高二数学 空间向量与立体几何教学案 新人教A版
- 格式:doc
- 大小:88.50 KB
- 文档页数:3
§3.2.3立体几何中的向量方法——利用空间向量求空间角教学目标1、使学生学会求异面直线所成的角、直线与平面所成的角、二面角的向量方法;2、使学生能够应用向量方法解决一些简单的立体几何问题;3、使学生的分析与推理能力和空间想象能力得到提高.教学重点求解二面角的向量方法 教学难点二面角的大小与两平面法向量夹角的大小的关系 教学过程 一、复习引入1、用空间向量解决立体几何问题的“三步曲”(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题)(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算)(3)把向量的运算结果“翻译”成相应的几何意义。
(回到图形)2、向量的有关知识:(1)两向量数量积的定义:(2)两向量夹角公式:(3)平面的法向量:与平面垂直的向量二、知识讲解与典例分析知识点1、异面直线所成的角(范围: )(1)定义:过空间任意一点o 分别作异面直线a 与b 的平行线a´与b´,那么直线a´与b´ 所成的不大于90°的角 ,叫做异面直线a 与b 所成的角。
(2)用向量法求异面直线所成角bab a ⋅=,cos⎝⎛∈θθb a ⋅⋅=⋅a ´b ´•oθ设两异面直线a 、b 的方向向量分别为m 和 ,问题1 当m 与n 的夹角不大于90°时,异面直线a 、b 所成的角 与m 和的夹角的关系? 相等问题 2 当m 与的夹角大于90°时,异面直线a 、b 所成的角 与m 和的夹角的关系? 互补所以,异面直线a 、b 所成的角的余弦值为典型例题1:在到△A1O1B1的位置,已知BD1与AF1所成的角的余弦值。
解:以点O 为坐标原点建立空间直角坐标系,并设OA=1,则A(1,0,0) B(0,1,0)F1(21 ,0,1) D1(21 , 21,1)所以,异面直线BD1与AF1所成的角的余弦值为知识点2、直线与平面所成的角(范围: )=cos θ =),1,0,21(1-=∴AF )1,21,21(1-=BD =⋅=BD =⋅++-23451041⎥⎦⎤⎢⎣⎡∈2,0πθθθ10301030据图分析平面所成弦值为典型正方体ABCD-A1B1C1D1的棱长为1,点E 、F 分别为CD 、DD1的中点, (1)求直线B1C1与平面AB1C 所成的角的正弦值; (2)求二面角F-AE-D 的余弦值。
人教A版高中数学必修教案:立体几何全部教案第一章:绪论1. 教学目标1.1 了解立体几何的概念和研究对象1.2 掌握空间点的表示方法1.3 理解空间向量的概念及其运算1. 教学内容1.1 立体几何的概念和研究对象1.2 空间点的表示方法1.3 空间向量的概念及其运算2. 教学方法2.1 采用多媒体教学,展示立体几何图形2.2 结合实际例子,引导学生理解空间点的表示方法2.3 运用几何直观,讲解空间向量的概念及其运算3. 教学步骤3.1 引入立体几何的概念和研究对象,引导学生思考立体的特点3.2 讲解空间点的表示方法,结合具体例子进行演示和练习3.3 引入空间向量的概念,讲解其运算规则,并通过几何直观进行解释4. 课后作业4.1 复习立体几何的概念和研究对象4.2 练习空间点的表示方法4.3 巩固空间向量的概念及其运算第二章:直线与平面1. 教学目标1.1 理解直线的概念及其性质1.2 掌握平面的概念及其性质1.3 掌握直线与平面的位置关系2. 教学内容2.1 直线的概念及其性质2.2 平面的概念及其性质2.3 直线与平面的位置关系3. 教学方法3.1 采用多媒体教学,展示直线和平面的图形3.2 结合实际例子,引导学生理解直线的性质3.3 运用几何直观,讲解直线与平面的位置关系4. 教学步骤4.1 引入直线的概念,讲解其性质,并通过实际例子进行演示和练习4.2 引入平面的概念,讲解其性质,并通过实际例子进行演示和练习4.3 讲解直线与平面的位置关系,并通过几何直观进行解释5. 课后作业5.1 复习直线的概念及其性质5.2 练习平面的概念及其性质5.3 巩固直线与平面的位置关系第三章:平面几何1. 教学目标1.1 理解平面几何的基本概念和性质1.2 掌握平面几何的基本运算和证明方法1.3 掌握平面几何图形的判定和性质2. 教学内容2.1 平面几何的基本概念和性质2.2 平面几何的基本运算和证明方法2.3 平面几何图形的判定和性质3. 教学方法3.1 采用多媒体教学,展示平面几何图形3.2 结合实际例子,引导学生理解平面几何的基本概念和性质3.3 运用几何直观,讲解平面几何的基本运算和证明方法4. 教学步骤4.1 引入平面几何的基本概念和性质,引导学生思考平面几何的特点4.2 讲解平面几何的基本运算和证明方法,并通过实际例子进行演示和练习4.3 引入平面几何图形的判定和性质,并通过实际例子进行演示和练习5. 课后作业5.1 复习平面几何的基本概念和性质5.2 练习平面几何的基本运算和证明方法5.3 巩固平面几何图形的判定和性质第四章:空间几何1. 教学目标1.1 理解空间几何的基本概念和性质1.2 掌握空间几何的基本运算和证明方法1.3 掌握空间几何图形的判定和性质2. 教学内容2.1 空间几何的基本概念和性质2.2 空间几何的基本运算和证明方法2.3 空间几何图形的判定和性质3. 