波谱解析紫外
- 格式:ppt
- 大小:1.66 MB
- 文档页数:90
习题参考答案第一章紫外光谱1.(1) 饱和化合物,吸收在远紫外区,故在近紫外区无吸收峰;(2) 结构可看成乙烯中引入了助色基团甲氧基,吸收波长红移,但吸收峰仍在远紫外区,近紫外区无吸收峰;(3) π→π*跃迁。
氨基为助色团,其孤对电子与苯环发生p→π共轭,所以E带和B带均发生红移,E1吸收位于远紫外区,E2带(230 nm)和B带(280 nm)处在近紫外区。
(4)取代基与苯环形成大的共轭体系,有π→π*跃迁;结构中含有羰基,有n→π*跃迁。
吸收带有K带、B带和R带;(5) 取代基与苯环形成大的共轭体系,π→π*跃迁,主要吸收带为K带和B带;(6) 羰基有n→π*跃迁,为R带吸收。
(该结构的烯醇异构体有K带和R带)(7) 该结构为α,β-不饱和羰基化合物,有π→π*跃迁和n→π*跃迁,吸收带为K带和R带。
2.(1) a为饱和烷烃,仅有σ→σ*跃迁,吸收位于远紫外;b有两个双键,但未共轭,吸收位于远紫外;c为共轭二烯,吸收在近紫外;所以最大吸收波长c>b>a;(2) a为同环共轭双烯,波长最大,c和b相比,结构中多了一个甲基,存在超共轭效应,吸收红移。
综上所述,a>c>b;(3) a, c为共轭体系,吸收波长均高于b。
a和c相比,结构中拥有更多的取代甲基,存在超共轭效应,吸收红移。
综上所述,a>c>b;3. (1)同环共轭双烯基本值2534个烷基取代+ 4×52个环外双键+ 2×5计算值283(nm)(3)(4)(5)(6)骈环异环共轭双烯基本值214 4个烷基取代+ 4×52个环外双键+ 2×5 计算值244(nm)同环共轭双烯基本值253 4个烷基取代+ 4×5 计算值273(nm)直链α,β-不饱和酮基本值215 1个烷基α取代+ 10 计算值225(nm)五元环α,β-不饱和酮基本值202 1个烷基α取代+ 102个烷基β取代+12×22个环外双键+5×2 计算值246(nm)六元环α,β-不饱和酮基本值215 1个烷基α取代+ 102个烷基β取代+12×2 计算值249(nm)(7)直链α,β-不饱和酮基本值2151个烷基γ取代+ 182个烷基δ取代+18×2延长一个共轭双键+30计算值299(nm)(8)无共轭结构,无K带吸收(9)烷基单取代羧酸(β)基本值208β位N(CH3)2取代+ 60计算值268(nm)(10)苯甲酰酮基本值2461个邻位-OH取代+ 71个间位-CH3取代+3计算值256(nm)(11)苯甲酸基本值2301个对位-OH取代+ 25计算值255(nm)4.(1)a.非骈环共轭双烯基本值2173个烷基取代+ 3×5计算值232(nm)b.非骈环共轭双烯基本值2174个烷基取代+ 4×51个环外双键+ 5计算值242(nm) 综上所述,两种化合物可以用紫外光谱区分。
波谱解析课程是一门介绍波谱分析方法的课程,主要包括紫外光谱、红外光谱、核磁共振和质谱等分析技术。
通过该课程的学习,学生可以了解各种波谱分析方法的原理、实验操作及应用范围,掌握各种波谱分析方法的基本技能,并能够利用波谱分析方法进行化合物的结构鉴定和分子结构研究。
该课程的主要内容包括:
1.紫外光谱:介绍紫外光谱的基本原理、实验操作及常见图谱解
析方法。
2.红外光谱:介绍红外光谱的基本原理、实验操作及常见图谱解
析方法。
3.核磁共振:介绍核磁共振的基本原理、实验操作及常见图谱解
析方法。
4.质谱:介绍质谱的基本原理、实验操作及常见图谱解析方法。
5.综合解析:介绍如何结合多种波谱分析方法进行化合物的结构
鉴定和分子结构研究。
该课程需要学生具备一定的化学基础知识,如有机化学、无机化学等。
通过该课程的学习,学生可以掌握各种波谱分析方法的基本技能,为进一步学习其他课程和从事相关领域的研究打下基础。
复杂天然产物波谱解析一、复杂天然产物波谱解析是什么呢?咱就把这个复杂天然产物想象成一个神秘的小怪兽,波谱解析呢,就像是给这个小怪兽做全身检查的手段。
波谱啊,就像是这个小怪兽的各种特征画像,有紫外光谱、红外光谱、核磁共振谱等等。
这些波谱就像小怪兽的不同角度的照片,能让我们看到它的不同特点。
1、紫外光谱紫外光谱就像是小怪兽在紫外光下的样子。
它能告诉我们这个复杂天然产物里面有没有一些特殊的基团,比如说共轭双键之类的。
就好比你看一个人的外貌,能看出他有没有大眼睛、高鼻梁这些特征一样。
当我们看到紫外光谱上的一些吸收峰的时候,就像是发现了小怪兽的独特标记。
比如说,如果在某个特定波长有很强的吸收峰,那可能就意味着这个天然产物里面有苯环之类的结构。
2、红外光谱红外光谱就更厉害了,它就像是小怪兽的热成像图。
不同的化学键在红外光下会有不同的振动吸收,就像不同的物体在热成像仪下有不同的温度显示一样。
我们可以通过红外光谱来判断这个复杂天然产物里面有哪些化学键。
比如,如果在某个波数有很强的吸收,那可能就表示有羰基这种化学键存在。
