沪教版八年级数学上册教学设计:122 一次函数(5课时)
- 格式:doc
- 大小:78.52 KB
- 文档页数:12
一次函数教学目标(1)使学生领会一次函数与一元一次方程、一元一次不等式之间的联系.(2)引导学生经历探究一次函数与一元一次方程、一元一次不等式之间的联系的过程,体会数形结合、分类、类比、归纳等数学思想方法的运用,积累数学活动经验.通过自主探究、小组合作等活动,锻炼学生的自学能力、归纳概括的能力,增强学生间的合作意识.(3)通过对一次函数、一次方程与一元一次不等式内在关系的探究,引导学生认识事物部分与整体的辩证统一关系,培养学生用联系的观点看待数学问题的意识.教具安排多媒体课件.教学过程设计一、复习旧知、学前热身.小明的爸爸应邀来到合肥投资,在庐阳工业园投资300万元成本建成一个小型家电生产工厂.建成投产后,不考虑材料费等其他因素,每年盈利75万元.回答下面两个问题:①该工厂投产几年刚好收回成本?②该工厂从哪一年后盈利开始超过300万元以上?师:从小学到现在我们学过哪些解决问题的方法?生:小学的算术法和初中学过的方程、不等式.师:怎样利用函数图象解决上面的问题呢?(让学生在下面完成,之后教师订正) 二、活动探究.活动一:探究一次函数与一元一次方程之间的联系.1.解方程:3x+6=0.2.直线y=3x+6与x轴交点的坐标是什么?3.讨论:图象与方程的解之间的关系.(学生口答三个问题.)师:现在请大家准备任意一个一次函数的图象,观察你的图象,在图象中也有类似的联系吗?学生举例说明.师:将刚才的思考概括为一般形式呢?归纳:一次函数y=kx+b(k、b为常数,k≠0)与x轴交点的横坐标就是方程kx+b=0的解.)与x轴交点的一元一次方程kx+b=0(k、b为常数,k≠0)的解就是一次函数y=kx+b(k0横坐标.通过以上探究,你能总结一次函数与一元一次方程之间的联系吗?对于一次函数,当y值确定求其x的值时,就可看成是关于x的一元一次方程.而一个具体的一元一次方程,实际上是一次函数的y值确定,求其自变量x的值.活动二:画出函数y=-3x+6的图象,结合图象:(1)求方程-3x+6=0的解.(2)求不等式-3x+6>0和-3x+6<0的解集.解:过(2,0)和(0,6)画函数y=-3x+6的图象图象与x轴的交点坐标为(2,0)由图象可知:(1)方程-3x+6=0的解是x=2;(2)不等式-3x+6>0的解集是x<2;所以,方程-3x+6>0的解集是x<2,不等式-3x+6<0的解集是x>2.三、归纳小结.师:本节课通过探究,小组合作以及例题的学习,同学有什么样的感受,和老师分享一下.(学生谈谈自己的收获)师:回到引题,利用今天所学的知识,如何构建一次函数关系式,又怎样利用函数图象来解决上面的问题?(学生回答,师予以评价)。
《一次函数》教案教学目标(1)能根据正比例函数的图像,推导出一次函数的图像;并会简单应用.(2)逐步培养学生的观察能力,概括的能力,通过教师指导发现知识,初步培养学生数形结合的思想以及由一般到特殊的数学思想;(3)激发学生学习数学的兴趣和积极性,逐步培养学生实事求是的科学态度.教学重点正比例函数的性质及根据正比例函数的图像能够画出一次函数的图像.教学难点发现正比例函数的性质教学方法通过本节课的教学,我选用引导发现法和直观演示法,本节课的难点是发现正比例函数的性质,通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动(画图)、多观察(图像),主动参与到整个教学活动中来,最后发现其性质,然后根据正比例函数的图像画出一次函数的图像.学法指导教师引导学生学会观察、归纳的学习方法.教学过程:一、温故知新,引入课题.温故:正比例函数的图像是什么?答:正比例函数图像是经过原点(0,0)和点(1,k )的一条直线 二、回顾旧知,引出新知.让学生在两个直角坐标系内,分别画出下列每组函数的图像:① y =2x y =x y =41x ② y =-2x y =-x y =-41x 引导学生观察图像,看看每组直线分布的特征? 三、观察图像,思考问题.(1)对其中的某一个正比例函数图像(例如y =2x ),当x 增大时,函数值y 怎样变化?x 减小呢?是不是要提出减小?请斟酌.(2)你从中得出什么规律?师:现在我们做个小练习,由正比例函数解析式(根据k 的正负),来判断其函数图像的走向.y =-x y =32x y =2x y =-23x y =(a 2+1)x (其中a 是常数) y =(-a 2-1)x (其中a 是常数) 鼓励学生踊跃抢答.好,我们来看下一个问题:对其中的某一个正比例函数图像,当x 增大时,函数值y 怎样变化?x 减小呢?如果一定想讲减少,建议放在练习里讲.继续观察刚才的函数图像,看看当自变量发生变化时,函数值是怎样变化的.我们以y =2x 为例, x 取……-3、-2、-1、0、1、2、3……,观察对应的函数值y 的变化,发现当x 在逐渐增大时,y 的值也在增大;反之,亦成立!图像的走向是不是很像汉字里的提呢,在从左向右的同时,也从下到上的走势,(图像函数值)由小到大的变化再看正比例函数的比例系数k 小于零时的情况(以y =-2x 为例),当自变量x 逐渐增大时,函数值y 反而减小,反之,当自变量x 逐渐减小时,函数值y 却在变大.我们把它很形象地比作汉字里捺的走向,捺从上到下,函数值从大到小.即:当k >0时,自变量x 逐渐增大时,函数值y 也在逐渐增大;(即“提”的走向)当k <0时,自变量x 逐渐增大时,函数值y 反而减小.(即“捺”的走向)师:由函数解析式,请你说出它的变化情况:y =3x y =-x y =2x y =-3xy =(a 2+1)x (其中a 是常数) 鼓励学生踊跃抢答. (3)画一次函数图像.例1 画一次函数23y x =+的图像.解 为了便于对比,列出一次函数23y x =+与正比例函数2y x =的x 与y 的对应值表:从图表中可以看出,对于自变量的同一个值,一次函数的函数值要比函数2y x =的函数值大3个单位.也就是说,对于相同的横坐标,一次函数23y x =+的图像上点的纵坐标要比正比例函数2y x =图像上点的纵坐标大3.因此,把直线2y x =向上平移3个单位,就得到一次函数23y x =+的图像.由此可见,一次函数23y x =+的图像是平行于直线2y x =的一条直线,如图:y kx=的一条直线,因此,我们以后把一次函数y kx b=+(k,b为常数,且k≠0)的图像叫做直线y kx b=+.直线y kx b=+与y轴相交于点(0,b),b叫做直线y kx b=+在y轴上的截距,简称截距.例2画出直线223y x=-,并求它的截距.解对于223y x=-,有过两点(0,2),(3,0)画直线,即得23y x=-的图像,它的截距是-2,如图:四、归纳总结()正比例函数y=kx(k≠0)的性质:(1)当k>0x逐渐增大时,函数值y也在逐渐增大;(也就是“提”的走向)OO(2)当k >0时,自变量x 逐渐增大时,函数值y 反而减小.(也就是“捺”的走向) 归纳为一句话,正比例函数图象的性质归根结底看k 的符号. 即:k >0 提 (一、三,增大) ;k <0 捺 (二、四,减小)(3)直线y kx b =+可以看作是由直线y kx =平移|b |个单位长度而得到的(当b >0时,向上平移;当b <0时,向下平移). 五、小结这节课你学到了什么?。
八年级数学上册第13章一次函数 13.2 一次函数名师教案2 沪科版教学目标1.掌握一次函数y=kx+b(k≠0)的性质.2.能根据k与b的值说出函数的有关性质.教学重点1.一次函数中k与b的值对函数性质的影响;2.结合图象体会一次函数k、b的取值和直线位置的关系,提高数形结合能力.教学难点一次函数k、b的取值和直线位置的关系,数形结合能力教学过程一、探究观察前面一次函数的图象,可以发现规律:当k>0时,直线y=kx+b由左至左上升,当k<0时,直线y=kx+b由左至右下降,由此填出:一次函数y=kx+b(k,b是常数,k≠0),具有如下性质:当k>0时,y随x的增大而;当k<0时,y随x的增大而。
下面,我们把一次函数中k与b的正、负与它的图象经过的象限归纳列表为:三.例题与练习例1 已知一次函数y =(2m -1)x +m +5,当m 是什么数时,函数值y 随x 的增大而减小? 分析 一次函数y =kx +b (k ≠0),若k <0,则y 随x 的增大而减小.解 因为一次函数y =(2m -1)x +m +5,函数值y 随x 的增大而减小.所以,2m -1<0,即21<m . 例2 已知一次函数y =(1-2m )x +m -1,若函数y 随x 的增大而减小,并且函数的图象经过二、三、四象限,求m 的取值范围.分析 一次函数y =kx +b (k ≠0),若函数y 随x 的增大而减小,则k <0,若函数的图象经过二、三、四象限,则k <0,b <0.解 由题意得:⎩⎨⎧<-<-01021m m , 解得,121<<m 例3 已知一次函数y =(3m -8)x +1-m 图象与y 轴交点在x 轴下方,且y 随x 的增大而减小,其中m 为整数.(1)求m 的值;(2)当x 取何值时,0<y <4?分析 一次函数y =kx +b (k ≠0)与y 轴的交点坐标是(0,b ),而交点在x 轴下方,则b <0,而y 随x 的增大而减小,则k <0.解 :由学生完成。
