高中数学教案苏教版必修
- 格式:docx
- 大小:517.14 KB
- 文档页数:58
苏教版高中数学必修2教案教学目标:1. 理解二次函数的定义和性质2. 掌握二次函数图像的特点和变换3. 能够根据给定的条件,求解二次函数的参数4. 运用二次函数解决实际问题教学重点:1. 二次函数的定义和性质2. 二次函数图像的特点和变换教学难点:1. 利用二次函数解决实际问题教学准备:1. 教师准备PPT和教案2. 学生准备纸笔教学过程:一、导入新知识(5分钟)教师通过引入实际生活中的问题,引发学生对二次函数的兴趣,激发学生的学习热情。
二、介绍二次函数的定义和性质(10分钟)1. 教师向学生介绍二次函数的定义和性质,包括二次函数的一般形式和图像特点。
2. 教师通过例题和实例,让学生理解二次函数的性质和特点。
三、学习二次函数的图像特点和变换(15分钟)1. 教师向学生介绍二次函数的图像特点和变换规律。
2. 学生通过绘制二次函数的图像和改变系数的大小,理解二次函数图像的变化规律。
四、联系实际问题解决二次函数(15分钟)1. 教师通过实际生活中的问题,引导学生运用二次函数解决问题。
2. 学生根据给定的条件,运用二次函数求解参数,解决实际问题。
五、巩固和拓展(10分钟)1. 教师引导学生复习二次函数的知识点,巩固所学内容。
2. 学生尝试解决更复杂的问题,拓展二次函数的应用领域。
六、作业布置(5分钟)1. 布置相关练习题,巩固学生的知识点。
2. 让学生总结本节课所学内容,为下节课的学习做好准备。
教学反思:通过本节课的教学,学生对二次函数的定义和性质有了更深入的理解,能够灵活运用二次函数解决实际问题。
希望在接下来的教学中,能够继续激发学生的学习兴趣,提高学生的学习效果。
苏教版高中数学必修一教案通过函数单调性的证明,提高同学在代数方面的推理论证力量;通过函数奇偶性概念的形成过程,培育同学的观看,归纳,抽象的力量,一起看看苏教版高中数学必修一教案!欢迎查阅!苏教版高中数学必修一教案1教学目标1.了解函数的单调性和奇偶性的概念,把握有关证明和推断的基本方法.(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.(2)能从数和形两个角度熟悉单调性和奇偶性.(3)能借助图象推断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义推断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.2.通过函数单调性的证明,提高同学在代数方面的推理论证力量;通过函数奇偶性概念的形成过程,培育同学的观看,归纳,抽象的力量,同时渗透数形结合,从特别到一般的数学思想.3.通过对函数单调性和奇偶性的理论讨论,增同学对数学美的体验,培育乐于求索的精神,形成科学,严谨的讨论态度.教学建议一、学问结构(1)函数单调性的概念。
包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.(2)函数奇偶性的概念。
包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.二、重点难点分析(1)本节教学的重点是函数的单调性,奇偶性概念的形成与熟悉.教学的难点是领悟函数单调性, 奇偶性的本质,把握单调性的证明.(2)函数的单调性这一性质同学在学校所学函数中曾经了解过,但只是从图象上直观观看图象的上升与下降,而现在要求把它上升到理论的高度,用精确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的同学来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是同学在函数内容中首次接触到的代数论证内容,同学在代数论证推理方面的力量是比较弱的,很多同学甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.三、教法建议(1)函数单调性概念引入时,可以先从同学熟识的一次函数,,二次函数.反比例函数图象动身,回忆图象的增减性,从这点感性熟悉动身,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导同学发觉自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的熟悉就可以融入其中,将概念的形成与熟悉结合起来.(2)函数单调性证明的步骤是严格规定的,要让同学根据步骤去做,就必需让他们明确每一步的必要性,每一步的目的,特殊是在第三步变形时,让同学明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便关心同学总结规律.函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观看对应的函数值的变化规律,先从详细数值开头,渐渐让在数轴上动起来,观看任意性,再让同学把看到的用数学表达式写出来.经受了这样的过程,再得到等式时,就比较简单体会它代表的是很多多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,关心同学发觉定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.苏教版高中数学必修一教案2教学目标:把握二倍角的正弦、余弦、正切公式,能用上述公式进行简洁的求值、化简、恒等证明;引导同学发觉数学规律,让同学体会化归这一基本数学思想在发觉中所起的作用,培育同学的创新意识.教学重点:二倍角公式的推导及简洁应用.教学难点:理解倍角公式,用单角的三角函数表示二倍角的三角函数.教学过程:Ⅰ.课题导入前一段时间,我们共同探讨了和角公式、差角公式,今日,我们连续探讨一下二倍角公式.我们知道,和角公式与差角公式是可以相互化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?请同学们试推.先回忆和角公式sin(α+β)=sinαcosβ+cosαsinβ当α=β时,sin(α+β)=sin2α=2sinαcosα即:sin2α=2sinαcosα(S2α)cos(α+β)=cosαcosβ-sinαsinβ当α=β时cos(α+β)=cos2α=cos2α-sin2α即:cos2α=cos2α-sin2α(C2α)tan(α+β)=tanα+tanβ1-tanαtanβ当α=β时,tan2α=2tanα1-tan2αⅠ.讲授新课同学们推证所得结果是否与此结果相同呢?其中由于sin2α+cos2α=1,公式C2α还可以变形为:cos2α=2cos2α-1或:cos2α=1-2sin2α同学们是否也考虑到了呢?另外运用这些公式要留意如下几点:(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有当α≠π2 +kπ及α≠π4 +kπ2 (kⅠZ)时才成立,否则不成立(由于当α=π2 +kπ,kⅠZ 时,tanα的值不存在;当α=π4 +kπ2 ,kⅠZ时tan2α的值不存在).当α=π2 +kπ(kⅠZ)时,虽然tanα的值不存在,但tan2α的值是存在的,这时求tan2α的值可利用诱导公式:即:tan2α=tan2(π2 +kπ)=tan(π+2kπ)=tanπ=0(2)在一般状况下,sin2α≠2sinα例如:sinπ3 =32≠2sinπ6 =1;只有在一些特别的状况下,才有可能成立[当且仅当α=kπ(kⅠZ)时,sin2α=2sinα=0成立].同样在一般状况下cos2α≠2cosαtan2α≠2tanα(3)倍角公式不仅可运用于将2α作为α的2倍的状况,还可以运用于诸如将4α作为2α的2倍,将α作为α2 的2倍,将α2 作为α4 的2倍,将3α作为3α2 的2倍等等.苏教版高中数学必修一教案3一、教材的地位和作用本节课是“空间几何体的三视图和直观图”的第一课时,主要内容是投影和三视图,这部分学问是立体几何的基础之一,一方面它是对上一节空间几何体结构特征的再一次强化,画出空间几何体的三视图并能将三视图还原为直观图,是建立空间概念的基础和训练同学几何直观力量的有效手段。
苏教版高中数学必修3教案
教学目标:通过本节课的学习,使学生能够掌握以下知识点:
1. 了解导数的概念及求导法则;
2. 理解导数的几何意义;
3. 使用导数求函数的极值和函数的增减性;
4. 运用导数解决实际问题。
教学过程:
一、导入(5分钟)
1. 引入本节课的主题,引起学生的兴趣。
2. 回顾上节课的内容,复习相关知识点。
二、导数的概念和求导法则(15分钟)
1. 简要介绍导数的概念和意义。
2. 讲解导数的定义及求导法则。
3. 通过例题演练,帮助学生掌握求导的方法。
