五大波谱解析步骤简述 (一) 紫外光谱 解析UV应用时顾及吸收带的
- 格式:doc
- 大小:29.50 KB
- 文档页数:6
分享:五大波谱解析步骤简述(一) 紫外光谱解析UV应用时顾及吸收带的位置,强度和形状三个方面。
从吸收带(K带)位置可估计产生该吸收共轭体系的大小;从吸收带的强度有助于K带,B带和R带的识别;从吸收带的形状可帮助判断产生紫外吸收的基团,如某些芳香化合物,在峰形上可显示一定程度的精细结构。
一般紫外吸收光谱都比较简单,大多数化合物只有一、两个吸收带,因此解析较为容易。
可粗略归纳为以下几点:①如果化合物在220~800nm区间无吸收,表明该化合物是脂肪烃、脂环烃或它们的简单衍生物。
②如果在220~250nm间显示强吸收(ε近10000或更大),表明有R带吸收,即分子结构存在共轭双烯或α,β—不饱和醛、酮。
③如果在250~290nm间显示中等强度(ε为200~1000)的吸收带,且常显示不同程度精细结构,表明结构中有苯环或某些杂芳环的存在。
④如果在290nm附近有弱吸收带(ε<100),则表明分子结构中非共轭羰基。
⑤如果在300nm上有***度吸收,说明该化合物有较大的共轭体系;若***度吸收具有明显的精细结构,说明为稠环芳、稠环杂芳烃或其衍生物。
(二)红外光谱1. 解析红外光谱的三要素(位置、强度和峰形)在解析红外光谱时,要同时注意红外吸收峰的位置,强度和峰形。
吸收位置是红外吸收最重要的特点,但在鉴定化合物分子结构时,应将吸收峰的位置辅以吸收峰强度和峰形综合分析。
每种有机化合物均显示若干吸收峰,对大量红外图谱中各吸收峰强度相互比较,归纳出各种官能团红外吸收强度的变化范围。
只有熟悉各官能团红外吸收的位置和强度处于一定范围时,才能准确推断出官能团的存在2 .确定官能团的方法对于任何有机化合物的红外光谱,均存在红外吸收的伸缩振动和多种弯曲振动。
因此,每一个化合物的官能团的红外光谱图在不同区域显示一组相关吸收峰。
只有当几处相关吸收峰得到确认时,才能确定该官能团的存在。
例1. 甲基(CH3):2960cm-1和2870cm-1为伸缩振动,1460cm-1和1380cm-1为其弯曲振动。
五大波谱解析步骤简述(一)紫外光谱解析UV应用时顾及吸收带的五大波谱解析步骤简述(一)紫外光谱解析UV应用时顾及吸收带的位置,强度和形状三个方面。
从吸收带(K带)位置可估计产生该吸收共轭体系的大小;从吸收带的强度有助于K带,B带和R带的识别;从吸收带的形状可帮助判断产生紫外吸收的基团,如某些芳香化合物,在峰形上可显示一定程度的精细结构。
一般紫外吸收光谱都比较简单,大多数化合物只有一、两个吸收带,因此解析较为容易。
可粗略归纳为以下几点:①如果化合物在220~800nm区间无吸收,表明该化合物是脂肪烃、脂环烃或它们的简单衍生物。
②如果在220~250nm间显示强吸收(ε近10000或更大),表明有R带吸收,即分子结构存在共轭双烯或α,β—不饱和醛、酮。
③如果在250~290nm间显示中等强度(ε为200~1000)的吸收带,且常显示不同程度精细结构,表明结构中有苯环或某些杂芳环的存在。
④如果在290nm附近有弱吸收带(ε<100),则表明分子结构中非共轭羰基。
⑤如果在300nm上有***度吸收,说明该化合物有较大的共轭体系;若***度吸收具有明显的精细结构,说明为稠环芳、稠环杂芳烃或其衍生物。
(二)红外光谱1. 解析红外光谱的三要素(位置、强度和峰形)在解析红外光谱时,要同时注意红外吸收峰的位置,强度和峰形。
吸收位置是红外吸收最重要的特点,但在鉴定化合物分子结构时,应将吸收峰的位置辅以吸收峰强度和峰形综合分析。
