运算得出答案.【详解】由201x x +≤-,则()()210x x +⋅-≤解得:21x .[)202,11x A x x ⎧⎫+∴=≤=-⎨⎬-⎩⎭,{}()2201,2B x x x =--<=-, R C A ={2x x <-或}1x ≥,()R C A B ⋂=[)1,2.故选:A.73.C【解析】【分析】根据集合补集的定义即可求解.【详解】解:因为{}{}12,0,1,2A x x x N =-≤≤∈=,{}1B =,所以{}0,2A B =,故选:C.74.A【解析】【分析】根据集合M 的描述,判断集合N 中元素与集合M 的关系,再由集合的交运算求M N ⋂【详解】由题设,1,3,5M ∈,2,4M ∉,所以{1,3,5}MN =.故选:A75.B【解析】【分析】根据函数的奇偶性与单调性判断命题的充分必要性.【详解】由函数()3f x x x =+,则()()3f x x x f x -=--=-, 则函数()f x 为奇函数,且在R 上单调递增,又()()120f a f a ++>,得()()()122f a f a f a -+>=-,故12a a +>-,解得13a >-, 故1a >-是()()120f a f a ++>的必要不充分条件,故选:B.76.B【解析】【分析】先求出集合A ,再求两集的交集【详解】 由2x <,得22x -<<,所以{}22A x x =-<<,因为{}2,1,0,1,2B =--,所以A B ={}1,0,1-,故选:B77.B【解析】【分析】先表示出圆心和半径,利用圆心到直线的距离等于半径,结合充分必要条件的判断即可求解.【详解】()2211x y -+=,圆心()1,0,半径为1,由直线430x y m ++=与圆2220x y x +-=相切得1=,解得1m =或9-,故“直线430x y m ++=与圆2220x y x +-=相切”是“1m =”的必要不充分条件.故选:B.78.B【解析】【分析】求出2263x x +的解集,看和2263x x +的推出关系,即得答案.【详解】由2263x x +,得97x -,不能推出||7x ,由||7x ,得77x -,能推出97x -,故“2263x x +”是“||7x ”的必要不充分条件,故选:B79.A【解析】【分析】先写出集合B ,再按照交集运算.{}16B x x =≤≤,则A B ={}135,,.故选:A.80.D【解析】【分析】求得(){}1,0M =-,证明函数()ln 2y x =+过点()1,0-,可得M N ⊆,即可求出答案.【详解】解:()(){}(){}22,101,0M x y x y =++==-, 因为当1x =-时,()ln 2ln10x +==,所以函数()ln 2y x =+过点()1,0-,所以M N ⊆,所以M N N ⋃=.故选:D.81.A【解析】【分析】根据不等式的解法求得集合,A B ,再结合集合交集的运算,即可求解.【详解】 由集合{}12102A x x x x ⎧⎫=->=>⎨⎬⎩⎭, 又由不等式23180x x --<,即(3)(6)0x x +-<,解得36x -<<,即{}|36B x x =-<<, 所以11|6,622A B x x ⎧⎫⎛⎫⋂=<<=⎨⎬ ⎪⎩⎭⎝⎭. 故选:A.82.C【解析】利用集合的并集和补集运算求解.【详解】因为集合{1,1}R =-,{4,5}Q =,所以{}1,1,4,5R Q ⋃=-,因为全集{1,0,1,3,4,5,6}U =-,所以()U R Q ⋃={0,3,6},故选:C83.B【解析】【分析】由绝对值不等式及一元二次不等式的解法求出集合A 和B ,然后根据交集的定义即可求解.【详解】解:由题意,集合{}{}|44,3,2,1,0,1,2,3A x x x Z =-<<∈=---,{}{24|2B y y y y =>=<-或}2y >, 所以{}3,3A B ⋂=-,故选:B.84.AB【解析】【分析】先解出不等式260x x --<,再按照充分不必要条件求解.