三、导数的几何意义(10分钟)
1. 讲解导数在几何上的意义,如切线斜率、切线方程等。
2. 通过几何图形展示,帮助学生理解导数的几何意义。
四、导数在函数中的应用(15分钟)
1. 讲解导数在函数中的应用,如函数的极值、函数的增减性等。
2. 通过例题演练,让学生掌握如何使用导数求函数的极值和函数的增减性。
五、实际问题解决(10分钟)
1. 带领学生解决实际问题,如最优化问题、曲线的切线方程等。
2. 引导学生运用所学知识解决实际问题。
六、小结与作业布置(5分钟)
1. 总结本节课的重点内容,强化学生的理解。
2. 布置相关练习作业,巩固所学知识。
教学反思:本节课主要介绍了导数的概念及应用,通过理论讲解、例题演练和实际问题解决,帮助学生掌握了导数的相关知识点。
在教学过程中,要注重培养学生的分析和解决问题的能力,引导学生灵活运用导数解决实际问题。
同时,要及时进行课堂互动,了解学生的学习情况,及时调整教学策略,确保教学效果。
苏教版高中数学必修教案教材版本:苏教版教案编写人:(教师姓名)课时安排:本教案适用于(教学班级或年级)高中数学必修课程,共包括(总共几个单元)个单元,每周(几次)课时。
教学目标:1. 熟练掌握本单元的基本概念和定理;2. 能够运用所学知识解决相关问题;3. 培养学生的逻辑思维能力和数学分析能力;4. 提高学生的数学表达能力和解题技巧。
教学内容:本单元主要内容包括:1. 概率与统计2. 三角函数3. 数列4. 函数的概念与性质5. 导数与微分教学重点:1. 理解并掌握概率与统计的基本概念和计算方法;2. 掌握三角函数的定义、性质和相关计算方法;3. 理解数列的概念、等差数列与等比数列的概念与性质;4. 掌握函数的定义、单调性、奇偶性等基本概念;5. 理解导数与微分的概念、性质与应用。
教学方法:1. 讲授法:通过教师的讲解,帮助学生理解知识点;2. 演示法:通过实例演示,引导学生掌握解题方法;3. 练习法:通过大量练习,巩固学生的基本功;4. 互动讨论:鼓励学生积极参与课堂讨论,促进思维碰撞。
教学过程:1. 第一课时:概率与统计的基本概念- 学生了解概率的定义及基本性质;- 学生学习统计的概念及应用。
2. 第二课时:三角函数的定义与性质- 学生掌握三角函数的定义及相关公式;- 学生学习三角函数的基本性质及计算方法。
3. 第三课时:数列的概念与性质- 学生了解数列的定义及分类;- 学生学习等差数列与等比数列的性质及计算方法。
4. 第四课时:函数的概念与性质- 学生掌握函数的定义及常见函数类型;- 学生学习函数的单调性、奇偶性等性质。
5. 第五课时:导数与微分的概念与应用- 学生了解导数的定义及性质;- 学生学习微分的概念及应用方法。
教学评估:1. 课堂作业:每节课后布置相应的作业,巩固学生的学习成果;2. 测试评测:每个单元结束后进行测试评测,检验学生的学习效果;3. 课堂表现:通过课堂表现及参与度评价学生的学习态度和能力。
苏教版高中必修一数学教案学科: 数学年级: 高中一年级教材版本: 苏教版教学内容: 必修一教学目标:1. 知识目标:- 掌握直线的方程和性质- 理解向量的概念和运算规则- 学习平面直角坐标系及其性质2. 能力目标:- 能够解决与直线和向量相关的问题- 能够运用平面直角坐标系解决几何问题- 提高思维逻辑和计算能力3. 情感目标:- 培养学生的数学兴趣和自信心- 培养学生的团队合作和解决问题的能力教学重点和难点:重点:- 直线的方程和性质- 向量的概念和运算规则难点:- 向量的运算及实际问题的应用- 平面直角坐标系的运用教学准备:- 教师备课: 深入了解教学内容,准备教学资料和案例- 学生备课: 阅读相关知识点,做好课前准备教学过程:一、导入(5分钟)教师通过引入一个有趣的问题或事例,引发学生对本节课内容的兴趣,激发学生思考。
二、讲授(25分钟)1. 直线的方程和性质的讲解2. 向量的概念和运算规则的讲解3. 平面直角坐标系的重要性和基本性质的讲解三、练习(15分钟)教师设计一些简单到复杂的练习题,供学生进行课堂练习,巩固所学知识。
四、拓展(10分钟)教师设计一些实际问题,让学生应用所学知识解决,培养学生的解决问题的能力。
五、总结(5分钟)教师对本节课的重点知识进行总结回顾,并提出下节课的预习任务。
教学反思:教师应及时对学生的学习情况进行跟踪和反馈,调整教学方法和策略,提高教学效果。
同时鼓励学生多进行思考和讨论,培养他们的独立思考和解决问题的能力。
第 1 课时:§2.1 数列(1)【三维目标】:一、知识与技能1.通过日常生活中的实例,了解数列的概念和几种简单的表示方法(列表、图像、通项公式),了解数列是一种特殊函数;认识数列是反映自然规律的基本数学模型;2.了解数列的分类,理解数列通项公式的概念,会根据通项公式写出数列数列的前几项,会根据简单数列的前几项写出数列的通项公式;3. 培养学生认真观察的习惯,培养学生从特殊到一般的归纳能力,提高观察、抽象的能力.二、过程与方法1.通过对具体例子的观察分析得出数列的概念,培养学生由特殊到一般的归纳能力;2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.3.通过类比函数的思想了解数列的几种简单的表示方法(列表、图象、通项公式);三、情感、态度与价值观1.体会数列是一种特殊的函数;借助函数的背景和研究方法来研究有关数列的问题,可以进一步让学生体会数学知识间的联系,培养用已知去研究未知的能力。
2.在参与问题讨论并获得解决中,培养观察、归纳的思维品质,养成自主探索的学习习惯;并通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。
【教学重点与难点】:重点:数列及其有关概念,通项公式及其应用难点:根据一些数列的前几项抽象、归纳数列的通项公式【学法与教学用具】:1. 学法:学生以阅读与思考的方式了解数列的概念;通过类比函数的思想了解数列的几种简单的表示方法;以观察的形式发现数列可能的通项公式。
2. 教学方法:启发引导式3. 教学用具:多媒体、实物投影仪、尺等.【授课类型】:新授课【课时安排】:1课时【教学思路】:一、创设情景,揭示课题1. 观察下列例子中的6列数有什么特点:(1)传说中棋盘上的麦粒数按放置的先后排成一列数:1,2,22,23,…,263(2)某种细胞,如果每个细胞每分钟分裂为2个,那么每过1分钟,1个细胞分裂的个数依次为1,2,4,8,16,…(3)π精确到0.01,0.001,0.0001…的不足近似值排成一列数:3.14,3.141,3.1415,3.14159,3.141592…(4)人们在1740年发现了一颗彗星,并推算出它每隔83年出现一次,则从出现那次算起,这颗彗星出现的年份依次为1740,1823,1906,1989,…(5)某剧场有10排座位,第一排有20个座位,后一排都比前一排多2个,则各排的座位数依次为:20,22,24,26,…,38(6)从1984年到今年,我国体育健儿共参加了6次奥运会,获得的金牌数依次排成一列数:15,5,16,16,28,32(7)"一尺之棰,日取其半,万世不竭"如果将"一尺之棰"视为1份,那么每日剩下的部分依次为1,12,14,18,116,... 这些数字能否调换顺序?顺序变了之后所表达的意思变化了吗?思考问题,并理解顺序变化后对这列数字的影响.(组织学生观察这六组数据后,启发学生概括其特点,教师总结并给出数列确切定义)注意:由古印度关于国际象棋的传说、生物学中的细胞分裂问题及实际生活中的某些例子导入课题,既激活了课堂气氛,又让学生体会到数列在实际生活中有着广泛的应用,提高学生学习的兴趣。
苏教版高中数学必修1教案教学目标:1.了解集合的概念和基本符号表示;2.掌握集合的运算及其性质;3.能够解决集合的相关问题。
教学重点:1.集合的概念和基本符号表示;2.集合的运算及其性质。
教学难点:1.集合运算的深入理解;2.解决集合相关问题的能力。
教学准备:1.教材《高中数学必修1》;2.多媒体教学设备;3.黑板、粉笔。
教学流程:一、引入新知识(5分钟)1.教师引导学生回顾上节课学到的知识,引出本节课的新课内容。
2.介绍集合的概念和基本符号表示。
二、讲解集合的概念和基本符号表示(10分钟)1.与学生一起讨论集合的定义和基本概念。
2.教师利用多媒体教学设备展示集合的基本符号表示。
三、集合的运算及其性质(15分钟)1.介绍集合的运算:并集、交集和补集。
2.讲解集合的运算性质,并进行相关例题讲解。
四、练习与巩固(15分钟)1.教师设计一些练习题,让学生进行实际操作,并在黑板上进行讲解。
2.指导学生按照课本上的习题进行练习,加深对集合运算的理解。
五、讲解集合相关问题(10分钟)1.与学生一起讨论集合相关问题,引导学生分析解决问题的方法。
2.进行相关例题讲解,让学生理解解题思路。
六、作业布置(5分钟)1.布置课后作业:完成课本上的练习题,并思考解答相关问题。