12.2 一次函数第1课时正比例函数1.初步理解正比例函数的概念及其图象的特征.2.能够画出正比例函数的图象.3.能够判断两个变量是否能够构成正比例函数关系.4.能够利用正比例函数解决简单的数学问题.重点正比例函数的概念.难点正比例函数的特征.一、创设情境,导入新课[活动1]问题1996年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环;4个月零1周后,人们在2.56万千米外的澳大利亚发现了它 (一个月按30天计算).(1)这只百余克重的燕鸥大约平均每天飞行多少千米?(2)这只燕鸥的行程y(单位:千米)与飞行时间x(单位:天)之间有什么关系?(3)这只燕鸥飞行1个半月的行程大约是多少千米?(4)对这个问题你还能提出什么问题?教师用课件或小黑板出示问题,用投影仪展示这只燕鸥飞行的距离.让学生在地图上找出芬兰和澳大利亚的位置,并将两处用直线连接.学生稍作思考,自主解决三个问题:①燕鸥每天飞行的路程;②燕鸥总行程y(千米)与飞行时间x(天)的关系式:y=200x.③燕鸥飞行一个半月的行程.老师提示:这里用函数y=200x对燕鸥的飞行路程问题进行刻画,尽管只是近似的,但它反映了燕鸥的行程与时间之间的对应规律.教师应重点关注:学生对飞行总路程与飞行时间的函数关系的理解;学生能否正确指出自变量、自变量的函数、自变量的取值范围.二、合作交流,探究新知[活动2]问题首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?1.圆的周长C 随半径r 的大小变化而变化.2.铁的密度为7.8 g/cm 3.铁块的质量m (g)随它的体积V (cm 3)的大小变化而变化.3.每个练习本的厚度为0.5 cm.一些练习本摞在一起的总厚度h (cm)随这些练习本的本数n 的变化而变化.4.冷冻一个0 ℃的物体,使它每分钟下降2 ℃.物体的温度T (℃)随冷冻时间t (分)的变化而变化.教师出示四个实例问题(用投影仪),要求学生:(1)能找出变量对应表达式;(2)能说出表达式中的自变量,自变量的函数.学生自主探究,分组讨论,然后分小组代表回答问题,教师对回答的问题进行评价. 教师提问:C =2πr 中,字母π是变量吗?引导学生观察、分析上面4个函数的表达式的共性:都是常数与自变量乘积的形式. 教师口述并板书正比例函数的概念.(1)你能举出一些正比例函数的例子吗?(2)表示梯形的面积和圆的面积的函数式是否是正比例函数关系?什么情况下不是?①S =12(a +b )h . ②S =πr 2.教师让学生看书,并提问:这里为什么强调y =kx 中k 是常数,且k ≠0?学生讨论,回答并补充.教师应重点关注:(1)不要认为表达式中的字母都是表示变量.(2)对自变量的取值范围是否能分析清楚.(3)是否概括出了这几个函数的共同特点.学生举例时教师要提醒:(1)举出实际问题;(2)能对其中的自变量、比例系数、函数关系进行解释.对举例不是正比例函数的要认真分析.[活动3]问题画出下列正比例函数的图象:(1)y =2x ;(2)y =-2x .(1)我们知道了怎样用解析式表示正比例函数,那么怎样在直角坐标系中画出正比例函数的图象呢?教师在黑板上演示用描点法画出y =2x 的图象.应注意:(1)操作规范,有示范性.(2)要师生同画.要学生独立画出y =-2x 图象.应注意:(1)评价学生所画的图象;(2)与学生一起总结画图象的主要步骤:列表、描点、连线.(2)观察分析两个图象的异同.两图象都经过________,两图象都是________,函数y =2x 的图象从左向右呈________,经过第________象限;函数y =-2x 的图象从左向右呈________,经过第________象限.练习:在同一坐标系中画出y =12x 和y =-12x 的图象. [活动4]问题1.从以上作图过程可以发现正比例函数的图象有什么特征?2.经过原点与点(1,k )的直线是哪个函数的图象?教师在画图过程中进行指导,学生画完图后,让学生讨论回答这两个图象的特点,与活动3中的两个图象的特点相比较.让学生根据讨论的结果概括、归纳出正比例函数图象特征,教师板书写出正比例函数图象的特征.此处,教师应重点关注:(1)学生是否通过对正比例函数解析式观察分析,发现当k >0时的函数y 与自变量x 同号,当k <0时函数y 与自变量x 异号.(2)学生通过对正比例函数图象的观察分析,发现其图象是一个随x 增大而增大或减小的直线.让学生讨论是否可行.应注意:(1)提醒学生从解析式入手,当x =0或x =1时,函数y 的值分别是几?(2)正比例函数的图象为什么一定过(0,0)和(1,k )两点;(3)因为两点可以确定一条直线,因此,画正比例函数的图象时只需过原点(0,0)和(1,k )画一条直线即可.3.用你认为最简单的方法画出正比例函数的图象.学生练习用“两点法”画图象,教师辅导的同时让两名学生在黑板上画.此时应注意:(1)学生画图是否用“两点法”;(2)这两点是否最简单.(关键是k 的取值)三、运用新知,深化理解例1 已知函数y =(m -5)xm 2-24+m +1.(1)若它是一次函数,求m 的值;(2)若它是正比例函数,求m 的值.分析:(1)要使函数是一次函数,根据一次函数的定义,x 的指数m 2-24=1,且一次项系数m -5≠0;(2)要使函数是正比例函数,除了满足上述条件外,还需加上m +1=0这个条件.解:(1)因为y =(m -5)xm 2-24+m +1是一次函数,所以m =±5,且m ≠5,所以m =-5.即m =-5时,函数y =(m -5)xm 2-24+m +1是一次函数;(2)若y =(m -5)xm 2-24+m +1是正比例函数,则m 2-24=1,且m -5≠0,且m +1=0.所以m =±5,且m ≠5,且m =-1,这样的m 不存在,所以函数y =(m -5)xm 2-24+m +1不可能为正比例函数.【归纳总结】函数y =kx +b 是一次函数,则k ≠0,且自变量的次数为1.当b =0时,一次函数为正比例函数.例2 已知正比例函数y =kx (k ≠0),当x =-1时,y =-2,则它的图象大致是( )A B CD分析:将x=-1,y=-2代入正比例函数y=kx(k≠0)中,求出k的值为2,即可根据正比例函数的性质判断出函数的大致图象.【归纳总结】本题考查了正比例函数的图象,知道正比例函数的图象是过原点的直线,且当k>0时,图象过第一、三象限;当k<0时,图象过第二、四象限.例3 已知正比例函数y=-kx的图象经过第一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三点在函数y=(k-2)x的图象上,且x1>x3>x2,则y1,y2,y3的大小关系为( ) A.y1>y3>y2B.y1>y2>y3C.y1<y3<y2 D.y3>y2>y1分析:由y=-kx的图象经过第一、三象限,可知-k>0,即k<0,∴k-2<0.由正比例函数的性质可知,y=(k-2)x的函数值y随x的增大而减小,则由x1>x3>x2得y1<y3<y2.【归纳总结】正比例函数y=kx(k≠0)的函数值y随x的变化情况由k的符号决定.k>0时,y随x的增大而增大;k<0时,y随x的增大而减小.四、课堂练习,巩固提高1.教材P36练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知一般地,正比例函数的y=kx(k是常数,k≠0)的图象是一条经过原点和(1,k)的直线,我们称之为直线y=kx,当k>0时,直线y=kx经过第一、三象限且从左向右上升,即y随着x的增大而增大;当k<0时,直线y=kx经过第二、四象限且从左向右下降,即y随着x 的增大而减小.六、布置作业请同学们完成《探究在线·高效课堂》“课时作业”内容.第2课时一次函数的图象与性质1.理解直线y=kx+b与y=kx直线之间的位置关系.2.会选择两个合适的点画出一次函数的图象.3.掌握一次函数的性质.重点一次函数的图象和性质.难点由一次函数的图象归纳得出一次函数的性质及对性质的理解.