教学方法3.1 采用多媒体教学,展示空间几何图形3.2 结合实际例子,引导学生理解空间几何的基本概念和性质3.3 运用几何直观,讲解空间几何的基本运算和证明方法4. 教学步骤4.1 引入空间几何的基本概念和性质,引导学生思考空间几何的特点4.2 讲解空间几何的基本运算和证明方法,并通过实际例子进行演示和练习4.3 引入空间几何图形的判定和性质,并通过实际例子进行演示和第六章:立体几何中的角和距离1. 教学目标1.1 理解立体几何中的角和距离的概念1.2 掌握立体几何中角的计算方法1.3 学会计算立体几何中的距离2. 教学内容2.1 立体几何中的角的概念和分类2.2 立体几何中的角的计算方法2.3 立体几何中的距离的计算方法3. 教学方法3.1 采用多媒体教学,展示立体几何中的角和距离的图形3.2 结合实际例子,引导学生理解立体几何中的角和距离的概念3.3 运用几何直观,讲解立体几何中的角的计算方法和距离的计算方法4. 教学步骤4.1 引入立体几何中的角的概念和分类,引导学生思考立体几何中角的特点4.2 讲解立体几何中的角的计算方法,并通过实际例子进行演示和练习4.3 引入立体几何中的距离的概念,讲解其计算方法,并通过实际例子进行演示和练习5. 课后作业5.1 复习立体几何中的角的概念和分类5.2 练习立体几何中的角的计算方法5.3 巩固立体几何中的距离的计算方法第七章:立体几何中的体积和表面积1. 教学目标1.1 理解立体几何中的体积和表面积的概念1.2 掌握立体几何中体积和表面积的计算方法1.3 学会应用体积和表面积解决实际问题2. 教学内容2.1 立体几何中的体积的概念和计算方法2.3 应用体积和表面积解决实际问题3. 教学方法3.1 采用多媒体教学,展示立体几何中的体积和表面积的图形3.2 结合实际例子,引导学生理解立体几何中的体积和表面积的概念3.3 运用几何直观,讲解立体几何中的体积和表面积的计算方法4. 教学步骤4.1 引入立体几何中的体积的概念,讲解其计算方法,并通过实际例子进行演示和练习4.2 引入立体几何中的表面积的概念,讲解其计算方法,并通过实际例子进行演示和练习4.3 应用体积和表面积解决实际问题,并通过实际例子进行演示和练习5. 课后作业5.1 复习立体几何中的体积的概念和计算方法5.2 练习立体几何中的表面积的概念和计算方法5.3 巩固应用体积和表面积解决实际问题的能力第八章:立体几何中的对称变换1. 教学目标1.1 理解立体几何中的对称变换的概念1.2 掌握立体几何中对称变换的性质和应用1.3 学会运用对称变换解决立体几何问题2. 教学内容2.2 立体几何中对称变换的性质和应用2.3 运用对称变换解决立体几何问题3. 教学方法3.1 采用多媒体教学,展示立体几何中的对称变换的图形3.2 结合实际例子,引导学生理解立体几何中的对称变换的概念3.3 运用几何直观,讲解立体几何中对称变换的性质和应用4. 教学步骤4.1 引入立体几何中的对称变换的概念和分类,引导学生思考对称变换的特点4.2 讲解立体几何中对称变换的性质,并通过实际例子进行演示和练习4.3 引入立体几何中对称变换的应用,并通过实际例子进行演示和练习5. 课后作业5.1 复习立体几何中的对称变换的概念和分类5.2 练习立体几何中对称变换的性质和应用5.3 巩固运用对称变换解决立体几何问题的能力第九章:立体几何中的坐标变换1. 教学目标1.1 理解立体几何中的坐标变换的概念1.2 掌握立体几何中坐标变换的性质和应用1.3 学会运用坐标变换解决立体几何问题2. 教学内容2.1 立体几何中的坐标变换的概念和分类2.3 运用坐标变换解决立体几何问题3. 教学方法3.1 采用重点和难点解析重点环节1:立体几何的概念和研究对象难点解析1:立体几何的研究对象是三维空间中的点、线、面及其之间的位置关系。
新教材高中数学教案新人教A 版选择性必修第一册:第1章 空间向量与立体几何1.1 空间向量及其运算 1.1.1 空间向量及其线性运算学 习 目 标核 心 素 养1.理解空间向量的概念.(难点)2.掌握空间向量的线性运算.(重点)3.掌握共线向量定理、共面向量定理及推论的应用.(重点、难点)1.通过空间向量有关概念的学习,培养学生的数学抽象核心素养.2.借助向量的线性运算、共线向量及共面向量的学习,提升学生的直观想象和逻辑推理的核心素养.国庆期间,某游客从上海世博园(O )游览结束后乘车到外滩(A )观赏黄浦江,然后抵达东方明珠(B )游玩,如图1,游客的实际位移是什么?可以用什么数学概念来表示这个过程?图1 图2如果游客还要登上东方明珠顶端(D )俯瞰上海美丽的夜景,如图2,那么他实际发生的位移是什么?又如何表示呢?1.空间向量(1)定义:在空间,具有大小和方向的量叫做空间向量. (2)长度或模:空间向量的大小. (3)表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a ,b ,c ,…表示;若向量a 的起点是A ,终点是B ,也可记作:AB →,其模记为|a |或|AB →|.2.几类常见的空间向量名称 方向 模 记法 零向量 任意 0 0 单位向量 任意 1相反向量 相反 相等 a 的相反向量:-aAB →的相反向量:BA →相等向量相同相等a =b3.