2.鼓励学生积极思考,主动探究。
教学反思:在本节课中,集中讲解了集合的概念、基本符号表示以及运算性质,并通过多种教学方法帮助学生理解和掌握相关知识。
在未来教学中,我将继续注重学生的实际操作和思辨能力培养,激发学生的学习兴趣,提高他们的学习效果。
教案:高中数学——正弦定理、余弦定理及应用教案编写者:教学目标:1. 理解正弦定理、余弦定理的定义及几何意义;2. 掌握正弦定理、余弦定理的应用方法;3. 能够运用正弦定理、余弦定理解决实际问题。
教学重点:1. 正弦定理、余弦定理的定义及几何意义;2. 正弦定理、余弦定理的应用方法。
教学难点:1. 正弦定理、余弦定理在实际问题中的应用。
教学准备:1. 教师准备PPT、教案、例题及练习题;2. 学生准备笔记本、文具。
教学过程:一、导入(5分钟)1. 复习初中阶段学习的三角函数知识,引导学生回顾正弦、余弦函数的定义及图像;2. 提问:如何利用三角函数解决几何问题?引出正弦定理、余弦定理的学习。
二、正弦定理(15分钟)1. 讲解正弦定理的定义:在一个三角形中,各边和它所对角的正弦的比相等;2. 解释正弦定理的几何意义:三角形任意一边的长度等于这一边所对角的正弦值乘以对边的长度;3. 举例说明正弦定理的应用方法,如已知三角形两边和一边的对角,求第三边的长度;4. 引导学生通过PPT上的例题,理解并掌握正弦定理的应用。
三、余弦定理(15分钟)1. 讲解余弦定理的定义:在一个三角形中,各边的平方和等于两边的平方和减去这两边与它们夹角的余弦的乘积的二倍;2. 解释余弦定理的几何意义:三角形任意一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦值的乘积的两倍;3. 举例说明余弦定理的应用方法,如已知三角形两边和它们的夹角,求第三边的长度;4. 引导学生通过PPT上的例题,理解并掌握余弦定理的应用。
四、应用练习(15分钟)1. 给学生发放练习题,要求学生在纸上完成;2. 学生在纸上完成练习题,教师巡回指导;3. 选取部分学生的作业进行讲解和点评。
1. 回顾本节课学习的正弦定理、余弦定理的定义及应用;2. 强调正弦定理、余弦定理在解决几何问题中的重要性;3. 提醒学生课后复习巩固,做好预习准备。
教学反思:本节课通过讲解正弦定理、余弦定理的定义及几何意义,让学生掌握了这两个重要定理的应用方法。
高中数学教案苏教版必修2学科:数学课时:1课时教材:苏教版必修2课题:集合的运算教学目标:1. 理解集合的概念,掌握集合的表示方法和运算规律。
2. 能够运用集合的运算法则解决实际问题。
教学重点:1. 集合的概念和基本运算法则。
2. 通过例题和练习掌握集合的运算方法。
教学难点:1. 理解集合的运算法则,并能够应用到实际问题中。
2. 理清集合运算过程中的逻辑关系。
教学过程:一、复习上节课内容通过简单的提问和复习题,回顾上节课所学内容,引导学生重新温习和巩固知识。
二、引入新知识1. 引导学生思考:什么是集合?集合有哪些运算法则?2. 结合实际生活中的例子,引入集合的概念和运算规律,让学生对集合的概念有更深入的理解。
三、讲解集合的运算法则1. 集合的表示法:用集合的符号表示集合,如A={1,2,3}。
2. 集合的运算法则:并集、交集、差集、补集等。
四、练习与讨论1. 设计一些运用集合运算法则解决实际问题的例题,让学生在操作练习中掌握集合运算的方法。
2. 组织学生互相讨论解题思路,引导他们通过讨论和交流加深对集合运算法则的理解。
五、课堂小结对本节课所学的内容进行总结,引导学生进行思考和概括,确保他们对集合的概念和运算方法有清晰的认识。
六、作业布置设计相关的习题,巩固学生对集合运算法则的掌握,鼓励他们在家中进行练习和复习,以便更好地理解和掌握知识。
教学反思:通过本节课的教学,学生对集合的概念和运算规律有了进一步的理解和掌握,但在实际操作中还存在一定的困难。
下节课将加强例题讲解和练习,帮助学生更好地运用集合的运算法则解决问题,提高他们的学习效果。
苏教版高中数学必修1教案5篇苏教版高中数学必修1教案5篇语文教案数学教案英语教案物理教案化学教案生物教案政治教案历史教案推文网 > 教学资源 > 教案模板 > 数学教案 >苏教版高中数学必修1教案2023-10-13 10:03:45|思敏推荐文章苏教版小升初数学教案热度:苏教版二年级数学下册教案热度:2023年苏教版小学五年级数学教案范文热度:苏教版小学五年级数学教案范文2023热度:苏教版一年级下册数学教案热度:苏教版高中数学必修1教案5篇教案是以系统方法为指导。
教案把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。
下面小编给大家带来关于苏教版高中数学必修1教案,方便大家学习苏教版高中数学必修1教案1教学目标:(1) 了解集合、元素的概念,体会集合中元素的三个特征;(2) 理解元素与集合的 ;属于 ;和 ;不属于 ;关系;(3) 掌握常用数集及其记法;教学重点:掌握集合的基本概念;教学难点:元素与集合的关系;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念--集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容二、新课教学(一)集合的有关概念1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2. 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3. 思考1:判断以下元素的全体是否组成集合,并说明理由:(1) 大于3小于11的偶数;(2) 我国的小河流;(3) 非负奇数;(4) 方程的解;(5) 某校2007级新生;(6) 血压很高的人;(7) 著名的数学家;(8) 平面直角坐标系内所有第三象限的点(9) 全班成绩好的学生。
课题:指数函数教材:苏教版普通高中课程标准实验教科书必修1一、教学目标:知识目标:①知道指数函数的定义;②知道指数函数的图象和性质;感悟研究函数的规律和方法能力目标:①培养观察、联想、类比、猜测、归纳等思维能力;②体会数形结合思想、分类讨论思想,增强识图用图的能力情感目标:①通过自主探究,体验从特殊→一般→特殊的认知过程,了解指数函数的实际背景;②通过亲手实践,互动交流,激发学习兴趣,增强创新意识二、教学重点、难点:重点:指数函数的定义,图象和性质;难点:由指数函数图象探索并理解指数函数的性质三、教学工具:PPT、Ece、几何画板、实物投影仪教学方法:探究式教学法四、教学过程:亲爱的同学们,我们在前面的几节课中,系统的学习了函数的概念,研究了函数的图象与性质,今天我们将在前面学习的根底上继续学习并研究一类重要的函数,请同学们先看两个实际问题:一、情境导入情境一:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……一个这样的细胞分裂次后,得到细胞分裂的个数为,请写出与之间的关系式与之间的关系式,可以表示为〔〕情境二:某放射性物质不断衰变为其他物质,每经过1年,这种物质剩留的质量是原来的50%,现有该物质质量为1,经过年的剩留量为,请写出与之间的关系式与之间的关系式,可以表示为〔〕二、新知探究〔一〕指数函数的定义问题组一:〔1〕请问函数和函数具有哪些相同的特征?〔2〕你能否写出类似结构的函数表达式?尝试一下〔3〕能否将上述几个具体的函数表达式统一写成一般的函数表达式呢?引导学生归纳:用字母代替其中的底数,将上述式子表示成的形式师:这里的是否有所限制呢?由上一节课?分数指数幂?所学知识可知,规定底数,指数的取值集合可以为全体实数但是假设底数,那么函数为,无论取何值,恒成立,归为常数函数故引出指数函数的定义:思考:函数是否为指数函数呢?同学们,我们了解了指数函数的定义以后,需要对指数函数的性质进行研究,以便帮助我们解决具体问题〔二〕指数函数的图象与性质问题组二:(1)我们在前面函数章节中研究了函数的哪些性质?(2)我们在前面函数章节中通过怎样的方法研究函数的性质?师:我们下面分三步走来实现通过函数图象研究函数性质的目的第一步:用列表描点的方法作出指数函数的图象利用实物投影来展示学生所作图象,结合实际情况对学生所作图象作出评价评价的主要方面有:曲线的延展性,平滑度,凹凸性,与轴的渐进关系等假设学生作图存在问题,可以结合指数函数的定义式想象图象的特征,运用数形结合的思想方法,由数想形,有形想数,来完善指数函数图象师:刚刚我们通过列表描出个别整数点的方式大致作出了指数函数的图象,那么对于指数函数更精确的图象究竟是什么样子的呢?下面我们以指数函数为例,利用计算机软件来作出它的精确图象第二步:用计算机软件Ece作出指数函数的图象引导学生结合图象指出指数函数的性质,完成指数函数的性质表格将探究得到的性质填入表格中:师:刚刚我们一起研究了具体的指数函数的图象与性质,但是指数函数作为一类函数,其性质是否可以按底数分成两大类呢?