每种有机化合物均显示若干吸收峰,对大量红外图谱中各吸收峰强度相互比较,归纳出各种官能团红外吸收强度的变化范围。
只有熟悉各官能团红外吸收的位置和强度处于一定范围时,才能准确推断出官能团的存在2 .确定官能团的方法对于任何有机化合物的红外光谱,均存在红外吸收的伸缩振动和多种弯曲振动。
因此,每一个化合物的官能团的红外光谱图在不同区域显示一组相关吸收峰。
只有当几处相关吸收峰得到确认时,才能确定该官能团的存在。
简述五种光谱法的原理光谱法是一种常用的分析技术,常常应用于化学、物理和生物学等领域。
根据不同原理和应用领域的不同,可将光谱法分为多种类型。
下面就详细介绍五种常见的光谱法及其原理。
一、紫外-可见吸收光谱紫外-可见吸收光谱是一种测量样品在可见光和紫外光区域吸收的技术。
在该技术中,用一束具有连续波长的光照射样品,然后检测透射光,通过计算样品吸收的光量,可以推断出样品分子的化学结构。
紫外-可见吸收光谱利用的原理是,当样品中的分子吸收可见光或紫外光时,其电子能级会发生跃迁,这个跃迁与分子的化学成分有关,因此,可以通过测量样品吸收的光谱来推断其化学成分。
二、荧光光谱荧光光谱是一种利用样品在受到特定波长激发后发出荧光的技术。
在该技术中,样品收到特定波长的激发光后,会发生电子从基态跃迁到激发态,然后再跃迁回原来的基态时发出荧光。
样品发出的荧光光谱与其分子结构有关,可以用来分析样品的成分和活性。
荧光光谱利用的原理是,荧光发生的条件是样品中存在能级差异,当分子处于激发态时,电子具有更高的能量,可以通过荧光现象发射短波长的光,从而生成荧光光谱。
三、原子吸收光谱原子吸收光谱是一种测量样品中金属和金属离子浓度的技术。
在该技术中,根据不同原子的能级结构,通过特定波长的光激发分子中的特定原子,然后测量样品透射光的强度,从而推断样品中特定原子的浓度。
原子吸收光谱利用的原理是,输入特定波长的光激发样品中的原子,当样品中的特定原子吸收更多的光时,其原子的能级结构会发生变化,从而改变吸收光的强度,因此可以通过测量吸收光的强度来推断样品中特定原子的浓度。
四、红外光谱红外光谱是一种基于样品吸收红外光的技术。
在该技术中,样品收到具有一定波长的红外光后,吸收光的振动能量与样品中的官能团的振动能量有关。
从而,可以通过分析样品吸收红外光的振动频率,推断出样品中所包含的官能团。
红外光谱利用的原理是,各种原子或原子团具有强烈的吸收红外辐射的振动能力,这种振动能力取决于其分子结构的特定配置,因此可以通过测量样品吸收的红外辐射的振动频率和强度来推断样品中的分子结构。
第二章紫外光谱法一.紫外光与紫外光谱波长为10~400nm的光波即电磁波1nm=10-7cm=10-9m1Å=10-1nm=10-10m1.紫外光:介于X射线的长波区段与可见光的短波区段之间。
光谱区X-射线远紫外近紫外可见光区波长范围 1.0-100Å 10-200nm200-400nm400-800nm跃迁类型内层电子外层电子外层电子外层电子谱型X-射线谱紫外光谱紫外光谱可见光谱紫外光区包括近紫外(200~400nm)远紫外(10~200nm)两个区段1.1 紫外光与紫外光谱●远紫外区(10~200nm):在此波长范围内,大气有吸收,必须在真空条件下操作,普通仪器观察不到,对仪器要求高,远紫外也叫真空紫外区,所以远紫外区在普通有机化合物机构分析上没有应用。
●近紫外区(200~400nm):在此波长范围内,玻璃有吸收,一般用石英比色器,因此称近紫外区为石英紫外区,近紫外区最为有用,通常所谓的紫外光谱就是指近紫外区的光谱。