一、创设情境,导入新课[活动1]问题1.什么叫正比例函数、一次函数?它们之间有什么联系?2.正比例函数图象形状是什么样的?3.正比例函数y =kx (k 是常数,k ≠0)中,k 的正、负对函数的图象有什么影响? 教师展示问题后,学生口答,师生共评,纠正问题.教师应重点注意:(1)学生参与活动的意识及勇气;(2)能否理解直线变化趋势(形)与函数的性质(数)之间的对应关系.二、合作交流,探究新知问题1.画图:用描点法在同一坐标系中画出函数y =-6x ,y =-6x +5的图象;2.观察:比较上面两个函数图象的相同点和不同点,根据你的观察结果回答下列问题:(1)这两个函数图象的形状都是________,并且倾斜程度都________,它们的位置________;(2)函数y =-6x 的图象经过原点,函数y =-6x +5的图象与y 轴交于点________,即可以看作由直线y =-6x 向________平移________个单位长度而得到;(3)比较两个函数的解析式,试由此解释两个函数图象的位置关系.3.拓展延伸:(1)所有一次函数的图象都是直线吗?(2)直线y =kx 与直线y =kx +b 之间存在着怎样的位置关系?(3)由直线y =kx 可经过怎样的平移得到直线y =kx +b?学生对应描点、画图,并通过观察、比较两个函数图象后,对问题进行推广.教师对学生的观察、推广等结果进行适时的评价,在此基础上,师生共同得出:(1)一次函数的图象y =kx +b 也是一条直线,我们称它为直线y =kx +b ;(2)直线y =kx 与直线y =kx +b 互相平行;(3)直线y =kx +b 可以由直线y =kx 平移|b |个单位而得到.教师应重点注意:(1)学生在描点的过程中,是否注意到了几组对应点的位置变化规律;(2)学生能否通过解析式对“平移”作出解释;(3)为什么说平移|b |个单位,而不说b 个单位.在同一坐标系中画出函数y =2x -1与y =-0.5x +1的图象.学生独立用两个点画出函数的图象,同桌交流;体验选点的差异性和图象的一致性. 教师应指出:虽然同学们所选的点不一样,但画出的图象却是一致的,通常选取点(0,b ),(-b k,0)这两个点,教师应注意引导选择合适的点. 1.探究:在同一坐标系中画出函数y =x +1,y =-x +1,y =2x +1,y =-2x +1的图象.2.观察上面四个函数的图象,类比正比例函数y =kx 的图象中的k 的正、负对函数图象有什么影响,探究一次函数y =kx +b 中的k 的正、负对函数图象有什么影响,并在此基础上表述一次函数的性质.【归纳总结】(1)当k >0时直线从左向右上升,即y 随x 的增大而增大;当k <0时直线从左向右下降,即y 随x 的增大而减小.应重点指导:(1)观察、类比新知的方法;(2)一次函数的性质与k 有关;(3)从“数”和“形”两个方面去理解和掌握一次函数的性质.做一做1.练习:教材P39练习.2.课外思考:根据已做的题目,归纳y =kx +b (k ≠0)中b 对函数的影响.学生独立板演,老师巡视,了解学生对知识掌握的情况.对学生练习中出现的情况,有针对性地讲解,了解学生是否通过数形结合解决问题.三、运用新知,深化理解例1 已知一次函数y =(6+3m )x +(n -4).(1)m 为何值时,y 随x 的增大而减小?(2)m 、n 为何值时,函数图象与y 轴的交点在x 轴的下方?(3)m 、n 为何值时,函数图象过原点?分析:(1)因为k <0时,y 随x 的增大而减小,故6+3m <0;(2)要使此函数图象与y 轴的交点在x 轴的下方,必有6+3m ≠0,同时n -4<0;(3)函数图象过原点是正比例函数的特征,即6+3m ≠0且n -4=0.解:(1)依题意,得6+3m <0,即m <-2.故当m <-2时,y 随x 的增大而减小;(2)依题意,得⎩⎪⎨⎪⎧6+3m ≠0,n -4<0.解得n <4且m ≠-2.故当m ≠-2且n <4时,函数图象与y 轴的交点在x 轴的下方;(3)依题意,得⎩⎪⎨⎪⎧6+3m ≠0,n -4=0.解得n =4且m ≠-2.故当m ≠-2且n =4时,函数图象过原点.【归纳总结】一次函数y =kx +b (k ≠0)中,k 的符号决定直线上升或下降,b 的符号决定直线与y 轴的交点位置,在考虑b 的值时,同时要考虑k ≠0这一隐含条件,在利用一次函数的性质解决问题时,常常结合方程和不等式求解.例2 两个一次函数y 1=ax +b 与y 2=bx +a ,它们在同一坐标系中的图象可能是( )A B CD分析:解此类题应根据k ,b 的符号从而确定y =kx +b 图象的位置或根据图象确定k ,b 的符号.A 选项中,由y 1的图象知a >0,b <0,则y 2的图象应过第一、二、四象限,故A 错,C 对;B 选项中,由y 1的图象知a >0,b >0,则y 2的图象应过第一、二、三象限,故B 错;D 选项中,由y 1的图象知a <0,b >0,则y 2的图象应过第一、三、四象限,故D 错.【归纳总结】对于两种不同函数的图象共存同一坐标系问题,一般常假设某一图象正确,然后根据相同字母系数的符号的不变性,来判定另一图象是否正确,进而解决问题.四、课堂练习,巩固提高1.教材P38练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知一次函数的图象和性质⎩⎪⎪⎨⎪⎪⎧图象:一条直线,我们称它为直线y =kx +b ,它可以看作由直线y =kx 平移|b |个单位长度得到(当b >0时,向上平移;当b <0时,向下平移).性质:⎩⎪⎨⎪⎧当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小;当b >0时,直线与y 轴交于正半轴;当b <0时,直线与y 轴交于负半轴.六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P47习题12.2第1~6,13题.第3课时 用待定系数法求一次函数的表达式1.学会用待定系数法确定一次函数解析式.2.了解两个条件确定一个一次函数;一个条件确定一个正比例函数.重点待定系数法确定一次函数解析式.难点灵活运用有关知识解决相关问题.一、创设情境,导入新课1.复习:画出函数y =3x ,y =3x -1的图象.2.反思:你在作这两个函数图象时,分别描了几个点?你为何选取这几个点?可以有不同取法吗?3.引入新课:在上节课中我们学习了在给定一次函数表达式的前提下,可以说出它的图象特征及有关性质;反之,如果给你信息,你能否求出函数的表达式呢?这将是本节课我们要研究的问题.二、合作交流,探究新知(1)求下图中直线的函数表达式.(2)分析与思考:(1)题是经过原点的一条直线,因此是正比例函数,可设它的表达式为y =kx ,将点(1,2)代入表达式得2=k ,从而确定该函数的表达式为y =2x .(2)设直线的表达式是y =kx +b ,因为此直线经过点(0,3),(2,0),因此将这两个点的坐标代入,可得关于k 、b 方程组,从而确定了k 、b 的值,确定了表达式.(写出解答过程)(3)反思小结:确定正比例函数的表达式需要1个条件,而确定一次函数的表达式需要2个条件.像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法.师生整理归纳.教师引导学生总结出:数学的基本思想方法:数形结合.三、运用新知,深化理解例1 如图所示,一次函数的图象过点A ,且与正比例函数y =-x 的图象交于点B ,则该一次函数的表达式为( )A .y =-x +2B .y =x +2C .y =x -2D .y =-x -2分析:由正比例函数y =-x 可知,当x =-1时,y =1,∴点B 的坐标为(-1,1).设一次函数的表达式为y =kx +b ,把点B (-1,1),A (0,2)的坐标代入所设函数表达式,得⎩⎪⎨⎪⎧-k +b =1,b =2,解得⎩⎪⎨⎪⎧k =1,b =2.∴y =x +2. 【归纳总结】(1)利用待定系数法求一次函数的表达式时一定要有两个独立的条件,如两个点的坐标,或x 与y 的两对对应值等;(2)注意通过读图获取有用的信息,如本题中,A 点的纵坐标为2,即函数图象的截距为2,B 点的横坐标为-1,由B 点在直线y =-x 上可得其纵坐标.例2 如图,一次函数y =kx +b 的图象与正比例函数y =2x 的图象平行且经过点A (1,-2),则kb =______.分析:∵直线y =2x 与直线y =kx +b 平行,∴k =2.∵直线y =kx +b 过点(1,-2),∴2+b =-2.∴b =-4.∴kb =2×(-4)=-8.