下面我们利用计算机软件——几何画板,通过改变底数的取值,来验证我们的猜测第三步:用计算机软件几何画板,演示底数取不同值时指数函数的图象的变化验证步骤二中总结出指数函数的性质,实现从特殊到一般地转化,总结出一类函数的性质,进一步完善表格师:经历了刚刚的“三部曲〞,我们终于探究得到了指数函数的性质,为了便于大家记忆图象与性质,老师送给大家一个“顺口溜〞,请看:性质概括:大1增,小1减,图象恒过〔0,1〕点;左右无限上冲天,永与横轴不沾边经过刚刚的一番探索,我们得到了指数函数的性质,运用指数函数的性质可以帮助我们解决那些数学问题呢?三、数学运用例1、比拟以下各组数中两个值的大小〔1〕,〔2〕,〔3〕,〔4〕,解:〔1〕可直接计算;〔2〕引起认知冲突,实现构造函数思想的自然引入;〔3〕略〔4〕构造两个指数函数和,由单调性易知:,利用“〞架设“桥梁〞解题反思:构造函数的思想,再运用指数函数的单调性解决问题练习:比拟以下各组数中两个值的大小:〔1〕;〔2〕例2、〔1〕,求实数的取值范围;〔2〕,求实数的取值范围解题反思:指数函数单调性的逆用练习:求满足以下条件的实数的取值范围:〔1〕;〔2〕四、归纳总结1、知识点上:掌握了研究具体函数的方法;掌握了指数函数的图象与性质2、思想方法上:〔1〕特殊→一般→特殊;〔2〕分类讨论;〔3〕构造函数;〔4〕数形结合五、课后稳固P54,习题2、3、4附:教学设计说明*教材的地位和作用:本节课是学生在已掌握了函数的一般性质和简单的指数运算的根底上,进一步研究指数函数,以及指数函数的图象与性质,它一方面可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步熟悉函数的性质和作用,研究对数函数以及等比数列的性质打下坚实的根底因此,本节课的内容十分重要,它对知识起到了承上启下的作用此外,?指数函数?的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其表达在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这局部知识还有着广泛的现实意义*学生的学情分析:本课时是学生在学习了分数指数幂的前提下,再进一步升华为指数函数的第一节课,它承上启下,对学生来说至关重要学生在前面已经学过了一般函数的性质和数形结合的思想,本节课就要学以致用高中数学应该表达以学生为主,让学生自主探索,领略数学的乐趣,教师应该在课堂上创立适当的情景让学生能在其中由浅入深的掌握知识点,教师是课堂的引领者而不是主宰者*教师的教法分析:本节课采用探究、比拟的教学方法通过教师在教学过程中的点拨,启发学生通过主动观察、主动思考、动手操作、自主探究来到达对知识的发现和接受*板书设计:。
高中数学6.3 对数函数教案教案名称:高中数学6.3 对数函数教学教案教学目标:1. 理解对数函数的定义和性质。
2. 掌握对数函数的图像、变化规律及其应用。
3. 能够应用所学知识解决相关问题。
教学重点:1. 对数函数的定义和性质。
2. 对数函数的图像和变化规律。
教学难点:1. 理解对数函数与指数函数之间的关系。
2. 掌握对数函数图像在平面直角坐标系中的绘制方法。
教学过程:Step 1:引入概念(10分钟)通过引导学生观察和思考,介绍什么是对数。
让学生了解对数是一个表示底数乘积的幂次方,强调在实际问题中,我们需要掌握对数运算和对数函数的基本概念,并通过实例演示,让学生理解并掌握如何求出零次方、一次方等特殊情况下的值。
Step 2:定义与性质(15分钟)介绍什么是对数函数及其基本性质。
讲解如何根据底数大小确定对数函数增减性及奇偶性,并通过具体例子演示,让学生掌握对数函数的定义和性质。
特别是要强调对数函数与指数函数之间的关系,引导学生理解它们之间的联系和区别。
Step 3:图像绘制(20分钟)详细讲解对数函数在平面直角坐标系中的图像及其变化规律。
通过演示和讲解,让学生深入理解对数函数的图像特点和变化趋势,并能够独立进行绘制。
同时,教师可以提供一些实例,让学生通过观察、分析和推理来确定图像的形状和位置。
Step 4:应用分析(20分钟)提供一些实际问题案例,让学生应用所学知识进行分析和解决。
例如,在一个 pH 值计算问题中求出氢离子浓度等参数。
教师可以给予指导和提示,引导学生利用所学知识进行推理和分析。
通过实例演示,让学生掌握如何运用所学知识解决实际问题,并能够独立应用于其他情境。
Step 5:练习与巩固(10分钟)提供一些涉及对数函数的练习题目,让学生独立或小组合作完成。
教师可以给予指导和反馈,帮助学生巩固所学知识。
鼓励学生自主思考,并培养他们灵活运用所学知识解决问题的能力。
Step 6:拓展与应用(10分钟)引导学生思考更复杂情境下的应用问题。
苏教版高中数学必修一优秀教案一、教学目标1. 知识与技能:掌握二次函数的基本性质和图像特征,能够画出二次函数的图像,并求解相关问题。
2. 过程与方法:培养学生运用直观的几何方法理解二次函数的性质,培养学生观察、分析和解决问题的能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生的数学思维和解决问题的能力。
二、教学重点1. 二次函数的基本性质:顶点、对称轴、焦点等。
2. 二次函数的图像特征:开口方向、凹凸性、边界点等。
三、教学难点1. 二次函数图像的绘制:包括顶点、对称轴、焦点等的具体确定。
2. 二次函数性质的应用:能够通过性质解决相关问题。
四、教学过程1. 导入(5分钟)教师通过引导学生观察钟摆摆动的过程,引入二次函数的概念,让学生体会二次函数图像的特点和性质。
2. 理解二次函数的基本性质(15分钟)教师通过展示二次函数的标准形式,引导学生理解二次函数的顶点、对称轴等基本性质,让学生说出二次函数图像的大致形状。
3. 绘制二次函数的图像(20分钟)教师通过实例引导学生绘制二次函数的图像,让学生掌握顶点、对称轴的具体确定方法,以及开口方向、凹凸性等特征。
4. 运用二次函数的性质解决问题(15分钟)教师通过实际问题引导学生运用二次函数的性质解决相关问题,培养学生的应用能力和分析能力。
5. 总结与拓展(5分钟)教师对本节课的重点知识进行总结,引导学生思考如何更加灵活地应用二次函数的性质解决问题。
五、课堂作业1. 完成课堂练习题。
2. 思考如何用二次函数模型解决生活中的实际问题,并做相关练习。
六、教学资源1. 教材《苏教版高中数学必修一》2. 教师准备的课件及实物展示材料七、教学反思通过本节课的教学,学生在观察、分析和解决问题的能力有所提高,但在二次函数性质的应用方面还存在一些困难。
下节课需要加强相关练习,帮助学生更加熟练地运用二次函数的性质解决问题。
课题:3.2.1对数(第1课时)授课教师:常州市第一中学周玉琴一、教学目标1、知识与技能:⑴理解对数的概念;⑵理解指数式和对数式的关系,会熟练地进行指数式和对数式的互化;⑶了解常用对数和自然对数以及这两种对数的记法;2、过程与方法:(1)通过探究对数的概念以及对数式与指数式的关系,使学生感受化归与转化思想,培养学生分析、归纳能力;(2)让学生感受到引入对数的必要性3、情感态度与价值观:通过对数概念的学习,使学生认清基本概念的来龙去脉,加深对人类认识事物的一般规律的理解和认识,感受数学的整体性,激发学生的学习数学的兴趣。
二、教学重点、难点1、教学重点:对数的概念,指数式和对数式的相互转化.2、教学难点:对数概念的引入三、教学方法和教学手段:启发式、自主探索、多媒体辅助教学.四、教学过程(一)情景引入问题1:幂指数式中各个量的名称是什么?N 幂问题2:(1)32,8x x ==; (2)28,3x x ==;(3)333,3x x ==(4) 23,?x x ==问题3:某种放射性物质不断变化为其他物质,每经过1年,这种物质剩留的质量是原来的84%.若这种物质最初的质量为1,则经过多少年该物质的剩留量为原来的一半?(学生讨论)生:设经过x 年该物质的剩留量为原来的一半,则:0.840.5?xx =⇒= (2)讨论:(1)对于23x =,0.840.5x = 这两个方程有解?(2)如果有解,则各有几个解?(3)能否估算出解的范围(4)解的精确值是多少?生:(1)由函数2x y =的值域为()0,+∞ ,可知,函数值为3时存在满足题意的x ;由函数2xy =的单调性,这样的x 只有一个;由函数2x y =在R 上单调递增,122232x <=<,12x ∴<<(2)由函数0.84x y =在R 上单调递增,43120.840.840.84x <=<,34x ∴<<我们无法用前面的知识来求出这两个方程解x的精确值。
苏教版高中数学必修二教案
学科:数学
年级:高中
教材版本:苏教版高中数学必修二
课时:第一课时