空间向量的线性运算 (1)向量的加法、减法 空间向量的运算加法 OB →=OA →+OC →=a +b减法CA →=OA →-OC →=a -b加法运算律①交换律:a +b =b +a②结合律:(a +b )+c =a +(b +c )①定义:实数λ与空间向量a 的乘积λa 仍然是一个向量,称为向量的数乘运算. 当λ>0时,λa 与向量a 方向相同; 当λ<0时,λa 与向量a 方向相反;当λ=0时,λa =0;λa 的长度是a 的长度的|λ|倍. ②运算律a .结合律:λ(μa )=μ(λa )=(λμ)a .b .分配律:(λ+μ)a =λa +μa ,λ(a +b )=λa +λb . 思考:向量运算的结果与向量起点的选择有关系吗? [提示] 没有关系. 4.共线向量(1)定义:表示若干空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.(2)方向向量:在直线l 上取非零向量a ,与向量a 平行的非零向量称为直线l 的方向向量.规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(3)共线向量定理:对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ使a =λb .(4)如图,O 是直线l 上一点,在直线l 上取非零向量a ,则对于直线l 上任意一点P ,由数乘向量定义及向量共线的充要条件可知,存在实数λ,使得OP →=λa .5.共面向量(1)定义:平行于同一个平面的向量叫做共面向量.(2)共面向量定理:若两个向量a ,b 不共线,则向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间一点P 位于平面ABC 内的充要条件:存在有序实数对(x ,y ), 使AP →=xAB →+yAC →或对空间任意一点O ,有OP →=OA →+xAB →+yAC →.思考:(1)空间中任意两个向量一定是共面向量吗?(2)若空间任意一点O 和不共线的三点A ,B ,C ,满足OP →=13OA →+13OB →+13OC →,则点P 与点A ,B ,C 是否共面?[提示] (1)空间中任意两个向量都可以平移到同一个平面内,成为同一个平面的两个向量,因此一定是共面向量.(2)由OP →=13OA →+13OB →+13OC →得OP →-OA →=13(OB →-OA →)+13(OC →-OA →)即AP →=13AB →+13AC →,因此点P 与点A ,B ,C 共面.1.思考辨析(正确的打“√”,错误的打“×”) (1)空间向量a ,b ,c ,若a ∥b ,b ∥c ,则a ∥c . ( ) (2)相等向量一定是共线向量. ( ) (3)三个空间向量一定是共面向量. ( ) (4)零向量没有方向.( )[提示] (1)× 若b =0时,a 与c 不一定平行. (2)√ 相等向量一定共线,但共线不一定相等.(3)× 空间两个向量一定是共面向量,但三个空间向量可能是共面的,也可以是不共面的.(4)× 零向量有方向,它的方向是任意的.2.如图所示,在四棱柱ABCD A 1B 1C 1D 1所有的棱中,可作为直线A 1B 1的方向向量的有( )A .1个B .2个C .3个D .4个 D [共四条AB ,A 1B 1,CD ,C 1D 1.]3.点C 在线段AB 上,且|AB |=5,|BC |=3,AB →=λBC →,则λ=________.-53 [因为C 在线段AB 上,所以AB →与BC →方向相反,又因|AB |=5,|BC |=3,故λ=-53.] 4.在三棱锥A BCD 中,若△BCD 是正三角形,E 为其中心,则AB →+12BC →-32DE →-AD →化简的结果为________.0 [延长DE 交边BC 于点F ,连接AF ,则有AB →+12BC →=AF →,32DE →+AD →=AD →+DF →=AF →,故AB →+12BC →-32DE →-AD →=0.]空间向量的有关概念【例1】 (1)给出下列命题: ①若|a |=|b |,则a =b 或a =-b ;②若向量a 是向量b 的相反向量,则|a |=|b |; ③在正方体ABCD A 1B 1C 1D 1中,AC →=A 1C 1→;④若空间向量m ,n ,p 满足m =n ,n =p ,则m =p . 其中正确命题的序号是________.(2)如图所示,在平行六面体ABCD A ′B ′C ′D ′中,顶点连接的向量中,与向量AA ′→相等的向量有________;与向量A ′B ′→相反的向量有________.(要求写出所有适合条件的向量)(1)②③④ (2)BB ′→,CC ′→,DD ′→ B ′A ′→,BA →,CD →,C ′D ′→[(1)对于①,向量a 与b 的方向不一定相同或相反,故①错;对于②,根据相反向量的定义知|a |=|b |,故②正确; 对于③,根据相等向量的定义知,AC →=A 1C 1→,故③正确; 对于④,根据相等向量的定义知正确.(2)根据相等向量的定义知,与向量AA ′→相等的向量有BB ′→,CC ′→,DD ′→.与向量A ′B ′→相反的向量有B ′A ′→,BA →,CD →,C ′D ′→.]