电子元器件可靠性试验、失效分析、故障复现及筛选技术培训
- 格式:doc
- 大小:18.50 KB
- 文档页数:4
电子元器件的可靠性测试与验证产品质量和可靠性的评估方法电子元器件的可靠性是指在特定工作环境下,在一定时间内,电子元器件在规定的性能限度内始终正常工作的能力。
对于电子产品制造厂家来说,确保产品的可靠性是十分重要的,因为可靠性不仅关乎到产品的质量,更关系到用户的体验和信任度。
本文将介绍电子元器件的可靠性测试及验证方法,以及如何通过这些方法评估产品的质量和可靠性。
一、可靠性测试方法1. 加速寿命测试加速寿命测试是通过模拟产品在正常使用条件下的使用寿命,加速测试过程中,将产品置于高温、高湿、低温、低湿等恶劣环境中,观察元器件在不同条件下的表现,以此来预测产品在正常条件下的可靠性。
其中,常用的加速寿命测试方法有高温寿命测试、高温高湿寿命测试和温度循环寿命测试等。
2. 可靠性试验可靠性试验是对产品进行一系列实验,通过对大量样品进行测试和观察,以确定产品的可靠性指标,包括寿命和故障率等。
可靠性试验主要包括寿命试验、失效分析试验、故障模式与影响分析试验等。
通过这些试验,可以较为准确地评估产品的可靠性,并为产品改进提供依据。
3. 可靠性试验计划设计可靠性试验计划设计是针对特定产品制定一套全面可行的试验计划,以实现对产品可靠性的评估。
设计可靠性试验计划要考虑到不同环境因素、产品使用条件、样品数量等因素,并采用合适的试验方法和统计学方法,以获取可靠的试验结果。
常见的可靠性试验计划设计方法包括失效模式与影响分析(FMEA)和可靠度增长试验等。
二、产品质量与可靠性的评估方法1. MTBF(平均无故障时间)评估MTBF是评估产品可靠性的一项重要指标,它表示平均无故障时间,即产品预计正常运行的平均时间。
通过对产品进行可靠性试验和收集故障数据,可以计算出MTBF的值。
高MTBF值代表产品具有较高的可靠性和稳定性。
2. 故障率评估故障率是指单位时间内发生故障的频率,是评估产品可靠性的重要指标之一。
通过对产品进行长时间的可靠性试验和数据收集,可以计算出故障率的值。
“电子产品可靠性设计、试验技术与失效分析”系列培训班招生对象---------------------------------1、各企事业单位从事电子电器相关的工作人员(电子电气检测实验室工作人员、产品研发、技术、品质管理、安全监督、可靠性设计、质量检验、测试、采购等);【主办单位】中国电子标准协会【咨询热线】0 7 5 5 – 2 6 5 0 6 7 5 7 1 3 7 9 8 4 7 2 9 3 6 李生【报名邮箱】martin# (请将#换成@)课程内容---------------------------------随着电子电器产品的体积与重量日益缩小,技术含量不断扩大、智能化程度成倍提高,对电子电器产品可靠性的要求已成为衡量产品质量最重要的技术指标之一。
可靠性不仅在国防、航天、航空等尖端技术领域倍受关注,在工业、民用电子等领域也同样得到重视。
国家标准委近期公布了GB2423、GB2424等相关一系列标准的更新,进一步规范化现在可靠性试验、测试等相关内容。
重视程度可见一斑。
为进一步加强各企事业单位相关人员针对产品可靠性方面的技术能力及国家标准的应用理解,解决各企事业单位没有相关检验人员或者检验人员没有经过正式培训并持证上岗的现状,实现国家对相关技能人员必须持证上岗的要求。
我中心定于近期于深圳、杭州两地分别举办“电子产品可靠性设计、试验技术与失效分析系列培训班”学习结束后,统一考核,考核合格者颁发《可靠性实用工程》专业技能资格证书。
具体安排如下:一、学习内容及时间地点A 班《电子产品可靠性设计、试验技术》时间地点:2013年8月30日-9月1日深圳(30日报到)内容:◆可靠性设计技术1、可靠性设计的基本概念和运用(A、可靠性设计的思路B、降额设计C、简化设计D、储备(冗余)设计 E、容差设计F、可靠性预计G、可靠性增长(RGT)2、可靠性设计的相关标准和实施步骤3、元器件的故障模式、影响及采用的对策(A、电子产品常见的失效B、无源器件常见失效原因、寿命计算C、电子器件常见失效原因、寿命评价方法D、机电元件常见失效原因和对策E、集成电路的主要故障特点及对策。