【归纳总结】两直线y =k 1x +b 与y =k 2x +b 平行,则k 1=k 2.先由两直线平行求得k ,再把点(1,-2)代入y =kx +b 求解可得b 的值.补充练习:(1)若一次函数y =3x -b 的图象经过点P (1,-1),则该函数图象必经过点( )A .(-1,1)B .(2,2)C .(-2,2)D .(2,-2)(2)若直线y =kx +b 平行于直线y =-3x +2,且在y 轴上的截距为-5,则k =______,b =______.(3)小明根据某个一次函数关系式填写了下表:其中有一格不慎被墨汁遮住了,想想看,该空格里原来填的数是多少?解释你的理由.四、课堂练习,巩固提高1.教材P40练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知用待定系数法求一次函数解析式⎩⎪⎨⎪⎧①设出含有待定系数的函数解析式;②把已知条件(自变量与函数的对应值)代入解析式得到关于待定系数的方程(组);③解方程(组),求出待定系数;④将求出的待定系数的值代回所设的解析式即可得出函数解析式. 六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P47~48习题12.2第7~12题.第4课时 一次函数的应用1.理解分段函数的特点,会根据题意求出分段函数的解析式并画出函数图象;能深入了解一次函数的应用价值.2.在多变量的问题的解决中,能合理选择某个变量作为自变量,然后根据问题条件寻求可以反映实际问题的函数.重点对分段函数图象的理解.难点能将具体的实际问题转化为数学问题,利用数学模型解决实际问题.一、创设情境,导入新课小明从家里出发去菜地浇水,又去玉米地锄草,然后回家,其中x 表示时间,y 表示小明离他家的距离.该图表示的函数是正比例函数吗?是一次函数吗?你是怎样认为的?二、合作交流,探究新知探究点一:对分段函数图象的理解例1 某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车的距离y (千米)与货车行驶的时间x (小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B 的坐标为(334,75);④快递车从乙地返回时的速度为90千米/时.以上4个结论中正确的是________.分析:根据题意可判断图中OA 为快递车从甲地行驶到乙地过程中两车的间距,AB 为快递车在甲地卸货时两车的间距,BC 为快递车返回甲地直至两车相遇过程两车的间距.通过分析找出各个阶段量的关系,可求出正确结论.①A 点为快递车到达乙地的时刻,快递车从甲地到乙地共用3小时,两车速度差为120÷3=40(千米/时),已知货车速度为60千米/时,则快递车速度为100千米/时,①正确;②甲、乙两地的距离为100×3=300(千米),②错误;③B 点为快递车卸货结束的时刻,快递车卸货45分钟,因此B 点横坐标为334,此时货车行驶距离为60×334=225(千米),300-225=75(千米),所以B 点纵坐标为75,则点B 的坐标为(334,75),③正确;④BC 段所用时间为414-334=12(小时),在B 点时两车相距75千米,相遇时货车行驶距离为60×12=30(千米),快递车行驶距离为75-30=45(千米),故此段快递车的速度为45÷12=90(千米/时),④正确. 【归纳总结】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论,读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程.探究点二 实际问题中的方案选择例2 电信局为满足不同客户的需要,设有A 、B 两种优惠方案,这两种方案应付话费(元)与通话时间(分钟)之间的关系如图(MN ∥CD ),若通话时间为500分钟,则应选择哪种方案更优惠( )A.方案A B.方案BC.两种方案一样优惠 D.不能确定分析:由图可知,通话时间为500分钟时,方案A的费用是230元,方案B的费用是168元,∵230>168,∴选择方案B更优惠.【归纳总结】根据图象可知通话500分钟两种方案的通话费用,选择费用少的一种方案即可.三、运用新知,深化理解例3 某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A,B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价均为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A和y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.分析:(1)可根据题意,直接写出y A和y B与x之间的关系式;第(2)题在第(1)题的基础上,分类讨论,得到对应的自变量的取值范围;第(3)题须在第(2)题的基础上再次分类讨论,特别需要提醒的是,这里不再限制“只在一家超市购买”,所以,要考虑到B超市免费送羽毛球的情况,经过计算、比较,得到结果.解:(1)y A=27x+270,y B=30x+240;(2)当y A=y B时,27x+270=30x+240,解得x=10;当y A>y B时,27x+270>30x+240,解得x<10;当y A<y B时,27x+270<30x+240,解得x>10.∴当2≤x<10时,到B超市购买划算;当x=10时,两家超市都一样;当x>10时,到A超市购买划算;(3)∵x=15>10,∴①选择在A超市购买,y A=27×15+270=675(元);②可先在B超市购买10副羽毛球拍,送20个羽毛球,后在A超市购买剩下的羽毛球(10×15-20=130)个,则共需费用:10×30+130×3×0.9=651(元).∵651<675,∴最省钱的购买方案是:先在B超市购买10副羽毛球拍,后在A超市购买130个羽毛球.【归纳总结】解答函数的应用题,必须读懂题意,注意题干条件与各个问题的条件之间的关系.题干中的条件适用于每一个小题,但是,各个小题的条件并不互相影响;要针对各个小题的条件,结合所问问题做不同的分类讨论.四、课堂练习,巩固提高1.教材P42及P44练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知1.分段函数⎩⎪⎨⎪⎧对分段函数图象的理解分段函数的具体应用 2.利用一次 函数进行 方案决策⎩⎪⎨⎪⎧①从数学的角度分析数学问题,建立函数, 模型;②列出不等式(方程),求出自变量在取不同值时所对应的函数值,判断大小关系;③结合实际需求,选择最佳方案.六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P48习题12.2第15~16题.第5课时 一次函数与一元一次方程、一元一次不等式(组)1.理解一次函数与一元一次方程的关系以及一元一次不等式与一次函数问题的转化关系.2.会根据一次函数的图象解决一元一次方程及不等式的求解问题.3.进一步理解数形结合思想,提高问题间互相转化的能力.重点一次函数与一元一次方程关系的理解以及一元一次不等式与一次函数的转化关系及本质联系的理解.难点对一次函数与一元一次方程关系的理解以及用图象法求解不等式中自变量取值范围的确定.一、创设情境,导入新课[活动1]问题1.解方程2x+20=0.2.在坐标系中画出一次函数y=2x+20的图象.思考:直线y=2x+20与x轴交点的横坐标是方程2x+20=0的解吗?为什么?这两个问题是同一个问题吗?学生独立思考问题1,2,并完成画图,相互交流观察与思考的结果.教师巡视,对学生出现的问题给予帮助.师生共同归纳:(1)在问题1中,解方程0=2x+20,得x=-10.(2)解问题2就是要考虑当函数y=2x+20的值为0时,所对应的自变量x为何值,这可以通过解方程2x+20=0,得x=-10.因此这两个问题实际上是同一个问题.即这两个问题是同一个问题的两种不同的表达方式.(3)从“数”的角度看,方程2x+20=0的解是x=-10;从“形”的角度去看,直线y =2x+20与x轴交点的坐标是(-10,0),这也说明,方程2x+20=0的解是x=-10.在此活动中,教师应关注:(1)学生能否通过问题1,2体会一次函数与一元一次方程在数与形两个方面的关系.(2)学生独立思考.[活动2]问题1.解不等式5x+6>3x+10.思考:不等式5x+6>3x+10可以转化为ax+b>0的形式吗?所有的不等式是否都能转化为这种形式呢?2.当自变量x为何值时,函数y=2x-4的值大于0?思考:以上两个问题是同一个问题吗?3.问题2能用一次函数图象说明吗?引导学生解不等式后再思考问题.师生共同归纳:(1)在问题1中,不等式5x+6>3x+10可以转化为2x-4>0,解这个不等式得x>2.(2)思考问题的答案是肯定的.(3)解问题2就是要解不等式2x-4>0,得出x>2时,函数y=2x-4的值大于0.因此这两个问题实际上是同一个问题.教师导入新课:是不是所有的一元一次不等式都可转化为一次函数的相关问题呢?它在函数图象上的表现是什么?如何通过函数图象来解一元一次不等式?解不等式,讨论归纳.画图尝试.二、合作交流,探究新知探究一方程ax+b=0(a,b为常数)与“求自变量x为何值时,一次函数y=ax+b的值为0”有什么关系?教师引导学生从特殊事例中寻求一般规律,进而总结出一次函数与一元一次方程的内在联系,从思想上真正理解函数与方程的关系.学生在教师引导下,通过自主合作,分析思考,找出这两个具体问题中的一般规律,从而经过讨论,归纳概括出较完整的关系,还要从思想上正确理解函数与方程关系的目的.学生认真思考、积极讨论,并展示自己的结论.师生共同归纳:由于任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一。