解答空间向量有关概念问题的关键点及注意点(1)关键点:紧紧抓住向量的两个要素,即大小和方向. (2)注意点:注意一些特殊向量的特性.①零向量不是没有方向,而是它的方向是任意的,且与任何向量都共线,这一点说明了共线向量不具备传递性.②单位向量方向虽然不一定相同,但它们的长度都是1.③两个向量模相等,不一定是相等向量;反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量.[跟进训练]1.下列关于空间向量的命题中,正确命题的个数是( ) ①长度相等、方向相同的两个向量是相等向量; ②平行且模相等的两个向量是相等向量; ③若a ≠b ,则|a |≠|b |;④两个向量相等,则它们的起点与终点相同. A .0 B .1 C .2 D .3B [根据向量的定义,知长度相等、方向相同的两个向量是相等向量,①正确;平行且模相等的两个向量可能是相等向量,也可能是相反向量,②不正确;当a =-b 时,也有|a |=|b |,③不正确;只要模相等、方向相同,两个向量就是相等向量,与向量的起点与终点无关,④不正确.综上可知只有①正确,故选B.]空间向量的线性运算【例2】 (1)如图所示,在正方体ABCD A 1B 1C 1D 1中,下列各式中运算结果为向量AC 1的有( )①(AB →+BC →)+CC 1→; ②(AA 1→+A 1D 1→)+D 1C 1→; ③(AB →+BB 1→)+B 1C 1→; ④(AA 1→+A 1B 1→)+B 1C 1→.A .1个B .2个C .3个D .4个(2)已知正四棱锥P ABCD ,O 是正方形ABCD 的中心,Q 是CD 的中点,求下列各式中x ,y ,z 的值.①OQ →=PQ →+yPC →+zPA →; ②PA →=xPO →+yPQ →+PD →.[思路探究] (1)合理根据向量的三角形和平行四边形法则,以及在平行六面体中,体对角线向量等于从同一起点出发的三条棱向量的和.如AC 1→=AB →+AD →+AA 1→.(2)根据数乘向量及三角形或平行四边形法则求解. (1)D [对于①,(AB →+BC →)+CC 1→=AC →+CC 1→=AC 1→; 对于②,(AA 1→+A 1D 1→)+D 1C 1→=AD 1→+D 1C 1→=AC 1→; 对于③,(AB →+BB 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→; 对于④,(AA 1→+A 1B 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→.] (2)[解] ①如图,∵OQ →=PQ →-PO →=PQ →-12(PA →+PC →)=PQ →-12PC →-12PA →,∴y =z =-12.②∵O 为AC 的中点,Q 为CD 的中点, ∴PA →+PC →=2PO →,PC →+PD →=2PQ →, ∴PA →=2PO →-PC →,PC →=2PQ →-PD →, ∴PA →=2PO →-2PQ →+PD →,∴x =2,y =-2.1.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.2.利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.[跟进训练]2.已知空间四边形ABCD ,连接AC ,BD ,设M ,G 分别是BC ,CD 的中点,则MG →-AB →+AD →等于( )A .32DB →B .3MG →C .3GM →D .2MG → B [MG →-AB →+AD →=MG →-(AB →-AD →)=MG →-DB → =MG →+BD →=MG →+2MG →=3MG →.]共线问题【例3】 (1)设e 1,e 2是空间两个不共线的向量,已知AB =e 1+k e 2,BC =5e 1+4e 2,DC =-e 1-2e 2,且A ,B ,D 三点共线,实数k =________.(2)如图所示,已知四边形ABCD ,ABEF 都是平行四边形且不共面,M ,N 分别是AC ,BF 的中点,判断CE →与MN →是否共线.[思路探究] (1)根据向量共线的充要条件求解.(2)根据数乘向量及三角形法则,把MN →表示成λCE →的形式,再根据向量共线的充要条件求解.(1)1 [AD →=AB →+BC →+CD →=(e 1+k e 2)+(5e 1+4e 2)+(e 1+2e 2)=7e 1+(k +6)e 2. 设AD →=λAB →,则7e 1+(k +6)e 2=λ(e 1+k e 2),所以⎩⎪⎨⎪⎧λ=7λk =k +6,解得k =1.](2)[解] 法一:因为M ,N 分别是AC ,BF 的中点,且四边形ABCD ,四边形ABEF 都是平行四边形,所以MN →=MA →+AF →+FN →=12CA →+AF →+12FB →.又因为MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,以上两式相加得CE →=2MN →,所以CE →∥MN →,即CE →与MN →共线.法二:因为四边形ABEF 为平行四边形,所以连接AE 时,AE 必过点N . ∴CE →=AE →-AC →=2AN →-2AM → =2(AN →-AM →)=2MN →.