教学内容:平面向量的基本概念和性质
教学目标:学生能够理解平面向量的定义、性质,掌握向量的运算规律,能够灵活运用向量进行计算。
教学重点:向量的定义、性质和运算规律
教学难点:向量的坐标表示和向量的夹角
教学过程:
一、导入(5分钟)
教师通过引入一个生活中的例子,如小球的运动轨迹,引起学生对向量的兴趣,并提出一个问题,如如何描述小球的运动方向和速度。
二、讲解(20分钟)
1. 向量的定义和性质
2. 向量的坐标表示
3. 向量的夹角
4. 向量的运算规律
三、练习(15分钟)
1. 计算给定向量的模长和方向角
2. 求两个向量的和、差和数量积
3. 判断两个向量是否共线
四、拓展(10分钟)
教师引导学生探讨向量在几何中的应用,如平面向量表示几何问题中的位移、速度等。
五、总结(5分钟)
教师对本节课的内容进行总结,并提出可能的作业练习。
教学反思:
本节课主要介绍了平面向量的基本概念和性质,学生通过实际例子和练习,较好地掌握了向量的定义和运算规律。
在今后的教学中,可以通过更多的练习和拓展,帮助学生更深入地理解向量的概念和应用。
2.2 .1等差数列的概念七、教学过程(一)创设情景,引入概念(设计意图:通过对实际问题的分析对比,建立等差数列模型,体验数学发现和创造的过程)情景1:把班上学生学号从小到大排成一列:如:1,2,3,4,…,63,64.问题1:请学生归纳出上一个数列的通项公式),521(,+∈≤≤=N n n n a n 。
问题2:把上面的数列各项依次记为64321,,,,a a a a ,学生填空:()()()1,,1,163642312+=+=+=a a a a a a问题3:上面的数列有什么特点,你能用数学语言(符号)描述这些特点吗?(教师引导,学生完成)11+=-n n a a (2≥n ),或者写成 11=--n n a a (2≥n ).注:强调2≥n ,原因在于1-n 有意义。
问题4:提问学生,能用普通语言概括上面的规律吗?数列后一项等于前一项加“1”,或者 数列后一项与前一项的差为“1”. 上面的数列已找出这一特殊规律,下面再观察一些数列并也找出它们的规律。
情景2:看幻灯片上的实例(1)2008年北京奥运会,女子举重共设置7个级别,其中较轻的4个级别体重组成数列(单位:kg ): 48,53,58,63.(2)水库的管理员为了保证优质鱼类有良好的生活环境,定期放水清库的办法清理水库中的杂鱼。
如果一个水库的水位18m ,自然放水每天水位下降2.5m ,最低降至5m 。
那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m ):18,15.5,13,10.5,8,5.5.(3)我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。
按照单利计算本利和的公式是:本利和=本金×(1+利率×存期)。
如,按活期存入10000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和组成的数列是:10072, 10144, 10216, 10288, 10360.(4)全国统一鞋号中,成年女鞋的尺码最小的是21码,相邻两个鞋号间隔0.5码,最大的是25码,组成的数列:21,21.5 ,22 ,22.5 ,23 ,23.5 ,24 ,24.5 ,25.问题5:请学生写出上面的数列,观察这些数列的特点,并用数学语言(符号)描述这些特点:(1)51=--n n a a ,2≥n ,+∈N n ;(2)5.21-=--n n a a ,2≥n ,+∈N n(3)721=--n n a a ,2≥n ,+∈N n ;(4)5.01=--n n a a ,2≥n ,+∈N n 问题6:观察并归纳上面这些数列的共同特征,用数学语言(符号)描述这些特点:1n n a a d --=(d 是常数),(2≥n ,+∈N n )满足这种特征的数列很多,我们有必要为这样的数列取一个名字?)--等差数列。
高中数学必修2教案苏教版
教学重点:直线与平面的位置关系、直线与平面的夹角关系。
教学难点:直线与平面的方程。
教学准备:教材、教学课件、黑板、教具等。
教学步骤:
一、导入:通过引入一个实际生活中的问题来引起学生的兴趣,如:一个飞机在空中飞行时,飞机的飞行轨迹与地面的关系是怎样的呢?
二、讲解直线与平面的位置关系:首先,向学生介绍直线与平面的基本概念,然后讲解直线与平面的相互位置关系,即直线与平面可能相离、相切或相交。
三、讲解直线与平面的夹角关系:介绍直线与平面之间的夹角,包括直线与平面的垂直、平行和倾斜的夹角关系,并讲解相关理论知识。
四、解题演练:通过几个实例让学生进行实际问题求解,巩固所学知识,培养学生的解题能力。
五、作业布置:布置相关练习题,巩固学生所学内容,并激发他们对数学的兴趣。
六、小结:对本节课学习的重点知识进行总结,并提醒学生注意相关知识点。
教学反思:在教学过程中要注重引导学生思考和实际运用知识,培养学生的数学思维能力和解决问题的能力。
同时,要根据学生的实际情况灵活调整教学方法,提高教学效果。
集合的含义及其表示教学目标:1.使学生理解集合的含义,知道常用集合及其记法;2.使学生初步了解“属于”关系和集合相等的意义,初步了解有限集、无限集、空集的意义; 3.使学生初步掌握集合的表示方法,并能正确地表示一些简单的集合. 教学重点:集合的含义及表示方法. 教学过程:一、问题情境 1.情境.新生自我介绍:介绍家庭、原毕业学校、班级. 2.问题.在介绍的过程中,常常涉及像“家庭”、“学校”、“班级”、“男生”、“女生”等概念,这些概念与“学生×××”相比,它们有什么共同的特征?二、学生活动 1.介绍自己;2.列举生活中的集合实例;3.分析、概括各集合实例的共同特征. 三、数学建构1.集合的含义:一般地,一定范围内不同的...、确定的...对象的全体组成一个集合.构成集合的每一个个体都叫做集合的一个元素.2.元素与集合的关系及符号表示:属于,不属于.3.集合的表示方法: 另集合一般可用大写的拉丁字母简记为“集合A 、集合B ”.4.常用数集的记法:自然数集N ,正整数集N*,整数集Z ,有理数集Q ,实数集R . 5.有限集,无限集与空集. 6.有关集合知识的历史简介.列举法描述法图示法 个体与群体 群体是由个体组成自然语言描述 如{15的正整数约数}数学语言描述 规范格式为{x |p (x )}四、数学运用 1.例题.例1 表示出下列集合:(1)中国的直辖市;(2)中国国旗上的颜色. 小结:集合的确定性和无序性 例2 准确表示出下列集合: (1)方程x 2―2x -3=0的解集; (2)不等式2-x <0的解集; (3)不等式组2+3511x x >⎧⎨->⎩-的解集;(4)不等式组⎩⎨⎧2x -1≤-33x +1≥0的解集.解:略.小结:(1)集合的表示方法——列举法与描述法;(2)集合的分类——有限集⑴,无限集⑵与⑶,空集⑷ 例3 将下列用描述法表示的集合改为列举法表示: (1){(x ,y )| x +y = 3,x N ,y N } (2){(x ,y )| y = x 2-1,|x |≤2,x Z } (3){y | x +y = 3,x N ,y N } (4){ x R | x 3-2x 2+x =0} 小结:常用数集的记法与作用. 例4 完成下列各题:(1)若集合A ={ x |ax +1=0}=,求实数a 的值; (2)若-3{ a -3,2a -1,a 2-4},求实数a . 小结:集合与元素之间的关系. 2.练习:(1)用列举法表示下列集合: ①{ x |x +1=0}; ②{ x |x 为15的正约数}; ③{ x |x 为不大于10的正偶数};④{(x,y)|x+y=2且x-2y=4};⑤{(x,y)|x∈{1,2},y∈{1,3}};⑥{(x,y)|3x+2y=16,x∈N,y∈N}.(2)用描述法表示下列集合:①奇数的集合;②正偶数的集合;③{1,4,7,10,13}五、回顾小结(1)集合的概念——集合、元素、属于、不属于、有限集、无限集、空集;(2)集合的表示——列举法、描述法以及Venn图;(3)集合的元素与元素的个数;(4)常用数集的记法.六、作业课本第7页练习3,4两题.子集、全集、补集(1)教学目标:1.使学生进一步理解集合的含义,了解集合之间的包含关系,理解掌握子集的概念;2.理解子集、真子集的概念和意义;3.了解两个集合之间的相等关系,能准确地判定两个集合之间的包含关系.教学重点:子集含义及表示方法;教学难点:子集关系的判定.教学过程:一、问题情境1.情境.将下列用描述法表示的集合改为用列举法表示:A={x|x2≤0},B={ x|x=(-1)n+(-1)n+1,n Z};C={ x|x2-x-2=0},D={ x|-1≤x≤2,x Z}2.问题.集合A与B有什么关系?集合C与D有什么关系?二、学生活动1.