电子元器件的可靠性与寿命评估:方法与工具电子元器件的可靠性和寿命评估是电子工程师和产品设计师在进行产品设计和制造过程中不可忽视的重要环节。
本文将详细介绍电子元器件可靠性和寿命评估的方法和工具,包括可靠性测试、加速寿命试验、失效模式与失效机理分析等。
一、可靠性测试可靠性测试是通过对元器件进行长时间不间断、高负载的工作,以模拟实际工作环境,获取元器件在运行过程中的可靠性指标。
可靠性测试可以分为环境应力测试和可靠性固有测试两种。
1. 环境应力测试环境应力测试是在电子元器件所处的环境条件下,对其进行工作负载测试,以评估其在实际工作环境下的可靠性。
常用的环境应力测试包括温度循环测试、湿度试验和振动冲击试验等。
- 温度循环测试:将元器件置于高温和低温交替的环境中,观察元器件在温度变化下的可靠性表现。
- 湿度试验:将元器件置于高湿度或低湿度环境中,观察元器件在湿度变化下的可靠性表现。
- 振动冲击试验:通过对元器件进行振动或冲击,观察元器件在振动或冲击下的可靠性表现。
2. 可靠性固有测试可靠性固有测试是通过对元器件在正常工作条件下进行长时间运行,观察其在实际工作环境下的可靠性表现。
常用的可靠性固有测试包括静电放电测试、高电压测试和电流波形测试等。
- 静电放电测试:通过在元器件上施加静电放电,观察元器件在静电放电下的可靠性表现。
- 高电压测试:通过在元器件上施加高电压,观察元器件在高电压下的可靠性表现。
- 电流波形测试:通过观察元器件在工作电流波形下的表现,评估其在实际工作环境中的可靠性。
二、加速寿命试验加速寿命试验是一种通过提高元器件运行环境中的应力水平,以缩短测试时间并模拟元器件长时间使用下的疲劳和老化过程的方法。
加速寿命试验可以分为温度加速寿命试验和电压加速寿命试验两种。
1. 温度加速寿命试验温度加速寿命试验通过提高元器件工作温度,加速元器件的老化过程。
常用的温度加速寿命试验方法包括高温老化试验和高温高湿老化试验。
电子元器件可靠性培训总结电子元器件可靠性培训总结元器件是整机的基础,它在制造过程中可能会由于本身固有的缺陷或制造工艺的控制不当,在使用中形成与时间或应力有关的失效。
为了保证整批元器件的可靠性,满足整机要求,必须把使用条件下可能出现初期失效的元器件剔除。
元器件的失效率随时间变化的过程可以用类似"浴盆曲线”的失效率曲线来描述,早期失效率随时间的增加而迅速下降,使用寿命期(或称偶然失效期)内失效率基本不变。
筛选的过程就是促使元器件提前进入失效率基本保持常数的使用寿命期,同时在此期间剔除失效的元器件。
事物的好与坏的判别必须要有标准去衡量。
判断元器件的失效与否是由失效判别标准一一失效判据所确定的。
失效判据是质量和可靠性的指标,有时也有成本的内涵,所以元器件失效不仅指功能的完全丧失,而且指电学特性或物理参数降低到不能满足规定的要求。
简而言之,产品失去规定的功能称为失效。
在选择可靠性筛选次序时先先了解一下元器件失效都有哪些?失效一般分为现场失效和试验失效。
现场失效一般是在装机以后出现的失效,因此,我们在元器件测试筛选过程中只考虑试验失效。
试验失效主要是封装失效和电性能失效。
封装失效主要依靠环境应力筛选来检测。
所谓环境应力筛选,即在筛选时选择若干典型的环境因素,施加于产品的硬件上,使各种潜在的缺陷加速为早期故障,然后加以排除,使产品可靠性接近设计的固有可靠性水平,而不使产品受到疲劳损伤。
在正常情况下是通过在检测时施加一段时问的环境应力后,对外观的检查(主要是镜检,根据元器件的质量要求,采用放大10倍对元器件外观进行检测:也可以根据需要安排红外线及X射线检查),以及气密性筛选来完成,当有特殊需要时,可以增加一些DPA(破坏性物理分析)等特殊测这些筛选项目对电性能失效模式不会产生触发效果。
所以,一般将封装失效的筛选放在前面,电性能失效的筛选放在后面。
电性能失效可以分为连结性失效、功能性失效和电参数失效。
连结性失效指开路、短路以及电阻值大小的变化,这类失效在元器件失效中占有较大的比例。
电子元器件的可靠性与故障诊断电子与电气工程是现代科技领域中至关重要的学科之一。
在当今高科技发展迅猛的时代,电子元器件的可靠性与故障诊断成为了电气工程师们关注的重点。
本文将探讨电子元器件的可靠性问题以及故障诊断的方法。
一、电子元器件的可靠性问题在电子设备中,电子元器件是构成各种电路的基本组成部分。