所以CE →∥MN →,即CE →与MN →共线.证明空间三点共线的三种思路对于空间三点P ,A ,B 可通过证明下列结论来证明三点共线. (1)存在实数λ,使PA →=λPB →成立. (2)对空间任一点O ,有OP →=OA →+tAB →(t ∈R ). (3)对空间任一点O ,有OP →=xOA →+yOB →(x +y =1).[跟进训练]3.如图,在正方体ABCD A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E →=2ED 1→,F 在对角线A 1C 上,且A 1F→=23FC →.求证:E ,F ,B 三点共线.[证明] 设AB →=a ,AD →=b ,AA 1→=c , 因为A 1E →=2ED 1→,A 1F →=23FC →,所以A 1E →=23A 1D 1→,A 1F →=25A 1C →,所以A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→)=25a +25b -25c ,所以EF →=A 1F →-A 1E →=25a -415b -25c =25⎝ ⎛⎭⎪⎫a -23b -c . 又EB →=EA 1→+A 1A →+AB →=-23b -c +a =a -23b -c ,所以EF →=25EB →,所以E ,F ,B 三点共线.向量共面问题1.什么样的向量算是共面向量?[提示] 能够平移到同一个平面内的向量称为共面向量. 2.能说明P ,A ,B ,C 四点共面的结论有哪些? [提示] (1)存在有序实数对(x ,y ),使得AP →=xAB →+yAC →.(2)空间一点P 在平面ABC 内的充要条件是存在有序实数组(x ,y ,z )使得OP →=xOA →+yOB →+zOC →(其中x +y +z =1).(3)四点中任意两点的方向向量与另外两点的方向向量共线,如PA →∥BC →.3.已知向量a ,b ,c 不共面,且p =3a +2b +c ,m =a -b +c ,n =a +b -c ,试判断p ,m ,n 是否共面.[提示] 设p =x m +y n ,即3a +2b +c =x (a -b +c )+y (a +b -c )=(x +y )a +(-x +y )b +(x -y )c . 因为a ,b ,c 不共面,所以⎩⎪⎨⎪⎧x +y =3,-x +y =2,x -y =1,而此方程组无解,所以p 不能用m ,n 表示, 即p ,m ,n 不共面.【例4】 已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若点M 满足OM →=13OA →+13OB →+13OC →. (1)判断MA →,MB →,MC →三个向量是否共面; (2)判断M 是否在平面ABC 内.[思路探究] (1)根据向量共面的充要条件,即判断是否MA →=xMB →+yMC →;(2)根据(1)的结论,也可以利用OM →=xOA →+yOB →+zOC →中x +y +z 是否等于1.[解] (1)∵OA →+OB →+OC →=3OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →), ∴MA →=BM →+CM →=-MB →-MC →, ∴向量MA →,MB →,MC →共面.(2)由(1)知向量MA →,MB →,MC →共面,而它们有共同的起点M ,且A ,B ,C 三点不共线,∴M ,A ,B ,C 共面,即M 在平面ABC 内.1.[变条件]若把本例中条件“OM →=13OA →+13OB →+13OC →”改为“OA →+2OB →=6OP →-3OC →”,点P是否与点A 、B 、C 共面.[解] ∵3OP →-3OC →=OA →+2OB →-3OP →=(OA →-OP →)+(2OB →-2OP →), ∴3CP →=PA →+2PB →,即PA →=-2PB →-3PC →.根据共面向量定理的推论知:点P 与点A ,B ,C 共面.2.[变条件]若把本例条件变成“OP →+OC →=4OA →-OB →”,点P 是否与点A 、B 、C 共面. [解] 设OP →=OA →+xAB →+yAC →(x ,y ∈R ),则OA →+xAB →+yAC →+OC →=4OA →-OB →,∴OA →+x (OB →-OA →)+y (OC →-OA →)+OC →=4OA →-OB →,∴(1-x -y -4)OA →+(1+x )OB →+(1+y )OC →=0,由题意知OA →,OB →,OC →均为非零向量,所以x ,y 满足:⎩⎪⎨⎪⎧ 1-x -y -4=0,1+x =0,1+y =0,显然此方程组无解,故点P 与点A ,B ,C 不共面.3.[变解法]上面两个母题探究,还可以用什么方法判断?[解] (1)由题意知,OP →=16OA →+13OB →+12OC . ∵16+13+12=1,∴点P 与点A 、B 、C 共面. (2)∵OP →=4OA →-OB →-OC →,而4-1-1=2≠1.∴点P 与点A 、B 、C 不共面.