沪科版八年级数学上册教课设计:一次函数 312.2一次函数3教课目的.掌握一次函数y=kx+b(k≠0)的性质..能依据k与b的值说出函数的相关性质.教课要点一次函数中k与b的值对函数性质的影响;联合图象领会一次函数k、b的取值和直线地点的关系,提升数形联合能力.教课难点一次函数k、b的取值和直线地点的关系,数形联合能力教课过程一、研究察看前面一次函数的图象,能够发现规律:当k>0时,直线y=kx+b由左至左上涨,当k<0时,直线y=kx+b由左至右降落,由此填出:一次函数y=kx+b(k,b是常数,k≠0),拥有以下性质:当k>0时,y随x的增大而;当k<0时,y随x的增大而。
下边,我们把一次函数中k与b的正、负与它的图象经过的象限概括列表为:1/3沪科版八年级数学上册教课设计:一次函数 3三.例题与练习例1一次函数=(2-1)++5,当是什么数时,函数值随的增大而减小?m m剖析一次函数x+(≠0),假定<0,那么的增大而减小.k解由于一次函数=(2-1)++5,函数值的增大而减小.m因此,2m-1<0,即m.例2一次函数=(1-2)+-1,假定函数随的增大而减小,而且函数的图象经过二、mx m三、四象限,求m的取值范围.剖析一次函数y=kx+b(k≠0),假定函数y随x的增大而减小,那么k<0,假定函数的图象经过二、三、四象限,那么k<0,b<0.解由题意得:12m0 m1,解得,1m12例3一次函数y=(3m-8)x+1-m图象与y轴交点在x轴下方,且y随x的增大而减小,此中m为整数.求m的值;(2)当x取何值时,0<y<4?剖析一次函数y=kx+b(k≠0)与y轴的交点坐标是(0,b),而交点在 x轴下方,那么b<0,而y随x的增大而减小,那么k<0.解:由学生达成。
四.课时小结1.(1)当k>0时,y随x的增大而增大,这时函数的图象从左到右上涨;(2)当k<0时,y随x的增大而减小,这时函数的图象从左到右降落.当b>0,直线与y轴交于正半轴;当b<0时,直线与y轴交于负半轴;当b=0时,直线与y轴交于坐标原点.2.k>0,b>0时,直线经过一、二、三象限;k>0,b<0时,直线经过一、三、四象限;k<0,b>0时,直线经过一、二、四象限;<0,<0时,直线经过二、三、四象限.b五.作业六.教后反省:2/3沪科版八年级数学上册教课设计:一次函数33/3。
沪科版八年级上册教案122一次函数12.2一次函数第一教时教学目标1、理解一次函数的概念,并能根据实际上问题列出简单的一次函数的表达式2、理解一次函数的图象是一条直线,熟练地作出一次函数的图象教学重点、难点1、重点:一次函数的概念,及一次函数的图象2、难点:实际问题中一次函数解析式的确定。
教学过程在上节,遇到过这样一些函数:h=30t+1800; Q=-25t+300; y=2x; y=-2x; s=80t.这些函数有什么共同特点?不难看出,这些函数都是用自变的量的一次式表示的.可以写成:y=kx+b的形式.一般地,如果有:y=kx+b(k,b为常数,且k≠),那么,y 叫做x的一次函数.其中,当b=0时,一次函数y=kx+b就成为y=kx(k≠).如上面的y=2x、y=-2x、s=80t,这些函数中两个变量间的关系,就是小学学过的正比例关系.因此,y=kx(k≠)中y叫做x的正比例函数.可见,正比例函数是一次函数的特殊景遇.下面,来研讨一次函数的图像与性质.前面画过函数y=2x、y=-2x及另外一些正比例函数的图象,可见正比例函数y=kx(k≠)的图象是一条直线,通常我们把正比例函数y=kx(k≠)的图象叫做直线y=kx.因为两点确定一条直线,所以画正比例函数的图象,只要先描出两点,再过这两点画直线,就可以了.例1在同一坐标系里,画下列函数的图像:解列表:(为便于比较,三个函数值计算表排在一起)xy=xy=3x…………113…………过两点(,),(1,1)画直线,得y=x的图象;过两点(,),(1,3)画直线,得y=3x的图象;学生练课本P35,第1、2布置作业1、课本P43-44题中,第1、3题2、《基训》教学后记:第二教时教学目标1、理解正比例函数的观点及其图像是一条直线2、闇练地作出一次函数和正比例函数的图像,掌握k与b的取值对直线位置的影响。
讲授重点、难点1、重点:理解一次函数与正比例函数图像间的位置干系2、难点:理解一次函数与正比例图象间的位置关系讲授过程正比例函数y=kx(k≠0)的图象是一条直线.对于一次函数y=kx+b,当b≠时,它的图象又是什么呢?下面我们用具体例子来说明.例2画一次函数y=2x+3的图像.解为了便于对比,列出一次函数y=2x+3与正比例函数y=2x的x与y的对应值表:xy=2xy=2x+3………-2-4-4+3-1-2-2+30+3122+3244+3………从表中可以看出,对于自变量x的同一个值,一次函数y=2x+3的函数值要比函数y=2x的函数值大3个单位.也就是说,对于相同的横坐标,一次函数y=2x+3的图象上点的纵坐标要比正比例函数y=2x图象上点的纵坐标大3.因此,把直线y=2x向上平移3个单位,就得到一次函数y=2x+3的图象.由此可见,一次函数y=2x+3的图象是平行于直线y=2x的一条直线,如图13-12.在图13-12中,把直线y=2x向下平移3个单位,这时∣直线应是什么函数的图象?一般地,一次函数y=kx+b的图象是平行于直线y=kx的一条直线,因此,我们以后把一次函数y=kx+b的图象叫做直线y=kx+b.直线y=kx+b与y轴订交于点(,b),b叫做直线y=kx+b在y轴上的截距,简称截距.直线y=kx+b可以看做是由直线y=kx平移∣b∣个单位长度而获得(当b>时,向上平移;当b<时,向下平移).xy-231、画出函数y=2x、y=-2x的图象2、把上述两个函数图像划分与y=2x+3、y=-2x-2的图角比力,它们之间有如何的联系?直线y=kx+b可以看做是由直线y=kx平移|b|个单位长度而获得(当b>时,向上平移;当b <时,向下平移)学生练:课本P36,第1、2、3小结:1、正比例函数也是一次函数,它是一次函数的特例2、两个一次函数,当k一样,b不一样时,共同之处是直线平行都是由直线y=kx(k≠)向上或向下XXX得到的。
沪科版数学八年级上册《一次函数的定义》教学设计1一. 教材分析《一次函数的定义》是沪科版数学八年级上册的教学内容。
本节课主要介绍了一次函数的定义、表达式及其性质。
通过本节课的学习,学生能够理解一次函数的概念,掌握一次函数的表达式,并了解一次函数的性质。
教材通过丰富的例题和练习题,帮助学生巩固一次函数的知识,并能够运用一次函数解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了初中阶段的相关知识,如代数基础、图形变换等。
他们对函数的概念有一定的了解,但可能对一次函数的定义和性质还不够清晰。
学生的学习兴趣较高,参与度较好,但部分学生可能对抽象的数学概念理解起来较为困难。
三. 教学目标1.知识与技能:学生能够理解一次函数的定义,掌握一次函数的表达式,了解一次函数的性质。
2.过程与方法:学生能够通过观察、分析和归纳,探索一次函数的性质,培养逻辑思维能力。
3.情感态度与价值观:学生能够认识到数学在生活中的应用,提高对数学的兴趣和自信心。
四. 教学重难点1.一次函数的定义及其表达式。
2.一次函数的性质的理解和运用。
五. 教学方法1.情境教学法:通过生活实例引入一次函数的概念,激发学生的学习兴趣。
2.问题驱动法:通过提问引导学生思考,激发学生的探究欲望。