【详解】由260x x --<得23x -<<,因此,若“260x x --<”是“4a x <<”的充分不必要条件,则2a ≤-.故选:AB.85.AC【解析】【分析】直接推导可判断A ;写出否命题取值验证可判断B ;特值法可判断C ;根据存在量词命题的否定可判断D.【详解】对于A 选项,11x x =-⇒=,所以不是充分条件;又111x x x ≠⇒≠±⇒≠,所以是必要不充分条件,A 选项正确;对于B 选项,“若6x y +≥,则x ,y 中至少有一个大于3”的否命题为“若6x y +<,则x ,y 都不大于3”.取4,1x y ==,显然为假命题,故B 选项错误;对于C 选项,取01x =-可知C 选项正确;命题“0x ∃<,220x x --<”的否定是“0x ∀<,220x x --≥”,故D 不正确,故选:AC.86.AC【解析】【分析】根据特称命题的否定是全称命题可求解.【详解】 由x a a -≥,可得x a a -≥或x a a -≤-可得2x a ≥或0x ≤.故命题“0x ∃>,x a a -<”的否定是“0x ∀>,x a a -≥”或“0x ∀>,2x a ≥或0x ≤”. 故选:AC87.BC【解析】【分析】先解出不等式恒成立对应的m 的范围,再按照充分不必要条件的定义进行判断.【详解】若关于x 的不等式210mx mx -+>对x R ∀∈恒成立,则 ()2040m m m >⎧⎪⎨--<⎪⎩或0m =,解得04m ≤<, 所以A 选项为充要条件,D 选项为必要不充分条件,B 、C 选项为充分不必要条件. 故选:BC.88.CD。
08浙江:81.甲、乙、丙、丁四对夫妇参加一场交谊舞会。
开始时,四位先生的舞伴都是自己的夫人,后来他们先后三次交换了舞伴?:①乙先生和丙先生交换舞伴;②甲先生和丙先生交换舞伴;③乙夫人和丁夫人交换舞伴。
问三次交换舞伴后,下列哪种舞伴搭配是正确的?()A.甲先生和丁夫人B.丙先生和乙夫人C.丙先生和丁夫人D.丁先生和甲夫人82.若GDP增长率大于3%,那么城市居民和农民的人均收入一定都增长了。
假设以上推论是正确的,那么下列哪项一定正确?()A.城市居民和农民的人均收入都增长了,那么GDP增长率一定大于3%B.城市居民的人均收入增长了,而农民的人均收入却减少了,那么GDP增长率一定小于或等于3%C.如果GDP增长率小于或等于3%,城市居民的人均收入一定减少了D.即使城市居民和农民的人均收入都减少了,GDP增长率也可能大于3%83.最近三年来,捷达牌计算机的销量有了飞速的增长。
而同一时期,该品牌用于电视广告的费用也明显增长了。
因而有人认为,捷达牌计算机销量的增长,得益于其电视广告的促销作用。
以下哪项为真,最能削弱上述结论?()A.捷达牌计算机的购买者中,很少有人注意到该品牌的电视广告B.宏远牌计算机是捷达的主要竞争对手,它的电视广告投入更多C.注意到捷达牌计算机电视广告的人中,很少有人购买该产品D.最近三年来,人们对计算机的需求总量有明显增长84.争议最大的问题是:植物如何做出这样的反应呢?人类和其他高级动物通过神经系统和大脑整合来自其所处环境的信号,并做出反应。
但植物没有神经系统,没有大脑,因此肯定是通过其他途径做到的。
最有可能的解释是,它们的反应依靠某种激素和电子信号的接收、转换和反馈系统来协调。
从上文中可以推出,接下来,作者最可能表述的问题是?()A.动物如何对外界刺激做出反应的具体描述B.动物和植物对外界刺激的敏感度不同C.对外界刺激,植物依靠某种激素和电子信号协调做出反应的相关研究D.相关科学家在植物对外界刺激的反应问题上存在巨大分歧85.现代的这个主导信仰有一项不可抗拒的吸引力:当你越快取得某样想要的东西,就越保证能得到另一样想要的东西。
说它具有吸引力还真的有点疑问,因为这些说辞完全越过伦理的考量:无须任何牺牲或克己;相反的,我们有科技的协助不断向和平与富裕之路迈进,而这所需的一切就是我们不应表现愚蠢、非理性而伤害自身。