解决向量共面的策略1若已知点P 在平面ABC 内,则有AP →=xAB →+yAC →或OP →=xOA →+yOB →+zOC →x +y +z =1,然后利用指定向量表示出已知向量,用待定系数法求出参数.2证明三个向量共面或四点共面,需利用共面向量定理,证明过程中要灵活进行向量的分解与合成,将其中一个向量用另外两个向量来表示.1.一些特殊向量的特性(1)零向量不是没有方向,而是它的方向是任意的.(2)单位向量方向虽然不一定相同,但它们的长度都是1.(3)两个向量模相等,不一定是相等向量,反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量.2.OP →=OA →+xAB →+yAC →称为空间平面ABC 的向量表达式.由此可知空间中任意平面由空间一点及两个不共线向量唯一确定.3.证明(或判断)A ,B ,C 三点共线时,只需证明存在实数λ,使AB →=λBC →(或AB →=λAC →)即可,也可用“对空间任意一点O ,有OC →=tOA →+(1-t )OB →”来证明A ,B ,C 三点共线.4.空间一点P 位于平面MAB 内的充要条件是存在有序实数对(x ,y ),使MP →=xMA →+yMB →,满足这个关系式的点都在平面MAB 内;反之,平面MAB 内的任一点都满足这个关系式.这个充要条件常用于证明四点共面.5.直线的方向向量是指与直线平行或共线的非零向量,一条直线的方向向量有无穷多个,它们的方向相同或相反.6.向量p 与向量a ,b 共面的充要条件是在a 与b 不共线的前提下才成立的,若a 与b 共线,则不成立.1.下列条件中使M 与A ,B ,C 一定共面的是( )A .OM →=2OA →-OB →-OC →B .OM →=15OA →+13OB →+12OC → C .MA →+MB →+MC →=0D .OM →+OA →+OB →+OC →=0C [由MA →+MB →+MC →=0得MA →=-MB →-MC →,故M ,A ,B ,C 共面.]2.已知正方体ABCD A 1B 1C 1D 1,若点F 是侧面CD 1的中心,且AF →=AD →+mAB →-nAA 1→,则m ,n的值分别为( )A .12,-12B .-12,-12C .-12,12D .12,12A [由于AF →=AD →+DF →=AD →+12(DC →+DD 1→)=AD →+12AB →+12AA 1→,所以m =12,n =-12,故答案为A.]3.化简:12(a +2b -3c )+5⎝ ⎛⎭⎪⎫23a -12b +23c -3(a -2b +c )=________. 56a +92b -76c [原式=12a +b -32c +103a -52b +103c -3a +6b -3c =⎝ ⎛⎭⎪⎫12+103-3a +⎝ ⎛⎭⎪⎫1-52+6b +⎝ ⎛⎭⎪⎫-32+103-3c =56a +92b -76c .]4.给出下列四个命题:①方向相反的两个向量是相反向量;②若a,b满足|a|>|b|且a,b同向,则a>b;③不相等的两个空间向量的模必不相等;④对于任何向量a,b,必有|a+b|≤|a|+|b|.其中正确命题的序号为________.④[对于①,长度相等且方向相反的两个向量是相反向量,故①错;对于②,向量是不能比较大小的,故不正确;对于③,不相等的两个空间向量的模也可以相等,故③错;只有④正确.]5.设两非零向量e1,e2不共线,且k e1+e2与e1+k e2共线,求k的值.[解]∵两非零向量e1,e2不共线,且k e1+e2与e1+k e2共线,∴k e1+e2=t(e1+k e2),则(k-t)e1+(1-tk)e2=0.∵非零向量e1,e2不共线,∴k-t=0,1-kt=0,解得k=±1.。
立体几何全部教案(人教A版高中数学必修②教案)第一章:空间几何体的结构特征1.1 教学目标了解柱体、锥体、球体的定义及性质。
掌握空间几何体的结构特征,如表面积、体积等。
1.2 教学内容柱体、锥体、球体的定义及性质。
空间几何体的结构特征的计算方法。
1.3 教学步骤1. 引入新课,讲解柱体、锥体、球体的定义及性质。
3. 讲解空间几何体的结构特征的计算方法,如表面积、体积等。
1.4 课堂练习完成课本练习题,巩固所学知识。
1.5 课后作业完成课后作业,加深对空间几何体的结构特征的理解。
第二章:点、线、面的位置关系2.1 教学目标了解点、线、面的位置关系,如平行、垂直等。
掌握点、线、面的位置关系的判定方法。
2.2 教学内容点、线、面的位置关系的定义及判定方法。
2.3 教学步骤1. 引入新课,讲解点、线、面的位置关系的定义及判定方法。
2.4 课堂练习完成课本练习题,巩固所学知识。
2.5 课后作业完成课后作业,加深对点、线、面的位置关系的理解。
第三章:空间角的计算3.1 教学目标了解空间角的定义及性质。
掌握空间角的计算方法。
3.2 教学内容空间角的定义及性质。
空间角的计算方法。
3.3 教学步骤1. 引入新课,讲解空间角的定义及性质。
3.4 课堂练习完成课本练习题,巩固所学知识。
3.5 课后作业完成课后作业,加深对空间角的计算的理解。
第四章:空间向量的应用4.1 教学目标了解空间向量的定义及性质。
掌握空间向量的应用方法。
空间向量的定义及性质。
空间向量的应用方法。
4.3 教学步骤1. 引入新课,讲解空间向量的定义及性质。
4.4 课堂练习完成课本练习题,巩固所学知识。