3.合作学习法:学生分组讨论,培养学生的团队协作能力。
4.反馈评价法:教师及时给予学生反馈,提高学生的学习效果。
六. 教学准备1.教学PPT:制作生动有趣的教学PPT,展示一次函数的相关知识点。
2.例题和练习题:准备相关的一次函数的例题和练习题,巩固学生的知识。
3.教学工具:准备黑板、粉笔等教学工具,方便板书和讲解。
七. 教学过程1.导入(5分钟)利用生活实例引入一次函数的概念,激发学生的学习兴趣。
例如,可以以交通工具的速度和时间为例,引导学生思考速度和时间之间的关系。
2.呈现(15分钟)教师通过PPT展示一次函数的定义和表达式,让学生初步了解一次函数的概念。
八年级数学上册第13章一次函数 13.2 一次函数名师教案2 沪科版教学目标1.掌握一次函数y=kx+b(k≠0)的性质.2.能根据k与b的值说出函数的有关性质.教学重点1.一次函数中k与b的值对函数性质的影响;2.结合图象体会一次函数k、b的取值和直线位置的关系,提高数形结合能力.教学难点一次函数k、b的取值和直线位置的关系,数形结合能力教学过程一、探究观察前面一次函数的图象,可以发现规律:当k>0时,直线y=kx+b由左至左上升,当k<0时,直线y=kx+b由左至右下降,由此填出:一次函数y=kx+b(k,b是常数,k≠0),具有如下性质:当k>0时,y随x的增大而;当k<0时,y随x的增大而。
下面,我们把一次函数中k与b的正、负与它的图象经过的象限归纳列表为:三.例题与练习例1 已知一次函数y =(2m -1)x +m +5,当m 是什么数时,函数值y 随x 的增大而减小? 分析 一次函数y =kx +b (k ≠0),若k <0,则y 随x 的增大而减小.解 因为一次函数y =(2m -1)x +m +5,函数值y 随x 的增大而减小.所以,2m -1<0,即21<m . 例2 已知一次函数y =(1-2m )x +m -1,若函数y 随x 的增大而减小,并且函数的图象经过二、三、四象限,求m 的取值范围.分析 一次函数y =kx +b (k ≠0),若函数y 随x 的增大而减小,则k <0,若函数的图象经过二、三、四象限,则k <0,b <0.解 由题意得:⎩⎨⎧<-<-01021m m , 解得,121<<m 例3 已知一次函数y =(3m -8)x +1-m 图象与y 轴交点在x 轴下方,且y 随x 的增大而减小,其中m 为整数.(1)求m 的值;(2)当x 取何值时,0<y <4?分析 一次函数y =kx +b (k ≠0)与y 轴的交点坐标是(0,b ),而交点在x 轴下方,则b <0,而y 随x 的增大而减小,则k <0.解 :由学生完成。
沪科版数学八年级上12.2一次函数的简单应用教学设计蓝鲸是现存动物中体形最大的一种,体长的最高纪录是3200cm,根据生物学家对成熟雄性鲸体长的测量,其全长和吻尖到喷水孔的长度可近似地用一次函数表示。
例1.生物学家测得7条成熟的雄性鲸的全长y和吻尖到喷水孔的长度x的数据如下表(单位:米):问:能否用一次函数刻画这两个变量x与y的关系?如果能,请求出这个函数的解析式。
解:建立直角坐标系,画出以表中的x值为横坐标,y的值为纵坐标的7个点。
设函数为y=kx+b把点(1.91,10.25),(2.59,12.50)代入y=kx+b 得10.25=1.91k+b12.50=2.59k+b解得k ≈3.31b≈3.93所以所求的函数解析式为:Y=3.31 x+3.93数与温度变化情况对照表:(1)根据表中数据确定该一次函数的关系式;(2)如果蟋蟀1分钟叫了63次,那么该地当时的温度大约为多少摄氏度?(1)设蟋蟀1分钟叫的次数为x次,当地温度为y摄氏度,一次函数关系式为y=kx+b,由题意,得15=84k+b17=98k+b解得k=,b=3∴y=x+3;(2)当x=63时,y=x+3=12答:蟋蟀1分钟叫了63次,该地当时温度为12摄氏度.1.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是_____分钟先算出平路、上坡路和下坡路的速度分别为、和(千米/分),所以他从单位到家门口需要的时间是2÷+1÷+1÷=15(分钟).故答案为:15.2.弹簧秤上挂上物体后会伸长,测得一弹簧的长度y(cm) 与所挂物体的质量x(kg)有如下关系:把表格中的点在坐标系中描出来.问:(1)能否用一次函数刻画这两个变量y与x的关系?如果能,请求出这个函数的解析式。
12.2一次函数第1课时一次函数(一)教学目标【知识与技能】认识正比例函数,掌握正比例函数解析式的特点.【过程与方法】经历用图象法表示正比例函数的过程,利用数形结合思想分析问题.【情感、态度与价值观】1.通过让学生用图象法表示正比例函数使学生参与到探究正比例函数的过程中来,激发学生学习数学的积极性.2.将函数用图象表示出来使函数显得更为生动形象,使学生易于接受.重点难点【重点】正比例函数的解析式特点,正比例函数的图象表示法.【难点】由正比例函数的图象归纳其性质.教学过程一、创设情境,导入新知教师多媒体出示:s=50t;h=50t+500;Q=-25t+300;y=2x.师:观察这些函数,你能发现它们的共同点吗?生:能.它们的自变量的最高次数都是1.师:很好!不难看出,这些函数都是用自变量的一次式表示的,可以写成y=kx+b的形式.因为它们有这一共同特征,我们把它们归为一类.教师多媒体出示并口述:一般地,形如y=kx+b(k、b是常数,k≠0)的函数,叫做一次函数,其中k叫做比例系数,b叫做常数.当b=0时,它会是怎样的呢?生:当b=0时,它化简成了y=kx.师:对.我们把有这一特征的函数也归为一类.一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数.二、边讲边练,共同探究师:请同学们根据刚才介绍的一次函数及正比例函数的形式来判断一下下列函数,哪些是一次函数?哪些是正比例函数?(1)y=-4x;(2)y=;(3)y=4x+8;(4)y=3x2-1;(5)y=-.学生讨论后回答,集体纠正.师:我们现在已经知道了正比例函数的解析式的特点,那么它的图象又有什么特点呢?在前面我们画了y=2x、s=-3t的图象,它们有什么共同点?生:它们都是一条直线.师:对.通常我们把正比例函数y=kx(k≠0)的图象叫做直线y=kx.教师多媒体出示:y=x,y=x,y=3x.师:请大家在同一直角坐标系中画出下列正比例函数的图象.我们知道两点确定一条直线,所以要画y=kx的图象,找出两个点即可.在y=kx中,无论k取何值,x=0时y都为0,所以正比例函数的图象是一条经过原点的直线.我们再找一个容易计算的x的值,比如取x=1,求出相应的y的值.教师找三名学生板演,其余同学在下面做,然后集体纠正得到:三、继续探究,层层推进师:它们除了都是正比例函数外,k都是大于0的.它们的图象除了是经过原点的直线外,还有什么共同点?生:它们都经过一、三象限.师:除此之外,随着x值的增大,y的值是怎样变化的?学生观察后回答:增大.师:很好!它们还有没有其他的共同之处?学生继续观察,发现另一共同点:它们都是自左向右上升的.教师多媒体出示:y=-x,y=-x,y=-3x.师:你们再画出这几个函数的图象,看看它们有什么共同点.学生作图后回答.生甲:它们都是过原点的一条直线.生乙:它们都经过二、四象限.生丙:y的值随着x的增大而减小.生丁:它们都是自左向右下降的.师:同学们回答得很好!我们由这两个例子得到如下结论:在正比例函数y=kx中,当k>0时,y随x的增大而增大,图象经过一、三象限;当k<0时,y随x的增大而减小,图象经过二、四象限.师:那么大家将前面的三个图象结合起来,看|k|的大小对y=kx的图象有什么影响?生:|k|越大,图象越接近y轴;|k|越小,图象越接近x轴.师:很好,大家观察得很仔细.我们现在来探究正比例函数的平移问题.教师多媒体出示:(1)将直线y=3x向下平移2个单位,得到直线.(2)将直线y=-x-5向上平移5个单位,得到直线.学生讨论.教师找两名学生回答.生甲:y=3x-2.生乙:y=-x.四、课堂小结师:今天我们学习了哪些内容?生甲:学习了一次函数和正比例函数的概念.生乙:学习了正比例函数的性质.师:很好,你能说说什么样的函数是一次函数、什么样的函数是正比例函数吗?学生回答.师:正比例函数有哪些性质呢?教师找一名学生回答,让另一名学生补充,最后教师完善.教学反思本节课我给出几个例子,让学生自己去观察它们的共同点,即正比例函数的特征,锻炼他们观察、总结的能力和意识.我让学生自己动手作图,学生通过观察、分析图象来发现正比例函数的性质,增强了参与感和学习的热情,提高了类比、归纳和概括能力.在课程标准规定的几种具体函数中,一次函数是最基本的,教材中对一次函数的讨论出比较全面.