电子元器件的可靠性直接影响到整个电子设备的稳定性和寿命。
可靠性是指电子元器件在特定环境条件下正常工作的概率。
而电子元器件的可靠性问题主要体现在以下几个方面:1. 电子元器件的老化和劣化:电子元器件长时间工作后会逐渐老化和劣化,导致性能下降甚至故障。
例如,电解电容在长时间使用后电解液会干涸,导致容量下降,进而影响整个电路的性能。
2. 温度和湿度的影响:电子元器件对温度和湿度非常敏感。
高温会导致电子元器件内部结构热膨胀,使得元器件的性能发生变化。
而湿度过高则容易引发电子元器件的氧化腐蚀,进而导致短路或断路。
3. 电子元器件的外界干扰:电子设备常常会受到来自外界的电磁干扰,如电磁波、静电等。
这些干扰会对电子元器件的正常工作产生负面影响,甚至导致故障。
二、电子元器件的故障诊断电子元器件的故障诊断是电气工程师们必须面对的重要任务。
故障诊断的目的是通过分析故障现象和数据,找到故障的原因,进而采取相应的修复措施。
常用的故障诊断方法包括以下几种:1. 可视检查法:通过对电子元器件进行外观检查,观察是否存在明显的损坏或烧焦痕迹,以确定故障的位置。
2. 测试仪器法:利用各种测试仪器对电子元器件进行测试,如万用表、示波器等。
通过测量电流、电压、频率等参数,判断元器件是否正常工作。
3. 故障模式分析法:通过对故障现象进行分析,找出可能导致故障的原因。
例如,当某个电路板上的多个元器件同时出现故障时,可以推测是该电路板上的电源供应出现问题。
4. 热敏法:利用红外热像仪等热敏设备,检测电子元器件工作时的温度分布情况。
通过分析温度异常的位置,可以初步确定故障的范围。
电子元器件的可靠性测试与分析一、引言随着现代电子技术的发展,电子元器件的应用越来越广泛,但由于其本身特性以及外部环境等原因,电子元器件在使用过程中存在一定的可靠性问题。
对于电子元器件的可靠性测试与分析,是保障产品品质和用户利益的重要手段。
该文章将从可靠性测试的基础概念出发,对电子元器件的可靠性测试与分析进行探讨。
二、可靠性测试1. 可靠性测试的基本概念可靠性测试是指在产品研制完成后,通过一定的测试手段,对产品进行可靠性的检验和判定。
目的是为了评估产品在使用过程中的可靠性和稳定性。
通过这个过程,可以保证产品质量,提升产品的可靠性,延长产品的使用寿命,减少生产成本,提高用户满意度。
2. 可靠性测试的方法可靠性测试方法通常分为三种:加速寿命测试、正常寿命测试和数据分析。
加速寿命测试是指将产品放置在高温、高湿、高低温交变等条件下进行测试,加速产品老化。
根据老化程度进行分析评价。
正常寿命测试是指通过模拟产品预期的使用环境和条件,对产品进行测试,以模拟产品在实际使用情况下出现的问题。
这种测试方法是判定产品质量的关键,一般情况下开发商会将产品在生产前进行正常寿命测试。
数据分析是指通过收集、分析产品的运行数据,判断产品在使用过程中可能出现的问题和缺陷,以此预测产品的寿命。
三、电子元器件的可靠性测试与分析1. 电子元器件的分类电子元器件通常分为被动器件和有源器件两类。
被动器件包括电阻、电容、电感、变压器等,这些器件在电路中主要负责传输信号和储存能量。
有源器件包括二极管、晶体管、集成电路等,这些器件在电路中主要负责控制电信号的放大、调整、转换等功能。
2. 电子元器件的可靠性测试与分析电子元器件通常会经受各种环境因素的影响,例如温度、湿度、电压等。
这些因素会导致电子元器件受损,并可能造成电路故障。
因此,对电子元器件进行可靠性测试与分析是非常必要的。
在电子元器件的可靠性测试中,首先要进行电气参数测试,包括电容、电感、电阻、漏电等参数的测试,以保证电子元器件的电学性能符合设计要求。
电子元器件失效分析及其提高可靠性技术研究电子元器件作为现代电子技术中不可或缺的一部分,其可靠性一直是工程师们关注的焦点。
然而,随着复杂度增加,越来越多的问题出现,比如电子元器件失效。
本文旨在探讨电子元器件失效的原因及其提高可靠性技术研究。
一、电子元器件失效的原因在电子元器件的使用过程中,失效几乎是不可避免的。
导致电子元器件失效有以下几个主要原因:1.使用环境不佳某些电子元器件需要在极端温度、湿度或压力下使用,如果使用环境恶劣,就会对电子元器件产生影响,导致它们的性能下降或失效。
2.材料老化由于时间的推移,电子元器件中的材料可以老化,导致它们无法正常工作。