4.5 课后作业完成课后作业,加深对空间向量的应用的理解。
第五章:立体几何中的综合问题5.1 教学目标培养学生解决立体几何综合问题的能力。
5.2 教学内容立体几何中的综合问题的解题策略。
5.3 教学步骤1. 引入新课,讲解立体几何中的综合问题的解题策略。
AB空间向量解立体几何西林县中学 程锦芳 2010年5月29日一、空间直角坐标系的建立及点的坐标表示空间直角坐标系中的坐标:如图给定空间直角坐标系和向量a ,设,,i j k(单位正交基底)为坐标向量,则存在唯一的有序实数组123(,,)a a a ,使123a ai a j ak =++ 有序实数组123(,,)a a a 叫作向量a在空间直角坐标系O xyz -标,记作123(,,)a a a a = .在空间直角坐标系O xyz -点A ,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk =++实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标.二、空间向量的直角坐标运算律(1)若123(,,)a a a a = ,123(,,)b b b b =, 则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=--- ,123(,,)()a a a a R λλλλλ=∈,112233//,,()a b a b a b a b R λλλλ⇔===∈,(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
(3)//a b b a λ⇔= 112233()b a b a R b aλλλλ=⎧⎪⇔=∈⎨⎪=⎩三、空间向量直角坐标的数量积1、设b a ,是空间两个非零向量,我们把数量><,cos ||||叫作向量ba ,的数量积,记作b a ⋅,即⋅=><b a b a ,cos |||| 规定:零向量与任一向量的数量积为0。
2、模长公式||a== 3、两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则||AB , 或,A B d =4、夹角:cos ||||a ba b a b ⋅⋅=⋅ . 注:①0(,a b a b a b ⊥⇔⋅= 是两个非零向量); ②22||a a a a =⋅= 。
空间向量与立体几何(复习一)【学情分析】:学生已经掌握了空间向量的基础知识,并能较好地用它证明立体几何中的平行、垂直问题,计算空间角、空间距离。
但运用还不娴熟,计算易错的环节仍然出错。
【教学目标】:(1)知识目标:运用空间向量证明立体几何中的平行、垂直问题,及计算空间角的计算。
同时也试用传统的方法来解题。
(2)过程与方法目标:总结归纳,讲练结合,以练为主。
(3)情感与能力目标:通过总结归纳,综合运用,让学生享受成功的喜悦,提高学习数学兴趣,提高计算能力和空间想象能力。
【教学重点】:。
运用空间向量证明立体几何中的平行、垂直问题。
【教学难点】:计算空间角【课前准备】:投影AP=(-a,0,z)AC=(-a,a,0)DB=(a,a,a),1∵B1D⊥面PAC∴-a2+az=0∴点P方法二:引导学生用三垂线定理来解题。
,3,0),所以(2,BE =1(1,3AB =--故12BE AB ⋅=⨯因此,有BE AB ⊥(Ⅱ)设1(,n x =是平面1ABB 的法向量,因为1(1,AB =--1(0,BB =111111112n AB n AB x n BB n BB z ⎧⊥⋅=-⎪⇒⎨⊥⋅=⎪⎩1(3,1,0)n =-;同理,2(2,0,1)n =是平面设二面角B AB D --的平面角为121212||15|cos ,|5||||n n n n n n ⋅<>==⋅本例中没有现成的三条互相垂直的直线,需动脑筋构造。
二面角的大小与其两个面的法向量的夹角相等或互补,要根据实际情况来取舍。
1,,CD CB CC 为运算的基向BD CD CB =-。
注意向量间的方向对夹角的影响2)设1(0)CDCC λλ=>1CD CC λ= 211112()()0AC C D CD CB CC CD CC a λ-⋅=-++⋅-=-=,解得1λ=当1λ=时,11()()0AC BD CD CB CC CD CB ⋅=-++⋅-=四、小结学生归纳,教师适当的补充、概括。
§3.2.3利用向量解决平行与垂直问题练习与测试:(基础题)1,直三棱柱ABC—A1B1C1中,若,则()A.+- B.-+ C.-++ D.-+-答:D2,若向量、()A. B.C. D.以上三种情况都可能答:B3,一空间四边形ABCD的对边AB与CD,AD与BC都互相垂直,用向量证明:AC与BD也互相垂直.证明: . 又,即.……①.又,即.……②由①+②得:即..4,如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB、PC的中点.(1)求证:EF∥平面PAD;(2)求证:EF⊥CD;证:如图,建立空间直角坐标系A-xyz,设AB=2a,BC=2b,PA=2c,则:A(0, 0, 0),B(2a, 0, 0),C(2a, 2b, 0),D(0, 2b, 0),P(0, 0, 2c)∵ E为AB的中点,F为PC的中点∴ E(a, 0, 0),F(a, b, c)(1)∵ =(0, b, c),=(0, 0, 2c),=(0, 2b, 0)∴ =(+) ∴ 与、共面又∵ EÏ 平面PAD∴ EF∥平面PAD.(2) ∵=(-2a , 0, 0 )∴ ·=(-2a , 0, 0)·(0, b , c )=0 ∴ CD ⊥EF .(较难题)5,对于任何空间四边形,试证明它的一对对边中点的连线段与另一对对边平行于同一平面。