●2.紫外光谱:以波长10~400nm的电磁波照射物质分子,即以紫外光照射物质分子,由分子的电子能级跃迁而产生的光谱叫紫外光谱。
紫外光谱是电子光谱的一部分,可见光谱也是电子光谱,电子光谱是由电子跃迁而产生的吸收光谱的总称。
1.2紫外光谱的产生、特征及表示法●二.紫外光谱的产生、特征及表示法●1.紫外光谱的产生主要是因为物质分子的能量具有量子化的特征(即物质分子的能量具有不连续的特征)。
一个分子有一系列能阶,其中包括许多电子能阶,分子震动能阶以及分子转动能阶。
1.2.1n=24 纯电子跃迁3 1-20ev21纯转动跃迁纯振动跃迁0.05-1ev n=1 0.05ev以下电子,振动,转动能级示意图1.2.2●当分子在入射光的作用下发生了阶电子跃迁,也就是说分子中阶电子由低能级E 0跃迁到高能级E 1(激发态),根据量子理论电子在跃迁时所吸收的能量不是连续的,而是量子化的,即所吸收的光子能量等于两个能级的差值:●△E=E 1-E 0=hv=h·c/λ(v=c/λ)●式中:h=Plank 常数=6.62×10-27尔格·秒c=光速3×1010cmλ=波长用nm 表示v=频率用周/秒(Cps )或赫兹(Hz )E=能量单位为尔格,电子伏特ev 或卡/摩尔1.2.3●分子的内部运动包括有转动、振动和电子运动。
紫外光谱的解析一、紫外光谱的基本原理1. 概念•紫外光谱(UV)是分子吸收紫外•可见光区(200•800nm)的电磁波而产生的吸收光谱。
它反映了分子中的电子跃迁情况。
当分子吸收紫外光时,分子中的价电子从低能级跃迁到高能级。
•例如,在一些有机化合物中,存在着π电子和n电子(非键电子)。
这些电子可以发生π• π跃迁、n• π跃迁等。
其中,π• π跃迁通常所需能量较高,对应的吸收波长相对较短,多在200nm左右;而n• π跃迁所需能量较低,吸收波长相对较长,一般在270• 350nm范围。
2. Lambert - Beer定律•这是紫外光谱分析的基本定律,其表达式为 A = εbc。
其中,A是吸光度,表示物质对光的吸收程度;ε是摩尔吸光系数,它与物质的性质有关,反映了物质对特定波长光的吸收能力,单位为L/(mol·cm);b是光程长度,即样品池的厚度,单位为cm;c是溶液中物质的摩尔浓度,单位为mol/L。
•例如,在测定某一化合物的浓度时,如果已知其摩尔吸光系数和光程长度,通过测量吸光度就可以计算出溶液中的物质浓度。
假设某物质的摩尔吸光系数为1000L/(mol·cm),光程长度为1cm,测得吸光度为0.5,根据Lambert• Beer定律,可算出该物质的浓度c = A/(εb)=0.5/(1000×1)= 5×10⁻⁴mol/L。
二、紫外光谱中的特征吸收带1. R带• R带是由n•π跃迁产生的吸收带。
其特点是吸收强度较弱,摩尔吸光系数一般在10• 100L/(mol·cm)范围内,吸收峰波长较长,多在270• 350nm。
•在醛、酮、硝基化合物等分子中常常可以观察到R带。
例如,丙酮分子中的羰基(C = O)上的n电子可以发生n• π跃迁,在约279nm处有一个R带吸收峰。
2. K带• K带是由共轭体系中的π• π跃迁产生的吸收带。
其吸收强度较大,摩尔吸光系数通常大于10000L/(mol·cm),吸收峰波长与共轭体系的大小有关。
五大波谱解析步骤简述
(一)紫外光谱
解析UV应用时顾及吸收带的位置,强度和形状三个方面。
从吸收带(K带)位置可估计产生该吸收共轭体系的大小;从吸收带的强度有助于K带,B带和R带的识别;从吸收带的形状可帮助判断产生紫外吸收的基团,如某些芳香化合物,在峰形上可显示一定程度的精细结构。
一般紫外吸收光谱都比较简单,大多数化合物只有一、两个吸收带,因此解析较为容易。