这是一个比较常见的问题。
3.使用寿命到期每个电子元器件都有一定的使用寿命。
一旦达到其使用寿命,那么就可能会出现问题。
这种情况通常发生在电池和显示器上。
4.错误的设计或制造出现电子元器件失效的另一个原因是错误的设计或制造。
如果处理完这些问题的方式不恰当,那么电子元器件就可能无法正常工作。
二、提高电子元器件可靠性的技术研究为了降低电子元器件失效的风险,工程师们一直在努力实践着各种提高电子元器件可靠性的技术研究。
以下介绍几个不错的方案。
1.测试与质量控制在电子元器件制作完成之后,工程师们必须对它们进行测试和质量控制。
这些测试和质量控制可以确保电子元器件以正确的方式工作。
2.优化组装和布局通过优化组装和布局,可以降低电子元器件失效的风险。
在某些情况下,离散元件的组装方式可能更优于集成电路的组装方式。
3.原材料选择电子元器件制造商需要选择合适的原材料,以确保它们的产品质量。
这就涉及到对原材料的严格选择和标准。
4.结构优化电子元器件的结构对其可靠性有很大影响。
如果结构不够牢固,那么电子元器件就很可能出现失效。
工程师们可以通过改变元器件的结构或优化设计来提高其可靠性。
5.环境控制环境控制是提高电子元器件可靠性的另一个关键因素。
通过在制造过程中严格控制环境条件,可以降低电子元器件失效的风险。
电子元器件可靠性试验、失效分析、故障复现及筛选技术培训 讲讲师师介介绍绍::
费老师 男,原信息产业部电子五所高级工程师,理学硕士,“电子产品可靠性与环境试验”杂志编委,长期从事电子元器件的失效机理、失效分析技术和可靠性技术研究。
分别于1989年、1992-1993年、2001年由联合国、原国家教委和中国国家留学基金管理委员会资助赴联邦德国、加拿大和美国作访问学者。
曾在国内外刊物和学术会议上发表论文三十余篇。
他领导的“VLSI 失效分析技术”课题组荣获2003年度“国防科技二等奖”。
他领导的“VLSI 失效分析与可靠性评价技术”课题组荣获2006年度“国防科技二等奖”。
2001年起多次应邀外出讲学,获得广大学员的一致好评。
【培训对象】系统总质量师、产品质量师、设计师、工艺师、研究员,质量可靠性管理和从事电子元器件(包括集成电路)失效分析工程师
【主办单位】中 国 电 子 标 准 协 会 培 训 中 心
【协办单位】深 圳 市 威 硕 企 业 管 理 咨 询 有 限 公 司
为了满足广大元器件生产企业对产品质量及可靠性方面的要求,我司决定在全国组织召开“电子元器件可靠性试验、失效分析、故障复现及筛选技术”高级研修班。
研修班将由具有工程实践和教学丰富经验的教师主讲,通过讲解大量实例,帮助学员了解各种主要电子元器件的可靠性试验方法和试验结果的分析方法.
课程提纲:
第一部分电子元器件的可靠性试验
1 可靠性试验的基本概念
1.1 概率论基础
1.2 可靠性特征量
1.3 寿命分布函数
1.4 可靠性试验的目的和分类
1.5 可靠性试验设计的关键问题
2 寿命试验技术
2.1 加速寿命试验
2.2 定性寿命保证试验
2.3 截尾寿命试验
2.4 抽样寿命试验
3 试验结果的分析方法:威布尔分布的图估法
4 可靠性测定试验
4.1 点估计法
4.2 置信区间
5 可靠性验证试验
5.1 失效率等级和置信度
5.2 试验程序和抽样表
5.3 标准和应用
6 电子元器件可靠性培训试验案例
案例1已知置信度和MTBF时的实验测定
案例2已知置信度和可靠度时的实验测定
案例3案例加速寿命实验测定法第二部分电子元器件的失效分析、故障复现和筛选技术
1 失效的概念和种类
2 失效物理模型和应用
2.1 应力-强度模型2.2 应力-时间模型
3 失效模式, 失效机理, 失效分析和故障复现的概念和作用
4 各种失效模式与失效机理的关系
5 各种环境应力与失效机理的关系
6 各种失效机理及其失效分析和故障复现技术
6.1 变形6.2 变质6.3 外来异物
6.4 质量迁移
7 基于失效机理的筛选技术
7.1电子元器件筛选原理
7.2传统筛选试验的种类、方法、作用和存在的问题
7.3基于失效机理的筛选技术
7.4 筛选应力和筛选时间的确定
7.5筛选效果的评估
8 失效分析技术延伸:电子元器件进货分析
9 印刷电路板焊接和导电胶粘接的失效分析和故障复现
10 超大规模集成电路和微波单片集成电路失效分析案例。