特称命题 p: ∃ xM, p(x).
特称命题的否定 ¬ p: ∀ xM, ¬ p(x). 全称命题否定后为特称命题. 特称命题否定后为全称命题. 否定前后的真假性相反.
复习参考题
返回目录
A组 1. 设原命题是 “等边三角形的三内角相等”. 把原命题写成 “若 p, 则 q” 的形式, 并写出它的逆 命题,否命题和逆否命题, 然后指出它们的真假. 解: 若三角形是等边三角形, 则三内角相等. 逆命题: 若三角形三内角相等, 则三角形是等边 三角形. 否命题: 若三角形不是等边三角形, 则它的三内 角不相等. 逆否命题: 若三角形的三内角不相等, 则三角形 不是等边三角形. 此题的四种命题都是真命题.
否命题: “若 p, 则 q”.
逆否命题: “若 q, 则 p”.
原命题
否命题
互逆 互逆
逆命题
逆否命题
互否 互为逆否 互否
3. 充要条件 p q, p 是 q 的充分不必要条件. p ⇍ q, p ⇏ q, p q, p q. p 是 q 的必要不充分条件. p 是 q 的充要条件; q 也是 p 的充要条件.
6. 存在量词与特称命题 “存在”, “存在一个”, “有些”, “对某个”, “至少有一个” 等. 符号 “∃”. 特称命题: ∃xM, p(x).
ቤተ መጻሕፍቲ ባይዱ
在 M 中只要有一个 x0, 使 p(x0) 成立, 命题为真; 若一个都没有, 则命题为假.
7. 全称命题与特称命题的否定
全称命题 p: ∀xM, p(x). 全称命题的否定 ¬ p: ∃xM, ¬ p(x).
本章内容
1.1 命题及其关系 1.2 充分条件与必要条件
1.3 简单的逻辑联结词
1.4 全称量词与存在量词 第一章 小结