分析 要证明EF 、BC 、AD 平行于同一平面(E 、F 分别为AB 、CD 的中点),只要证明相应向量EF 与AD 、BC 共面即可。
证明:如图,利用多边形加法法则可得,EF =EA +AD +DF ,EF =EB +BC +CF …①。
又E 、F 分别是AB 、CD 的中点,故有=-,=-CF …② 将②代入①后,两式相加得2EF =AD +BC ,∴EF =12 AD +12 BC 即EF 与BC 、AD 共面,∴EF 与AD 、BC 平行于同一平面。
人教A版高中数学必修教案:立体几何全部教案第一章:绪论1.1 立体几何的概念教学目标:1. 理解立体几何的概念,掌握立体几何的研究对象和基本元素。
2. 掌握空间点、线、面的位置关系,培养空间想象能力。
教学重点:立体几何的概念,空间点、线、面的位置关系。
教学难点:立体几何的概念的理解,空间点、线、面的位置关系的应用。
教学过程:一、导入:引导学生回顾平面几何的基本概念,引出立体几何的概念。
二、新课:讲解立体几何的研究对象和基本元素,通过实物展示和图形绘制,介绍空间点、线、面的位置关系。
三、练习:学生自主完成练习题,巩固所学知识。
四、小结:总结本节课的主要内容,强调立体几何的概念和空间点、线、面的位置关系的重要性。
第二章:直线与平面2.1 直线与平面的位置关系教学目标:1. 理解直线与平面的位置关系,掌握直线与平面平行和直线与平面垂直的判定方法。
2. 培养空间想象能力和逻辑思维能力。
教学重点:直线与平面的位置关系,直线与平面平行和直线与平面垂直的判定方法。
教学难点:直线与平面平行和直线与平面垂直的判定方法的运用。
教学过程:一、导入:通过实例引入直线与平面的位置关系。
二、新课:讲解直线与平面的位置关系,介绍直线与平面平行和直线与平面垂直的判定方法。
三、练习:学生自主完成练习题,巩固所学知识。
四、小结:总结本节课的主要内容,强调直线与平面的位置关系和判定方法的重要性。
第三章:平面与平面3.1 平面与平面的位置关系教学目标:1. 理解平面与平面的位置关系,掌握平面与平面平行和平面与平面垂直的判定方法。
2. 培养空间想象能力和逻辑思维能力。
教学重点:平面与平面的位置关系,平面与平面平行和平面与平面垂直的判定方法。
教学难点:平面与平面平行和平面与平面垂直的判定方法的运用。
教学过程:一、导入:通过实例引入平面与平面的位置关系。
二、新课:讲解平面与平面的位置关系,介绍平面与平面平行和平面与平面垂直的判定方法。
三、练习:学生自主完成练习题,巩固所学知识。
天津市太平村中学高二数学 空间向量与立体几何教学案 新人
教A 版
如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,
2,60AB BAD =∠=.
(Ⅰ)求证:BD ⊥平面;PAC
(Ⅱ)若,PA AB =求PB 与AC 所成角的余弦值;
(Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.
2.如图,在锥体P ABCD -中, ABCD 是边长为1的
菱形,且60DAB ∠=,PA PD ==
2PB =,,E F 分别是BC ,PC 的中点.
(1)证明:AD ⊥平面DEF ;
(2)求二面角P AD B --的余弦值.
3,如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =
12
PD . (I )证明:平面PQC ⊥平面DCQ ;
(II )求二面角Q —BP —C 的余弦值.
4在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.
(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;
(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.
5如图,在直三棱柱ABC-A 1B 1C 1中.∠ BAC=90°,AB=AC=AA 1 =1.D 是棱CC 1上的一P 是AD 的延长线与A 1C 1的延长线的交点,且PB 1∥平面BDA . (I )求证:CD=C 1D :
(II )求二面角A-A 1D-B 的平面角的余弦值;
(Ⅲ)求点C 到平面B 1DP 的距离.
6如图,四棱锥P-ABCD 中,PA ⊥底面ABCD ,四边形ABCD 中,AB ⊥AD ,AB+AD=4,CD=2,︒=∠45CDA .
(I )求证:平面PAB ⊥平面PAD ;
(II )设AB=AP .
(i )若直线PB 与平面PCD 所成的角为︒30,求线段AB 的长; (ii )在线段AD 上是否存在一个点G ,使得点G 到点P ,B ,C , D
的距离都相等?说明理由。