列举出与C 与D 之间具有相类似关系的两个集合; 2.总结出子集的定义;3.分析、概括两集合相等和真包含的关系的判定. 三、数学建构1.子集的含义:一般地,如果集合A 的任一个元素都是集合B 的元素,(即若a ∈A 则a ∈B ),则称集合A 为集合B 的子集,记为A ⊆B 或B ⊇A .读作集合A 包含于集合B 或集合B 包含集合A .用数学符号表示为:若a ∈A 都有a ∈B ,则有AB 或BA . (1)注意子集的符号与元素与集合之间的关系符号的区别: 元素与集合的关系及符号表示:属于∈,不属于∉; 集合与集合的关系及符号表示:包含于⊆.(2)注意关于子集的一个规定:规定空集是任何集合的子集.理解规定 的合理性.(3)思考:A ⊆B 和B ⊆A 能否同时成立? (4)集合A 与A 之间是否有子集关系? 2.真子集的定义:(1)AB 包含两层含义:即A =B 或A 是B 的真子集. (2)真子集的wenn 图表示 (3)A =B 的判定(4)A 是B 的真子集的判定 四、数学运用例1 (1)写出集合{a ,b }的所有子集; (2)写出集合{1,2,3}的所有子集; {1,3}{1,2,3},{3}{1,2,3},小结:对于一个有限集而言,写出它的子集时,每一个元素都有且只有两种可能:取到或没取到.故当集合的元素为n 个时,子集的个数为2n.例2 写出N ,Z ,Q ,R 的包含关系,并用Venn 图表示.例3 设集合A ={-1,1},集合B ={x |x 2-2ax +b =0},若B ≠,BA ,求a ,b 的值. 小结:集合中的分类讨论.元素与集合是个体与群体的关系,群体是由个体组成;子集是小集体与大集体的关系.练习:1.用适当的符号填空.(1)a_{a};(2)d_{a,b,c};(3){a}_{a,b,c};(4){a,b}_{b,a};(5){3,5}_{1,3,5,7};(6){2,4,6,8}_{2,8};(7)_{1,2,3},(8){x|-1<x<4}__{x|x-5<0}2.写出满足条件{a}MÜ{a,b,c,d}的集合M.3.已知集合P = {x | x2+x-6=0},集合Q = {x | ax+1=0},满足QÜP,求a所取的一切值.4.已知集合A={x|x=k+12,k Z},集合B={x|x=2k+1,k Z},集合C={x|x=12k,k Z},试判断集合A、B、C的关系.五、回顾小结1.子集、真子集及对概念的理解;2.会用Venn图示及数轴来解决集合问题.六、作业教材P10习题1,2,5.子集、全集、补集(2)教学目标:1.使学生进一步理解集合及子集的意义,了解全集、补集的概念;2.能在给定的全集及其一个子集的基础上,求该子集的补集;3.培养学生利用数学知识将日常问题数学化,培养学生观察、分析、归纳等能力.教学重点:补集的含义及求法.教学重点:补集性质的理解.教学过程:一、问题情境1.情境.(1)复习子集的概念;(2)说出集合{1,2,3}的所有子集.2.问题.相对于集合{1,2,3}而言,集合{1}与集合{2,3}有何关系呢?二、学生活动1.分析、归纳出全集与补集的概念; 2.列举生活中全集与补集的实例. 三、数学建构1.补集的概念:设A ⊆S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为S ðA (读作“A 在S 中的补集”),即S ðA ={ x |x ∈S ,且x ∉A },ðA 可用右图表示.2.全集的含义:如果集合S U .3.常用数集的记法:自然数集N ,正整数集N*,整数集示为R ðQ .四、数学运用 1.例题.例1 已知全集S =Z ,集合A ={x |x =2k ,k Z},B ={ x |x =2k +1,k Z},分别写出集合A ,B 的补集SA 和SB .例2 不等式组⎩⎨⎧2x -1>13x -6≤0的解集为A ,S =R ,试求A 及S ðA ,并把它们表示在数轴上.例3 已知全集S ={1,2,3,4,5},A ={ x ∈S |x 2-5qx +4=0}. (1)若S ðA =S ,求q 的取值范围;(2)若S ðA 中有四个元素,求S ðA 和q 的值; (3)若A 中仅有两个元素,求S ðA 和q 的值. 2.练习:(1)S ðA 在S 中的补集等于什么?即S ð(S ðA )= .(2)若S =Z ,A ={ x |x =2k ,k ∈Z},B ={ x |x =2k +1,k ∈Z},则S ðA = ,S ðB = .(3)Sð∅= ,S ðS = .五、回顾小结1.全集与补集的概念;2.任一集合对于全集而言,其任意子集与其补集一一对应.A ∪BABA ∪B六、作业教材第10页习题3,4.交集、并集教学目标:1.理解交集、并集的概念,掌握交集、并集的性质;2.理解掌握区间与集合的关系,并能应用它们解决一些简单的问题. 教学重点:理解交集、并集的概念. 教学难点:灵活运用它们解决一些简单的问题. 教学过程:一、情景设置1.复习巩固:子集、全集、补集的概念及其性质. 2.用列举法表示下列集合:(1)A ={ x |x 3-x 2-2x =0};(2)B ={ x |(x +2)(x +1)(x -2)=0}. 思考:集合A 与B 之间有包含关系么?用图示如何反映集合A 与B 之间的关系呢? 二、学生活动 1.观察与思考; 2.完成下列各题.(1)用wenn 图表示集合A ={-1,0,2},B ={-2,-1,2},C ={-1,2}之间的关系. (2)用数轴表示集合A ={x |x ≤3},B ={ x |x >0 },C ={x |0<x ≤3}之间的关系. 三、数学建构 1.交集的概念.一般地,由所有属于集合A 且属于集合B 的元素构成的集合,称为A 与B 的交集,记为A ∩B (读作“A 交B ”),即A ∩B ={ x |x ∈A 且x ∈B }2.并集的概念.ABA ∩B一般地,由所有属于集合A或属于集合B的元素构成的集合,称为A与B的并集,记为A∪B(读作“A 并B”),即A∪B={ x|x∈A或x∈B }3.交、并集的性质.A∩B=B∩A,A∩=,A∩A=A,A∩BA,A∩BB,若A∩B=A,则AB,反之,若AB,则A∩B=A.即AB⇔A∩B=A.A∪B=B∪A,A∪=A,A∪A=A,AA∪B, BA∪B,若A∪B=B,则AB,反之,若AB,则A∩B=B.即AB⇔A∩B=B.思考:集合A={x |-1<x≤3},B={y |1≤y<5},集合A与集合B能进行交、并的计算呢?4.区间的概念.一般地,由所有属于实数a到实数b(a<b)之间的所有实数构成的集合,可表示成一个区间,a、b叫做区间的端点.考虑到端点,区间被分为开区间、闭区间或半开半闭区间.5.区间与集合的对应关系.[a,b]={x | a≤x≤b},(a,b)={x | a<x<b},[a,b)={x | a≤x<b},(a,b]={x | a<x≤b},(a,+)={x | x>a },(-,b)={x | x<b},(-,+)=R.四、数学运用1.例题.例1 (1)设A={-1,0,1},B={0,1,2,3},求A∩B和A∪B.(2)已知A∪B={-1,0,1,2,3},A∩B={-1,1},其中A={-1,0,1},求集合B.(3)已知A={( x,y)| x+y=2},B={( x,y)| x-y=4},求集合A∩B.(4)已知元素(1,2)A∩B,A={( x,y)| y2=ax+b},B={( x,y)| x2-ay-b=0},求a,b的值并求A∩B.例2 学校举办了排球赛,某班45名学生中有12名同学参赛.后来又举办了田径赛,这个班有20名同学参赛.已知两项都参赛的有6名同学.两项比赛中,这个班共有多少名同学没有参加过比赛?例3 (1)设A=(0, +),B=(-,1],求A∩B和A∪B.(2)设A=(0,1],B={0},求A∪B.2.练习:(1)若A={x |2x2+3ax+2=0},B={x |2x2+x+b=0},A∩ B={0,5},求a与A∪ B.(2)交集与并集的运算性质.五、回顾小结交集和并集的概念和性质;区间的表示及其与集合的关系. 六、作业教材第13页习题2,3,5,7.2.1.1 函数的概念和图象(1)教学目标:1.通过现实生活中丰富的实例,让学生了解函数概念产生的背景,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数的概念,掌握函数是特殊的数集之间的对应;2.了解构成函数的要素,理解函数的定义域、值域的定义,会求一些简单函数的定义域和值域; 3.通过教学,逐步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考. 教学重点:两集合间用对应来描述函数的概念;求基本函数的定义域和值域. 教学过程:一、问题情境 1.情境.正方形的边长为a ,则正方形的周长为 ,面积为 . 