根据以上文宇,下列推断不正确的一项是()A.现代的主导信仰超越了伦理的范畴B.现代主导信仰崇尚自我、理性、科学C.作者对于现代主导信仰的潜在态度是质疑的D.科技之路最终将通向和平与富裕86.供给学派认为,只有了解上述所得转移的税收效果,我们才能希望设计出一种社会福利制度,既能帮助真正需要帮助的人,又能给予那些在工作的人最大的激励。
只有当人们从事工作和储蓄,进而提高全国资本存量时,才有国家财富的分配可言。
上文中“上述所得转移的税收效果”最有可能是指()A.目前的税收体制在保障工作人士激励方面的作用还不够B.目前的税收效果是保障了穷人的最低所得和生活需求C.目前的税收体制激励人们依赖福利金而不去工作D.目前的税收体制关心的是维持个人的所得水平和消费能力87.据统计结果显示,在韩国由于“心理问题”接受心理咨询的大学生数量大幅增加。
以延世大学咨询中心为例:2003年咨询案例为1364件,到了2006年达到3485件,增加了1.5倍。
首尔大学的大学生活文化院咨询人数也是从2004年的191人,增加到2005年的285人、2006年的320人,呈逐年递增趋势。
下列哪个成立,最能严重削弱“咨询案大幅上升的原因是大学生心理问题增多”的观点?()A.未来前途和就业方面的精神压力增大,承受精神痛苦的韩国大学生骤增B.2004年以前韩国的大学生即便出现心理问题也基本不接受心理咨询C.调查表明,最近几年,韩国某大学咨询中心的咨询案件反而呈下降趋势D.从2005年开始韩国许多大学成立了心理咨询中心88.人们通过同位素测定法可以准确地得到地球的绝对年龄。
很早以来,人们发现岩石中放射性同位素都会自动并以不变的速率逐渐衰变为非放射性的子体同位素,同时释放出能量。
只要温度、压力等因素不变,人们就可以获得准确的数值。
当然,这种方法也有缺点,在进行同位素年龄测定时,所选取的样品很难消除后期热变质作用的影响,如果样品是遭受过风化的岩石,与母岩的性质更是相差甚远,所得到的绝对年龄值往往不能代表岩层的真正年龄。
从这段文字可以推出()A.同位素测定法依然是目前测定岩层年龄的唯一可依赖的较精准的方法B.要想通过同位素测定法得到一个地区准确的地质年代,精确的取样是关键之一C.同位素测定法只适合于一些地质年代里变化剧烈因而存在着大量放射性元素的岩层D.人类掌握的知识总是有限的,科学测量结果也不一定可信89.墨子熟悉儒家,但终于否定了儒家。
其中最重要的,是以无差别的“兼爱”,否定了儒家有等级的“仁爱”。
他认为,儒家的爱,有厚薄,有区别,有层次,集中表现在自己的家庭,家庭里又有亲疏差异,其实最后的标准是看与自己关系的远近,因此核心还是自己。
这样的爱,是自私之爱。
他主张“兼爱”,也就是祛除自私之心,爱他人就像爱自己。
从这段文字可以推出()A.墨子是伟大的爱国主义先驱B.墨学站在更高的角度对统治阶级提出了“兼爱”的要求,实用性更强C.墨子主张打破等级森严的封建宗法观念而去追求一个虚幻的平等社会D.等级制度是人类历史发展的必然现象90.雪崩体能使每平方米的被打物体表面承受40~50吨的力量,冲击力量非常惊人。
雪崩体在高速运动过程中,还能够引起空气剧烈的振荡,在雪崩龙头前方造成类似于原子弹爆炸时的冲击波的强大气浪。
在陡岩或者河谷急转弯的地方,雪崩体很可能被阻停留下来。
而雪崩气浪却会继续沿着雪崩运动的方向爬山越岭,摧毁森林、房屋,倾覆车辆,人畜遇到它可能窒息而死。
从这段文字可以推出()A.雪崩体的巨大冲击力更甚于原子弹爆炸B.雪崩的威力一般只能达到陡岩或者河谷急转弯的地方C.雪崩体对登山队员的主要威胁在于缺氧D.雪崩气浪的作用范围要比雪崩体大得多09年426联考:76.动物的冬眠,完全是一项对付不利环境的保护性行动,引起动物冬眠的主要因素,一是环境温度的降低,二是食物的缺乏.科学家们通过实验证明.动物冬眠会引起甲状腺素和肾上腺功能的降低,与此同时,生殖腺却发育正常,冬眠后的动物抗菌抗病能力反而比平时有所增加,显然冬眠对它们是有益的,使它们到翌年春天苏醒以后动作更加灵敏,食欲更加旺盛,而身体内的一切器官更会显出返老还童现象,由此可见,动物在冬眠时期神经系统的肌肉仍然保持充分的活力,而新陈代谢却降到最低限度。
以下如果为真,最能削弱上述结论的是()。