正比例函数是一次函数的最简单的形式.通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地掌握二次函数、反比例函数的学习方法.教学完后,对新教材有了一些更深的认识.第2课时一次函数(二)教学目标【知识与技能】1.认识一次函数,掌握一次函数解析式的特点及系数的取值范围.2.知道一次函数和正比例函数的联系和区别.3.会画一次函数的图象.4.理解并掌握一次函数的性质.【过程与方法】1.经历绘制一次函数图象的过程,类比对正比例函数的探究过程来研究一次函数的性质.2.用数形结合的方法分析问题.【情感、态度与价值观】1.通过让学生类比对正比例函数性质的探究,画出一次函数,归纳出一次函数的性质,提高他们的类比、概括能力.2.通过让学生积极思考、讨论来活跃课堂气氛,激发学生学习数学的兴趣,形成合作交流意识.重点难点【重点】一次函数的解析式和画法,一次函数解析式与图象的联系.【难点】一次函数的解析式与图象的联系.教学过程一、创设情境,导入新知师:我们上节课学习了一次函数的定义,你们还记得吗?生:记得.一般地,形如y=kx+b(k、b是常数,k≠0)的函数,叫做一次函数.师:同学们回答得很好.教师多媒体出示:已知气温随海拔高度的升高而变化,海拔每升高1km,气温下降6℃,若某地海平面的温度是15℃,设海拔高度为xkm位置的气温为y℃,求y与x之间的关系.学生讨论后回答:y=15-6x,x≥0.你能求出海拔高度为2km个位置的气温吗?生:能.把x=2代入y=-6x+15,得y=-6×2+15=3,所以海拔高度为2km位置处的气温为3℃.师:对.上节课我们还学习了正比例函数,研究了它的解析式与它的图象的关系,这节课我们来看看一次函数的解析式和图象是否也有这种关系.二、合作探究,获取新知教师多媒体出示:请在同一坐标系中画出y=2x和y=2x+3的图象.学生填写.师:通过填表你发现这两个函数之间有什么关系吗?生:对于自变量x的同一个值,函数y=2x+3的值比函数y=2x的函数值大于3个单位.师:对.现在请同学们描点、连线,看它们的图象有什么关系?学生操作.生甲:它们的图象是平行线.生乙:它们之间的距离处处相等.生丙:它们的倾斜程度相同,把y=2x的图象向上平移三个单位就得到y=2x+3的图象.师:同学们观察得很认真.你们知道它们为什么会平行吗?学生讨论.师:你们再在这一直角坐标系中画出y=2x-1的图象,看看会是什么情况?学生操作后回答:这三个图象都是直线,且互相平行.师:它们的解析式有什么共同点呢?生:函数自变量x前面的系数相同.师:对.解析式y=kx+b中的k决定这条直线的倾斜程度,当两个一次函数的k值相同、b值不同时,它们的图象平行.那么b代表什么呢?当x=0时,y的值是多少?生:b.师:这说明了y=kx+b的图象经过(0,b)这一点,我们知道横坐标为零的点在y轴上,所以这个点是y=kx+b的图象与y轴的交点,我们把b叫做直线y=kx+b在y轴上的截距.现在我问大家一个问题,截距可以为0或负值吗?学生思考,讨论.生甲:不可以.生乙:可以.师:注意,截距不同于距离,截距可正可负,也可以为零.截距不同,图象与y轴的交点位置就不同.请大家指出以上三条直线的截距分别是多少?生甲:直线y=2x+3的截距是3.生乙:直线y=2x的截距是0.生丙:直线y=2x-1的截距是-1.师:大家回答得很好.三、层层推进师:我们知道了y=2x+3的图象可以由y=2x的图象向上平移3个单位得到,y=2x-1的图象也与y=2x的图象平行,是否也可以由它平移得到呢?学生思考后回答:可以.师:怎样平移呢?生:向下平移1个单位.师:对.所以直线y=kx+b可以看作是由直线y=kx平移|b|个单位长度而得到的,我们知道了平移的距离,平移的方向由什么确定呢?怎样确定呢?学生思考.教师提示:请同学们根据你作出的y=2x+3和y=2x-1的图象与y=2x的图象之间的关系来考虑.生:y=2x+3的图象是由y=2x的图象向上平移3个单位得到的.师:由此你能得到截距与y=kx+b的图象相对于y=kx的图象的平移方向之间有什么关系呢?生:当b>0时,图象向上平移b个单位.师:对.由y=2x-1的图象与y=2x的图象之间的关系,你能得到什么结论?生:当b<0时,图象向下平移-b个单位.师:很好.四、分析图象,探索性质师:我们在上节课正比例函数的学习中,由函数的解析式得到了它的哪些性质?生:当k>0时,y随x的增大而增大,图象经过一、三象限;当k<0时,y随x的增大而减小,图象经过二、四象限.师:对.一次函数是否也有这种性质呢?教师多媒体出示:请画出函数y=3x+1、y=-2x-3、y=x+4的图象.学生操作.师:一次函数的解析式y=kx+b(k、b是常数,k≠0)中,k的正负对图象会有什么影响呢?学生观察图象后回答,集体纠正,得到如下结论:当k>0时,y随x的增大而增大,图象是自左向右上升的,经过的象限中必有一、三象限;当k<0时,y随x的增大而减小,图象是自左向右下降的,经过的象限中必有二、四象限.师:b的正负对y=kx+b的图象有什么影响呢?学生观察分析图象后回答:当b>0时,图象与y轴的正半轴相交;当b<0时,图象与y轴的负半轴相交.师:很好.那么k、b的正负情况结合在一起,它们的正负与图象经过的象限有什么关系呢?教师在黑板上画出表格:师:我们知道了k、b的正负,就能知道直线y=kx+b经过的象限.同时也要能根据直线y=kx+b 经过的象限判断k、b的正负,它们是互相对应的.五、课堂小结师:本节课你们学到了什么内容?学生回答,教师补充完善.教学反思在本节课中,利用两个函数y=2x和y=2x+3的图象,让学生观察k值对函数图象的影响.学生看不出,我就加入一个函数y=2x-1,让他们再观察,这三个图象是互相平行的直线,它们的函数中的k值相同,这样让学生通过观察、总结规律得到结论.在总结结论时,我把图象的上升、下降情况放在它所经过的象限之前,是因为k值的正负直接决定的是图象的变化趋势,而不是经过的象限,由变化趋势我们能得到它经过哪几个象限.本节课中直线y=kx+b(b≠0)经过的象限也可由直线y=kx经过的象限和b的正负,将直线y=kx向上或向下平移得到.第3课时一次函数(三)教学目标【知识与技能】学会用待定系数法确定一次函数的解析式;用数形结合、看图找信息的方法求一次函数的解析式.【过程与方法】经历用待定系数法求解问题的过程,提高解决问题的能力;体验数形结合的思想,运用看图读信息的方法来解决问题.【情感、态度与价值观】通过让学生经历先设出未知数,根据题意列出方程再求解的过程,带领学生学习待定系数法,激发学生探索、总结数学方法的兴趣.重点难点【重点】用待定系数法求一次函数的解析式.【难点】结合图象求解析式.教学过程一、创设情境,导入新知师:我们在前面学习了一次函数的解析式的形式,有了解析式我们可以画出一次函数的图象,可以知道它的一些性质.如果已知函数的图象或者仅仅知道函数图象上的两点,怎么求出这个函数的解析式呢?二、共同探究,获取新知教师多媒体出示:【例1】已知一个一次函数,当自变量x=4时,函数值y=5;当x=5时,y=2.写出这个函数的解析式.学生讨论.师:一次函数的形式是什么?生:y=kx+b(k、b是常数,k≠0).师:现在我们先把这个函数的解析式设出来,再求出里面的k和b,怎么求k和b呢?将直线上的两点,也就是题中给出的两个条件代入,看能得到什么?生:师:这是一个二元一次方程组.你们还记得怎么解吗?生:记得.教师找一名学生板演,其余同学在下面做,最后得到:k=-3,b=17.师:把它们代入所设的式子就得到这个函数的解析式为y=-3x+17.像这样,先设出关系式,根据条件列出方程,求解方程或方程组,解出关系式中的未知数的方法叫做待定系数法.【例2】已知有两个人分别骑自行车和摩托车沿着相同的路线从甲地到乙地去,如图反映的是这两个人行驶过程中的时间和路程的关系,请根据图象回答下列问题:(1)甲地与乙地相距多少千米?两个人分别用了几小时才到达乙地?谁先到达乙地?早到多长时间?(2)分别描述在这个过程中自行车和摩托车的行驶状态.(3)求摩托车行驶的平均速度.师:请同学们思考这几个问题.思路点拔:两人行驶的路程s是时间t的函数,从图象可以看出骑自行车的先出发而后到达乙地,行驶的路程都是100千米.教师找学生回答,并集体订正.解:(1)甲地与乙地相距100千米,两个人分别用了2小时(骑摩托车)、6小时(骑自行车)到达乙地,骑摩托车的先到乙地,早到了1小时.(2)骑自行车的先匀速行驶了2小时,行驶40千米后休息了1小时,然后用3小时到达乙地.骑摩托车的在自行车出发3小时后出发,行驶2小时后到达乙地.(3)摩托车行驶的平均速度是50千米/时.三、练习新知教师多媒体出示:请同学们根据这个图象写出这条直线所代表的一次函数的解析式.