2.问题.在初中,我们曾认识利用函数来描述两个变量之间的关系,如何定义函数?常见的函数模型有哪些? 如图,A (-2,0),B (2,0),点C 在直线y =2上移动.则△ABC的面积S 与点C 的横坐标x 之间的变化关系如何表达?面积S 是C的横坐标x 的函数么?二、学生活动1.复述初中所学函数的概念;2.阅读课本23页的问题(1)、(2)、(3),并分别说出对其理解;3.举出生活中的实例,进一步说明函数的对应本质.三、数学建构1.用集合的语言分别阐述23页的问题(1)、(2)、(3);问题1 某城市在某一天24小时内数图象回答下列问题:(1)这一变化过程中,有哪几个变量?(2)这几个变量的范围分别是多少?问题2 略.问题3 略(详见23页).2.函数:一般地,设A、B是两个非空的数集,如果按某种对应法则f,对于集合A中的每一个元素x,在集合B中都有惟一的元素y和它对应,这样的对应叫做从A到B的一个函数,通常记为y=f(x),x∈A.其中,所有输入值x组成的集合A叫做函数y=f(x)的定义域.(1)函数作为一种数学模型,主要用于刻画两个变量之间的关系;(2)函数的本质是一种对应;(3)对应法则f可以是一个数学表达式,也可是一个图形或是一个表格(4)对应是建立在A、B两个非空的数集之间.可以是有限集,当然也就可以是单元集,如f(x)=2x,(x=0).3.函数y=f(x)的定义域:(1)每一个函数都有它的定义域,定义域是函数的生命线;(2)给定函数时要指明函数的定义域,对于用解析式表示的集合,如果没有指明定义域,那么就认为定义域为一切实数.四、数学运用例1.判断下列对应是否为集合A 到B的函数:(1)A={1,2,3,4,5},B={2,4,6,8,10},f:x→2x;(2)A={1,2,3,4,5},B={0,2,4,6,8},f:x→2x;(3)A={1,2,3,4,5},B=N,f:x→2x.练习:判断下列对应是否为函数: (1)x →2x,x ≠0,x ∈R ;(2)x →y ,这里y 2=x ,x ∈N ,y ∈R . 例2 求下列函数的定义域:(1)f (x )=x -1;(2)g(x )=x +1+1x.例3 下列各组函数中,是否表示同一函数?为什么? A .y =x 与y =(x )2; B .y =x 2与y =3x 3;C .y =2x -1(x ∈R)与y =2t -1(t ∈R);D .y =x +2·x -2与y =x 2-4 练习:课本26页练习1~4,6. 五、回顾小结1.生活中两个相关变量的刻画→函数→对应(A →B ) 2.函数的对应本质;3.函数的对应法则和定义域. 六、作业:课堂作业:课本31页习题(1)第1,2两题.2.1.1 函数的概念和图象(2)教学目标:1.进一步理解用集合与对应的语言来刻画的函数的概念,进一步理解函数的本质是数集之间的对应; 2.进一步熟悉与理解函数的定义域、值域的定义,会利用函数的定义域与对应法则判定有关函数是否为同一函数;3.通过教学,进一步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考. 教学重点:用对应来进一步刻画函数;求基本函数的定义域和值域. 教学过程:一、问题情境 1.情境.复述函数及函数的定义域的概念. 2.问题.函数的本质是对应,但并非所有的对应都是函数,一个必须是建立在两个非空数集间的对应,二是对应只能是单值对应.判断两个函数是否为同一函数,一看对应法则,二看定义域.概念中集合A为函数的定义域,集合B的作用是什么呢?二、学生活动1.理解函数的值域的概念;2.能利用观察法求简单函数的值域;3.探求简单的复合函数f(f(x))的定义域与值域.三、数学建构1.函数的值域:(1)按照对应法则f,对于A中所有x的值的对应输出值组成的集合称之为函数的值域;(2)值域是集合B的子集.2.x g(x) f(x) f(g(x)),其中g(x)的值域即为f(g(x))的定义域;四、数学运用(一)例题.例1 已知函数f (x)=x2+2x,求f (-2),f (-1),f (0),f (1).例2 根据不同条件,分别求函数f(x)=(x-1)2+1的值域.(1)x∈{-1,0,1,2,3};(2)x∈R;(3)x∈[-1,3];(4)x∈(-1,2];(5)x∈(-1,1).例3 求下列函数的值域:①y②y.例4 已知函数f(x)与g(x)分别由下表给出:分别求f (f (1)),f (g (2)),g(f (3)),g (g (4))的值.(二)练习.(1)求下列函数的值域:①y=2-x2;②y=3-|x|.(2)已知函数f(x)=3x2-5x+2,求f(3)、f(-2)、f(a)、f(a+1).(3)已知函数f(x)=2x+1,g(x)=x2-2x+2,试分别求出g(f(x))和f(g(x))的值域,比较一下,看有什么发现.(4)已知函数y=f(x)的定义域为[-1,2],求f(x)+f(-x)的定义域.(5)已知f(x)的定义域为[-2,2],求f(2x),f(x2+1)的定义域.五、回顾小结函数的对应本质,函数的定义域与值域;利用分解的思想研究复合函数.六、作业课本P31-5,8,9.2.1.2 函数的表示方法(1)教学目标:1.进一步理解函数的概念,了解函数表示的多样性,能熟练掌握函数的三种不同的表示方法;2.在理解掌握函数的三种表示方法基础上,了解函数不同表示法的优缺点,针对具体问题能合理地选择表示方法;3.通过教学,培养学生重要的数学思想方法——分类思想方法.教学重点:函数的表示.教学难点:针对具体问题合理选择表示方法.教学过程:一、问题情境1.情境.下表的对应关系能否表示一个函数:2.问题.如何表示一个函数呢?二、学生活动1.阅读课本掌握函数的三种常用表示方法;2.比较三种表示法之间的优缺点.3.完成练习 三、数学建构 1.函数的表示方法: 2.三种不同方法的优缺点:3.三种不同方法的相互转化:能用解析式表示的,一般都能列出符合条件的表、画出符合条件的图,反之亦然;列表法也能通过图形来表示.四、数学运用 (一)例题例1 购买某种饮料x 听,所需钱数为y 元.若每听2元,试分别用解析法、列表法、图象法将y 表示成x (x ∈{1,2,3,4})的函数,并指出该函数的值域.跟踪练习:某公司将进货单价为8元一个的商品按10元一个销售,每天可卖出100个,若这种商品的销售价每个上涨1元,则销售量就减少10个.(1)列表:(2)图象: (3)解析式:将条件变换成:“某公司将进货单价为8元一个 的商品按10元一个销售,每天可卖出110个”例2 如图,是一个二次函数的图象的一部分,试根据图象 中的有关数据,求出函数f (x )的解析式及其定义域.(二)练习:1.1 nmile(海里)约为1854m ,根据这一关系,写出米数y 关于海里数x 2.用长为30cm 的铁丝围成矩形,试将矩形的面积S (cm 2)数的图象.列表法—用列表来表示两个变量之间函数关系的方法 解析法—用等式来表示两个变量之间函数关系的方法 图象法—用图象来表示两个变量之间函数关系的方法3.已知f(x)是一次函数,且图象经过(1,0)和(-2,3)两点,求f(x)的解析式.4.已知f(x)是一次函数,且f(f(x))=9x-4,求f(x)的解析式.五、回顾小结1.函数表示的多样性;2.函数不同表示方法之间的联系性;3.待定系数法求函数的解析式.六、作业课堂作业:课本35页习题1,4,5.2.1.2 函数的表示方法(2)教学目标:1.进一步理解函数的表示方法的多样性,理解分段函数的表示,能根据实际问题列出符合题意的分段函数;2.能较为准确地作出分段函数的图象;3.通过教学,进一步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考.教学重点:分段函数的图象、定义域和值域.教学过程:一、问题情境1.情境.复习函数的表示方法;已知A={1,2,3,4},B={1,3,5},试写出从集合A到集合B的两个函数.2.问题.函数f(x)=|x|与f(x)=x是同一函数么?区别在什么地方?二、学生活动1.画出函数f(x)=|x|的图象;2.根据实际情况,能准确地写出分段函数的表达式.三、数学建构1.分段函数:在定义域内不同的部分上,有不同的解析表达式的函数通常叫做分段函数.(1)分段函数是一个函数,而不是几个函数;(2)分段函数的定义域是几部分的并; (3)定义域的不同部分不能有相交部分;(4)分段函数的图象可能是一条连续但不平滑的曲线,也可能是由几条曲线共同组成;(5)分段函数的图象未必是不连续,不连续的图象表示的函数也不一定是分段函数,如反比例函数的图象;(6)分段函数是生活中最常见的函数. 四、数学运用 1.例题.例1 某市出租汽车收费标准如下:在3km 以内(含3km)路程按起步价7元收费,超过3km 以外的路程按元/km 收费.试写出收费额关于路程的函数解析式.