A.很多昆虫,不是以“成虫”或“幼虫”,而是以“蛹”或“卵”的形式进行冬眠B.刺猬,一次冬眠能睡上200多天,醒来后要经过很长时间才能恢复到原来的精神和体力C.在加拿大有些山鼠冬眠长达半年,冬眠期间脉搏变得极为微弱,体温更直线下降到5°D.雌熊仔冬眠中,让雪覆盖着身体,一旦醒来,它身旁就会躺着一两只小熊,这是冬眠时生产的仔77.文学院有学生为优秀奖学金获得者.除非各学院有学生为优秀奖学金获得者,否则任何学院都不能从学校领取奖学金,计算机学院可以从学校领取奖学金。
由此可以推出( )。
A.文学院可以从学校领取奖学金B.文学院有的学生不是优秀奖学金获得者C.计算机学院有的学生是优秀奖学金获得者D.计算机学院有的学生不是优秀奖学金获得者78.财政专家指出,公共风险不仅产生于因政府政策不当导致的国有资产流失。
而且由于政府直接积极参与经济生活,如政府直接参与国有企业。
调控金融机构,这些重要经济领域一旦发生大面积损失,将会直接酿成公共风险,从而造成财政赤字、债务偿还压力。
因此,如果要想实施稳健的财政和货币政策,仅仅调整财政政策是不够的。
从这段文字可以推出( )。
A.只要政府保证国有资产不流失,即使决策失误.也不会产生公共风险B.只要政府不直接产于经济生活.或者国有企业、金融机构这些重要的经济领域不发生大面积损失,就不会产生公共风险C.如果能够防范公共风险的产生.就可以实施稳健的财政和货币政策D.由于重要经济领域发生大面积损失,所以即使政政策决策正确,仍有可能产生公共风险79.越来越多的人处于亚健康状态.究其原因是睡得不好,睡眠时间太少,会引发种种不适,甚至导致疾病,研究指出∶每晚睡眠不足四小时的成年人,其死亡率比每晚能睡七八个小时的人要高180%。
但是美国加利福尼亚大学的研究人员在对100多万人观察后得出结论∶那些每天睡八小时以上的人,他们的死亡率比每晚睡六至七个小时的人高120%。
如果这段文字表述的内容是正确的.以下断定最不可能正确的是( )。
A.每晚睡眠时间太多或太少,都会使人的寿命缩短B.每晚睡眠时间少于四小时的人的死亡率比每晚睡眠时间多于八小时的人要高C.有时睡眠时间少于四小时,有时睡眠时间多于八小时的人的死亡率比每晚睡眠时问为七小时的人高150%D.每晚睡眠八小时以上的人如果改为每晚睡眠不足四小时,所受的危害要加大80.美国科学家发现,雄性非洲慈鲷鱼能通过观察其他雄性成员在抢占地盘争斗的表现而评估对手的实力,在加入战斗时总是挑战那些最弱的对手。
这是科学家首次发现鱼类具有这种推理能力。
由此可以推知( )。
A.雄性非洲慈鲷鱼逻辑能力比雌性强B.雄性非洲慈鲷鱼具有人类的某些理性认识特点C.逻辑推理能力较强的鱼能够占有较大的地盘D.人类是逻辑推理能力最强的高等动物81.某国最大的方便面生产企业计划于4月份把方便面价格提高一至两成。
这将是该国方便面价格自2006年度以来又一次大幅上涨,逼近历史最高价。
该企业表示,之所以要提高方便面价格,主要是为了应对粮食等原材料价格的上涨。
最能支持上述论断的一项是( )。
A.面对国际市场粮食等原材料价格上涨的趋势,甲国政府出台政策,禁止国内粮食加工企业提高粮食产品价格,以防止甲国人民生活成本增加,负担加重B.乙国国内粮食等原料供应充足,但由于劳动力价格上涨,导致粮食加工企业生产成本增加,因而造成方便面等粮食产品价格上涨C.丙国国内粮食等原料供应一直非常充足,近来又大规模提高农业生产技术,提高粮食产量,该国的方便面等粮食产品价格平稳D.丁国粮食加工企业工人举行大罢工,导致该国粮食加工企业瘫痪,国内方便面等粮食产品供应不足,丁国不得不依赖进口粮食产品82.气候变暖后,一般中高纬度地区粮食产量增加,而热带和亚热带只能以一些耐高温作物为主,产量下降,尤其是非洲和拉丁美洲。
全球最贫穷的地区饥荒危机将增加,饥饿和营养不良引起机体免疫力下降,增加人们对疾病的易感性。
由此能推出( )。
A.中高纬度并非是全球最贫困的地区B.非洲和拉丁美洲存在全球最贫困地区C.全球变暖对中高纬度气候的影响小于对热带和亚热带气候的影响D.全球变暖对非洲和拉丁美洲粮食产量的影响高于世界平均水平83.某联邦议院规定,只有在联邦议院中占有至少5%议席的政党才能组成议会党团。