可粗略归纳为以下几点:
①如果化合物在220~800nm区间无吸收,表明该化合物是脂肪烃、脂环烃或它们的简单衍生物。
②如果在220~250nm间显示强吸收(ε近10000或更大),表明有R带吸收,即分子结构存在共轭双烯或α,β—不饱和醛、酮。
③如果在250~290nm间显示中等强度(ε为200~1000)的吸收带,且常显示不同程度精细结构,表明结构中有苯环或某些杂芳环的存在。
④如果在290nm附近有弱吸收带(ε<100),则表明分子结构中非共轭羰基。
⑤如果在300nm上有***度吸收,说明该化合物有较大的共轭体系;若***度吸收具有明显的精细结构,说明为稠环芳、稠环杂芳烃或其衍生物。
(二)红外光谱
1. 解析红外光谱的三要素(位置、强度和峰形)
在解析红外光谱时,要同时注意红外吸收峰的位置,强度和峰形。
吸收位置是红外吸收最重要的特点,但在鉴定化合物分子结构时,应将吸收峰的位置辅以吸收峰强度和峰形综合分析。
每种有机化合物均显示若干吸收峰,对大量红外图谱中各吸收峰强度相互比较,归纳出各种官能团红外吸收强度的变化范围。
只有熟悉各官能团红外吸收的位置和强度处于一定范围时,才能准确推断出官能团的存在
2 .确定官能团的方法
对于任何有机化合物的红外光谱,均存在红外吸收的伸缩振动和多种弯曲振动。
因此,每一个化合物的官能团的红外光谱图在不同区域显示一组相关吸收峰。
只有当几处相关吸收峰得到确认时,才能确定该官能团的存在。
例1. 甲基(CH3):2960cm-1和2870cm-1为伸缩振动,1460cm-1和1380cm-1为其弯曲振动。
例2. 亚甲基(CH2):2920cm-1和2850cm-1为其伸缩振动,1470cm-1和720cm-1为其弯曲振动。
例3. 酯基:νC=O为1750~1725cm-1,νC-O在1300~1050cm-1有两个吸收谱带。
l3.3 红外光谱解析的顺序
(1)根据确定的分子,计算不饱和度,预测可能的官能团。
(2)首先观察红外光谱的官能团区,找出该化合物可能存在的官能团。
(3)查看红外光谱的指纹区,找出官能团的相关吸收峰,最后才确定该化合物存在某官能团。
(4)判断是否芳香族化合物,若为芳香化合物,找出苯的取代位置。
(5)根据红外光谱指纹区的吸收峰与已知化合物的红外光谱或标准图谱对照,确定是否为已知化合物。
(三)核磁共振氢谱
核磁共振技术发展较早,20世纪70年代以前,主要是核磁共振氢谱的研究和应用。
70年代以后,随着傅里叶变换波谱仪的诞生,13C —NMR的研究迅速开展。
由于1H—NMR的灵敏度高,而且积累的研究资料丰富,因此在结构解析方面1H—NMR的重要性仍强于13C —NMR。
解析图谱的步骤
1.先观察图谱是否符合要求;①四甲基硅烷的信号是否正常;②杂音大不大;③基线是否平;④积分曲线中没有吸收信号的地方是否平整。
如果有问题,解析时要引起注意,最好重新测试图谱。
2.区分杂质峰、溶剂峰、旋转边峰(spinning side bands)、13C卫星峰(13C satellite peaks)
(1)杂质峰:杂质含量相对样品比例很小,因此杂质峰的峰面积很小,且杂质峰与样品峰之间没有简单整数比的关系,容易区别。
(2)溶剂峰:氘代试剂不可能达到100%的同位素纯度(大部分试剂的氘代率为99-99.8%),因此谱图中往往呈现相应的溶剂峰,如CDCL3中的溶剂峰的δ值约为7.27 ppm处。
(3)旋转边峰:在测试样品时,样品管在1H-NMR仪中快速旋转,当仪器调节未达到良好工作状态时,会出现旋转边带,即以强谱线为
中心,呈现出一对对称的弱峰,称为旋转边峰。