例2 如图,梯形OABC 各顶点的坐标分别为O (0,0),A (6,0),B (4,2),C (2,2).一条与y 轴平行的动直线l 从O 点开始作平行移动,到A 点为止.设直线l 与x 轴的交点为M ,OM =x ,记梯形被直线l 截得的在l左侧的图形的面积为y .求函数y =f(x )的解析式、定义域、值域.例3 将函数f (x )= | x +1|+| x -2|表示成分段函数的形式,并画出其图象,根据图象指出函数f (x )的值域.2.练习:练习1:课本35页第7题,36页第9题. 练习2:(1)画出函数f (x )= 的图象.(2)若f (x )= 求f (-1),f (0),f (2),f (f (-1)),f (f (0)),f (f (12))的值. (3)试比较函数f (x )=|x +1|+|x |与g (x )=|2x +1|是否为同一函数.(4)定义[x ]表示不大于x 的最大整数,试作出函数f (x )=[x ] (x ∈[-1,3))的图象.并将其表示成分段函数.练习3:如图,点P 在边长为2的正方形边上按A →B →C →D →A 的方向移动,试将AP 表示成移动的距离x 的函数.五、回顾小结分段函数的表示→分段函数的定义域→分段函数的图象;x 2-1,≥0,2x +1,x <0. x -1 (x ≥0)1-x (x <0)BC P含绝对值的函数常与分段函数有关; 利用对称变换构造函数的图象. 六、作业课堂作业:课本35页习题第3题,36页第10,12题;课后探究:已知函数f (x )=2x -1(x ∈R ),试作出函数f (|x |),|f (x )|的图象.函数的简单性质(1)教学目标:1.在初中学习一次函数、二次函数的性质的基础上,进一步感知函数的单调性,并能结合图形,认识函数的单调性;2.通过函数的单调性的教学,渗透数形结合的数学思想,并对学生进行初步的辩证唯物论的教育; 3.通过函数的单调性的教学,让学生学会理性地认识与描述生活中的增长、递减等现象. 教学重点:用图象直观地认识函数的单调性,并利用函数的单调性求函数的值域. 教学过程:一、问题情境如图(课本37页图2-2-1),是气温关于时间t 的函数,记为=f (t ),观察这个函数的图象,说出气温在哪些时间段内是逐渐升高的或是下降的?问题:怎样用数学语言刻画上述时间段内“随时间的增大气温逐渐升高”这一特征? 二、学生活动1.结合图2―2―1,说出该市一天气温的变化情况;2.回忆初中所学的有关函数的性质,并画图予以说明;3.结合右侧四幅图,解释函数的单调性. 三、数学建构 1.增函数与减函数:一般地,设函数y =f (x )的定义域为A ,区间IA . 如果对于区间I 内的任意两个值x 1,x 2,当x 1<))x2时,都有f(x1)<f(x2),那么就说y=f(x)在区间I是单调增函数,区间I称为y=f(x)的单调增区间.如果对于区间I内的任意两个值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说y=f(x)在区间I 是单调减函数,区间I称为y=f(x)的单调减区间.2.函数的单调性与单调区间:如果函数y=f(x)在区间I是单调增函数或单调减函数,那么就说函数y=f(x)在区间I上具有单调性.单调增区间与单调减区间统称为单调区间.注:一般所说的函数的单调性,就是要指出函数的单调区间,并说明在区间上是单调增函数还是单调减函数.四、数学运用例1 画出下列函数的图象,结合图象说出函数的单调性.1.y=x2+2x-1 2.y=2 x例2 求证:函数f(x)=-1x-1在区间(-∞,0)上是单调增函数.练习:说出下列函数的单调性并证明.1.y=-x2+2 2.y=2x+1五、回顾小结利用图形,感知函数的单调性→给出单调性的严格意义上的定义→证明一个函数的单调性.六、作业课堂作业:课本44页1,3两题.函数的简单性质(2)教学目标:1.进一步理解函数的单调性,能利用函数的单调性结合函数的图象,求出有关函数的最小值与最大值,并能准确地表示有关函数的值域;2.通过函数的单调性的教学,让学生在感性认知的基础上学会理性地认识与描述生活中的增长、递减等现象.教学重点:利用函数的单调性求函数的值域.教学过程:一、问题情境1.情境.(1)复述函数的单调性定义;(2)表述常见函数的单调性.2.问题.结合函数的图象说出该天的气温变化范围.二、学生活动1.研究函数的最值;2.利用函数的单调性的改变,找出函数取最值的情况;三、数学建构1.函数的值域与函数的最大值、最小值:一般地,设y=f(x)的定义域为A.若存在x0A,使得对任意xA, f(x)≤f(x0)恒成立,则称f(x0)为y=f(x)的最大值,记为y max=f(x0).若存在定值x0A,使得对任意xA,f(x)≥f(x0)恒成立,则称f(x0)为y=f(x)的最小值,记为y min=f(x0).注:(1)函数的最大值、最小值分别对应函数图象上的最高点和最低点,典型的例子就是二次函数y =ax2+bx-c(a≠0),当a>0时,函数有最小值;当a<0时,函数有最大值.(2)利用函数的单调性,并结合函数的图象求函数的值域或函数的最值是求函数的值域或函数的最值的常用方法.2.函数的最值与单调性之间的关系:已知函数y=f(x)的定义域是[a,b],a<c<b.当x[a,c]时,f(x)是单调增函数;当x[c,b] 时,f(x)是单调减函数.则f(x)在x=c时取得最大值.反之,当x[a,c]时,f(x)是单调减函数;当x[c,b] 时,f(x)是单调增函数.则f(x)在x=c时取得最小值.四、数学运用例1 求出下列函数的最小值:(1)y=x2-2x;(2)y=1x,x∈[1,3].变式:(1)将y=x2-2x的定义域变为(0,3]或[1,3]或[-2,3],再求最值.(2)将y=1x的定义域变为(-2,-1],(0,3]结果如何?跟踪练习:求f(x)=-x2+2x在[0,10]上的最大值和最小值.例2 已知函数y=f(x)的定义域为[a,b],a<c<b.当x∈[a,c]时,f(x)是单调增函数;当x∈[c,b]时,f(x)是单调减函数.试证明f(x)在x=c时取得最大值.变式:已知函数y=f(x)的定义域为[a,b],a<c<b.当x∈[a,c]时,f(x)是单调减函数;当x∈[c,b]时,f(x)是单调增函数.试证明f(x)在x=c时取得最小值.例3 求函数f(x)=x2-2ax在[0,4]上的最小值.练习:如图,已知函数y=f(x)的定义域为[-4,7],根据图象,说出它的最大值与最小值.求下列函数的值域:(1)yx[0,3];(2) y=11x-,x[2,6];(3)y(4)y=11(1)x x--.五、回顾小结利用图形,感知函数的单调性→证明一个函数的单调性→确定一个函数的最值→确定一个函数的值域.六、作业课堂作业:课本40页第3题,44页第3题.函数的简单性质(3)教学目标:1.进一步认识函数的性质,从形与数两个方面引导学生理解掌握函数奇偶性的概念,能准确地判断所给函数的奇偶性;2.通过函数的奇偶性概念的教学,揭示函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,培养学生从特殊到一般的概括能力,并渗透数形结合的数学思想方法;3.引导学生从生活中的对称联想到数学中的对称,师生共同探讨、研究,从代数的角度给予严密的代数形式表达、推理,培养学生严谨、认真、科学的探究精神.教学重点:函数奇偶性的概念及函数奇偶性的判断.教学难点:函数奇偶性的概念的理解与证明.教学过程:一、问题情境1.情境.复习函数的单调性的概念及运用.教师小结:函数的单调性从代数的角度严谨地刻画了函数的图象在某范围内的变化情况,便于我们正确地画出相关函数的图象,以便我们进一步地从整体的角度,直观而又形象地反映出函数的性质.在画函数的图象的时候,我们有时还要注意一个问题,就是对称(见P41).2.问题.观察函数y=x2和y=1x(x≠0)的图象,从对称的角度你发现了什么?二、学生活动1.画出函数y=x2和y=1x(x≠0)的图象2.利用折纸的方法验证函数y=x2图象的对称性3.理解函数奇偶性的概念及性质.三、数学建构1.奇、偶函数的定义:一般地,如果对于函数f(x)的定义域内的任意的一个x,都有f(-x)=f(x),那么称函数y=f(x)是偶函数;如果对于函数f(x)的定义域内的任意的一个x,都有f(-x)=-f(x),那么称函数y=f(x)是奇函数;2.函数的奇偶性:如果函数f(x)是奇函数或偶函数,我们就说函数f(x)具有奇偶性,而如果一个函数既不是奇函数,也不是偶函数(常说该函数是非奇非偶函数),则说该函数不具有奇偶性.3.奇、偶函数的性质:偶函数的图象关于y轴对称,奇函数的图象关于原点对称.四、数学运用(一)例题例1 判断函数f(x)=x3+5x的奇偶性.例2 判定下列函数是否为偶函数或奇函数:(1)f(x)=x2-1;(2)f(x)=2x;。