学生讨论.教师提示:由图象我们能看出图象经过了哪两个点?生:(5,0)和(0,2)这两点.教师找一名学生板演,其余学生在下面做,然后集体订正.解:设这个一次函数的解析式为y=kx+2,因为函数图象经过(5,0)点,所以有5k+2=0,k=-.∴一次函数的解析式为y=-x+2.四、课堂小结师:这节课我们学习了什么内容?学生回答,教师补充完善.教学反思在看图读信息时,若截距b已知时,我们可以直接设成y=kx+b,其中的b就是截距,然后求出k 即可.这点提示让学生能对特殊情形找出简便方法,不拘泥于一种方法.本节课用师生共同探究的方法来唤起学生的参与意识,培养学生的合作能力和自主学习能力.在例题讲解中以问题串的形式让不同的学生都能有所收获,有所成功,这也充分体现了新课程教学面向全体学生,让不同的学生在学习上都能得到发展的目的.第4课时一次函数(四)教学目标【知识与技能】学会用待定系数法求一次函数的解析式来解决实际问题,建立实际问题的函数模型.【过程与方法】经历对实际问题建立数学模型的过程,体验待定系数法的作用和一次函数模型的价值.【情感、态度与价值观】1.通过让学生经历用一次函数来解决实际问题、建立实际问题的函数模型的过程,使他们感受到数学的用途和与生活的紧密联系.2.让学生参与到教学活动中,提高学习数学及运用数学的积极性.重点难点【重点】用一次函数知识来解决实际问题.【难点】建立实际问题的数学模型.教学过程一、创设情境,导入新知师:我们在上节课学习了待定系数法,大家还记得是怎么用的吗?生:设出解析式,然后把已知点的坐标代入,解方程或方程组,解得系数值,进而得到解析式.师:很好!我们这节课就用它来解决一些实际问题.二、共同探究,获取新知教师多媒体出示.【例】为节约用水,某城市制定以下用水收费标准:每户每月用水不超过8m3时,每立方米收取1元外加0.3元的污水处理费;超过8m3时,超过部分每立方米收取1.5元外加1.2元的污水处理费.设一户每月用水量为xm3,应缴水费y元.(1)给出y关于x的函数关系式.(2)画出上述函数图象.(3)该市一户某月若用水量为x=5m3或x=10m3时,求应缴水费.(4)该市一户某月缴水费26.6元,求该户这月用水量.师:你能写出y与x的函数关系式吗?学生讨论后回答.生:用水量超过8m3时与不超过8m3时计算方法是不同的,所以要分类讨论.当不超过8m3时,每立方米收费为(1+0.3)元;当超过8m3时,超过部分每立方米收费(1.5+1.2)元.教师提示:应分段表示,我们把这样的函数叫做分段函数,各个函数要注明取值范围.师:应该怎样分情况讨论呢?学生思考,讨论.师:用水量不超过8m3和超过8m3时的收费方法是不同的,但是应怎样分段呢?生:分为0≤x≤8和x>8两段.师:哪位同学能写出这两种情况下的函数解析式?学生举手.教师找一名学生板演,然后集体订正得到:y=师:很好!你们能画出它的图象吗?生:能.教师找一名学生板演,其余同学在下面画,最后讨论纠正得到:师:若一户某月的用水量为5m3,你怎样求他应该缴多少水费?生:因为5<8,所以把x=5代入第一个式子.师:对,你们求一下是多少?学生计算后回答.师:若一用户缴了26.6元的水费,你能算出这户人家的用水量吗?生:能.师:你是怎样计算的?生:因为26.6>1.3×8,所以用水量超过了8m3,把y=26.6代入第二个式子,求出x.师:对,现在请大家具体算一下.学生计算后回答.生:2.7x-11.2=26.6,解得x=14,即这户本月用水14m3.三、练习新知教师多媒体出示:小明步行离开家去上学,开始的速度是0.6m/s,10分钟后发现快迟到了,加快了速度,以1.2m/s的速度用5分钟走完了剩余的路程到达学校.(1)求小明家离学校的大致距离和小明走路的平均速度.(2)请用函数图象描述小明走路的过程.教师引导学生思考、交流,然后找一名学生板演,其余同学在下面做,订正得到:距离应为0.6×10×60+1.2×5×60=360+360=720(m),平均速度为720÷[(10+5)×60]=720÷900=0.8(m/s).教师多媒体出示图象:其中,x表示小明离开家的时间,y表示小明离家的距离.四、课堂小结师:本节课我们学习了什么内容?学生回答,教师总结:1.知道分段函数的概念与特征.2.会作分段函数的图象.3.对于实际问题,初步了解如何根据函数解析式和图象描出它的现实意义.教学反思本节课介绍了分段函数,分段函数在实际生活中经常用到,因为一个函数不是在所有的自变量可以取到的范围内可以通用,所以经常需要对自变量的范围分段讨论对应的函数.分段函数的画法就是分别画出各个适用范围的一段.通过本节课的学习让学生进一步理解自变量的取值范围的意义,在做题特别是解应用题时养成分情况讨论的习惯和意识.第5课时一次函数(五)教学目标【知识与技能】1.认识一元一次不等式与一次函数问题的转化关系.2.会用图象法解一元一次不等式和一元一次方程,会用数形结合的思想方法解决问题.【过程与方法】1.经历探索、思考等教学活动和思维过程,发展学生的合情推理能力,能有条理地、清晰地阐述观点.2.让学生体验并掌握数形结合的思想和解决问题的方法,提高解决问题的能力.3.体会解决问题的多种途径,发散学生的思维.【情感、态度与价值观】在探究过程中发展学生的合作交流意识和独立思考精神,增强学生对数学思维、数学方法的好奇心和兴趣.重点难点【重点】理解一次函数的图象与一元一次不等式、一元一次方程的关系,运用此关系求解问题.【难点】理解一元一次不等式、一元一次方程的图象解法.教学过程一、创设情境,导入新知师:你会解一元一次方程-2x+8=0吗?生:会,x=4.师:我们现在看一次函数y=-2x+8.当x取什么值时,y为0?生:当x=4时,y=0.师:这个函数当x=4时,y=0,也就是这个函数的图象与x轴的交点坐标为(4,0),与x轴交点的横坐标为4.这个4一方面是方程的解,另一方面又是一次函数与x轴交点的横坐标,它们的数值是相同的,会不会是巧合,还是确实有联系?我们这节课就来研究这个问题.二、共同探究,获取新知教师多媒体出示:1.解方程:2x+6=0.2.已知一次函数y=2x+6,问x取什么值时,y=0?师:这两个问题有什么关系呢?学生讨论后回答:第二个问题中,y=0,也就是2x+6=0时,就成了第一个问题,所以它们的实质是一样的.师:大家回答得非常好!请大家画出y=2x+6的图象,看方程2x+6=0的解与这个图象又有什么关系.学生作图,教师巡视指导.教师多媒体出示:生:方程的解等于图象与x轴交点的横坐标.师:对.因为任何一个一元一次方程都可以写成y=kx+b的形式,所以解一元一次方程kx+b=0都可以转化成求函数y=kx+b中y=0时x的值,从图象上看,就是一次函数y=kx+b的图象与x轴交点的横坐标.三、层层推进,深入探究师:根据上面你们画出的y=2x+6的图象,你能说出一元一次不等式2x+6>0与2x+6<0的解集吗?学生合作交流生:当2x+6>0时就是一次函数y=2x+6中y的值大于0,而y>0在坐标平面上表现的就是图象在x轴上方.师:同学们回答得很好!那么x在什么范围时,图象在x轴的上方呢?生:因为图象与x轴的交点坐标是(-3,0),由图象知,当x>-3时,y>0,即2x+6>0的解集是x>-3.师:2x+6<0的解集呢?生:它对应的是图象在x轴下方的部分,当x<-3时,图象在x轴下方,所以2x+6<0.师:谁能总结一下呢?生:一元一次不等式kx+b>0(或kx+b<0)的解集,就是使一次函数y=kx+b取正值(或负值)时x 的取值范围.师:很好!从图象上看,kx+b>0的解集就是使直线y=kx+b位于x轴上方的部分相应的x的取值范围;kx+b<0的解集就是使直线y=kx+b位于x轴下方的部分相应的x的取值范围.四、例题讲解【例】画出函数y=-3x+6的图象,结合图象:(1)求方程-3x+6=0的解.(2)求不等式-3x+6>0和-3x+6<0的解集.解:(1)画出函数y=-3x+6的图象,如图所示,图象与x轴交点B的坐标为(2,0).所以,方程-3x+6=0的解就是交点B的横坐标:x=2.(2)结合图象可知,y>0时x的取值范围是x<2;y<0时x的取值范围是x>2.所以,不等式-3x+6>0的解集是x<2,不等式-3x+6<0的解集是x>2.五、课堂小结师:今天你学到了什么新的内容?还有哪些疑问?学生回答,教师补充完善.教学反思在导入课题时,我让学生解一元一次方程和一元一次不等式,他们不理解为什么让他们做这些七年级的题目,讲到后面时他们豁然开朗,为自己的发现欣喜不已.在学习了本节课后,我带领他们用数形结合的方法探索并归纳了一次函数的图象与一元一次方程、一元一次不等式的关系,一元一次方程、一元一次不等式的图象解法,使学生初步认识到了这些知识的关联.。