(4)13C卫星峰:13C具有磁距,可以与1H偶合产生裂分,称之为13C卫星峰,但由13C的天然丰度只为1.1%,只有氢的强峰才能观察到,一般不会对氢的谱图造成干扰。
3.根据积分曲线,观察各信号的相对高度,计算样品化合物分子式中的氢原子数目。
可利用可靠的甲基信号或孤立的次甲基信号为标准计算各信号峰的质子数目。
4.先解析图中CH3O、CH3N、、CH3C=O、CH3C=C、CH3-C等孤立的甲基质子信号,然后再解析偶合的甲基质子信号。
5.解析羧基、醛基、分子内氢键等低磁场的质子信号。
6.解析芳香核上的质子信号。
7.比较滴加重水前后测定的图谱,观察有无信号峰消失的现象,了解分子结构中所连活泼氢官能团。
8.根据图谱提供信号峰数目、化学位移和偶合常数,解析一级类型图谱。
9.解析高级类型图谱峰信号,如黄酮类化合物B环仅4,-位取代时,呈现AA,BB,系统峰信号,二氢黄酮则呈现ABX系统峰信号。
10. 如果一维1H-NMR难以解析分子结构,可考虑测试二维核磁共振谱配合解析结构。
11. 组合可能的结构式,根据图谱的解析,组合几种可能的结构式。
12. 对推出的结构进行指认,即每个官能团上的氢在图谱中都应有相应的归属信号。
(四)核磁共振碳谱(13C—NMR)
解析图谱的步骤
1.鉴别谱图中的非真实信号峰
(1)溶剂峰:虽然碳谱不受溶剂中氢的干扰,但为兼顾氢谱的测定及磁场需要,仍常采用氘代试剂作为溶剂,氘代试剂中的碳原子均有相应的峰。
(2)杂质峰:杂质含量相对于样品少得多,其峰面积极小,与样品化合物中的碳呈现的峰不成比例。
(3)测试条件的影响:测试条件会对所测谱图有较大影响。
如脉冲倾斜角较大而脉冲间隔不够长时,往往导致季碳不出峰;扫描宽度不够大时,扫描宽度以外的谱线会折叠到图谱中来;等等,均造成解析图谱的困难。
2.不饱和度的计算
根据分子式计算的不饱和度,推测图谱烯碳的情况。
3.分子对称性的分析
若谱线数目等于分子式中碳原子数目,说明分子结构无对称性;若谱线数目小于分子式中碳原子数目,说明分子结构有一定的对称性。
此外,化合物中碳原子数目较多时,有些核的化学环境相似,可能δ值产生重叠现象,应予以注意。
4.碳原子δ值的分区
碳原子大致可分为三个区
(1)高δ值区δ>165ppm,属于羰基和叠烯区:①分子结构中,如
存在叠峰,除叠烯中有高δ值信号峰外,叠烯两端碳在双键区域还应有信号峰,两种峰同时存在才说明叠烯存在;②δ>200 ppm的信号,只能属于醛、酮类化合物;③160-180ppm的信号峰,则归属于酸、酯、酸酐等类化合物的羰基。
(2)中δ值区δ90-160ppm(一般情况δ为100-150ppm)烯、芳环、除叠烯中央碳原子外的其他SP2杂化碳原子、碳氮三键碳原子都在这个区域出峰。
(3)低δ值区δ<100ppm,主要脂肪链碳原子区:①不与氧、氮、氟等杂原子相连的饱和的δ值小于55ppm;
②炔碳原子δ值在70-100ppm,这是不饱和碳原子的特例。
5.碳原子级数的确定
由低共振或APT(attached proton test)、DEPT(distortionless enhancement by polarization transfer)等技术可确定碳原子的级数,由此可计算化合物中与碳原子相连的氢原子数。
若此数目小于分子式中的氢原子数,二者之差值为化合物中活泼氢的原子数。
6.推导可能的结构式
先推导出结构单元,并进一步组合成若干可能的结构式。
7.对碳谱的指认
将碳谱中各信号峰在推出的可能结构式上进行指认,找出各碳谱信号相应的归属,从而在被推导的可能结构式中找出最合理的结构式,即正确的结构式。