这就像是你通过热成像图能判断出某个地方是热源一样准确。
3、核磁共振谱核磁共振谱就像是小怪兽的内部结构X光片。
它能告诉我们这个天然产物里面各个原子的连接方式和环境。
有氢谱和碳谱两种常见的核磁共振谱。
氢谱能让我们知道不同环境下的氢原子的情况,碳谱则是关于碳原子的信息。
比如说,通过氢谱上的化学位移、峰的裂分等信息,我们就能推断出氢原子周围的化学环境,是和电负性强的原子相连呢,还是在一个比较宽松的环境里。
就像通过X光片能看到骨头是健康的还是有损伤一样。
二、为啥要进行复杂天然产物波谱解析呢?这就好比我们要了解一个新认识的朋友一样。
如果这个朋友是一个复杂天然产物,那波谱解析就是我们了解它的途径。
1、对于科研在科研领域,复杂天然产物波谱解析是非常重要的。
科学家们发现了很多从植物或者微生物里提取出来的复杂天然产物,这些东西可能有药用价值或者其他特殊的功能。
五大波谱解析步骤简述(一)紫外光谱解析UV应用时顾及吸收带的位置,强度和形状三个方面。
从吸收带(K带)位置可估计产生该吸收共轭体系的大小;从吸收带的强度有助于K带,B带和R带的识别;从吸收带的形状可帮助判断产生紫外吸收的基团,如某些芳香化合物,在峰形上可显示一定程度的精细结构。
一般紫外吸收光谱都比较简单,大多数化合物只有一、两个吸收带,因此解析较为容易。
可粗略归纳为以下几点:①如果化合物在220~800nm区间无吸收,表明该化合物是脂肪烃、脂环烃或它们的简单衍生物。
②如果在220~250nm间显示强吸收(ε近10000或更大),表明有R带吸收,即分子结构存在共轭双烯或α,β—不饱和醛、酮。
③如果在250~290nm间显示中等强度(ε为200~1000)的吸收带,且常显示不同程度精细结构,表明结构中有苯环或某些杂芳环的存在。
④如果在290nm附近有弱吸收带(ε<100),则表明分子结构中非共轭羰基。
⑤如果在300nm上有***度吸收,说明该化合物有较大的共轭体系;若***度吸收具有明显的精细结构,说明为稠环芳、稠环杂芳烃或其衍生物。
(二)红外光谱1. 解析红外光谱的三要素(位置、强度和峰形)在解析红外光谱时,要同时注意红外吸收峰的位置,强度和峰形。
吸收位置是红外吸收最重要的特点,但在鉴定化合物分子结构时,应将吸收峰的位置辅以吸收峰强度和峰形综合分析。
每种有机化合物均显示若干吸收峰,对大量红外图谱中各吸收峰强度相互比较,归纳出各种官能团红外吸收强度的变化范围。
只有熟悉各官能团红外吸收的位置和强度处于一定范围时,才能准确推断出官能团的存在2 .确定官能团的方法对于任何有机化合物的红外光谱,均存在红外吸收的伸缩振动和多种弯曲振动。
因此,每一个化合物的官能团的红外光谱图在不同区域显示一组相关吸收峰。
只有当几处相关吸收峰得到确认时,才能确定该官能团的存在。
例1. 甲基(CH3):2960cm-1和2870cm-1为伸缩振动,1460cm-1和1380cm-1为其弯曲振动。
波谱分析第一章紫外光谱1、为什么紫外光谱可以用于有机化合物的结构解析?紫外光谱可以提供:谱峰的位置(波长)、谱峰的强度、谱峰的形状。
反映了有机分子中发色团的特征,可以提供物质的结构信息。
2、紫外-可见区内(波长范围为100-800 nm )的吸收光谱。
3、Lamber-Beer 定律适用于单色光吸光度:A= lg(I 0/I) = lc透光度:-lgT = bcA :吸光度;l :光在溶液中经过的距离;:摩尔吸光系数,为浓度在1mol/L 的溶液中在1 cm 的吸收池中,在一定波长下测得的吸光度;c :浓度。
4、有机物分子中含有π键的不饱和基团称为生色团;有一些含有n 电子的基团(如—OH 、—OR 、—NH 2、—NHR 、—X 等),它们本身没有生色功能(不能吸收λ>200 nm 的光),但当它们与生色团相连时,就会发生n —π共轭作用,增强生色团的生色能力(吸收波长向长波方向移动,且吸收强度增加),这样的基团称为助色团。
5、λmax 向长波方向移动称为红移,向短波方向移动称为蓝移(或紫移)。
吸收强度即摩尔吸光系数增大或减小的现象分别称为增色效应或减色效应。
6、电子跃迁的类型:1. σ→σ*跃迁:饱和烃(甲烷,乙烷);E 很高,λ<150 nm (远紫外区)。
2. n →σ*跃迁:含杂原子饱和基团(-OH ,-NH 2);E 较大,λ150~250 nm (真空紫外区)。
3. π→π*跃迁:不饱和基团(-C=C-,-C=O );E 较小,λ~ 200 nm ,体系共轭,E 更小,λ更大;该吸收带称为K 带。
4. n →π*跃迁:含杂原子不饱和基团(-C ≡N,C=O ):E 最小,λ 200~400 nm (近紫外区)该吸收带称为R 带。
7、λmax 的主要影响因素:1. 共轭体系的形成使吸收红移;2. pH 值对光谱的影响:碱性介质中,↑,吸收峰红移,↑3. 极性的影响:π→π*跃迁:极性↑,红移,↑;↓。
波谱解析复习第一章紫外光谱一、名词解释1、助色团:有n电子的基团,吸收峰向长波方向移动,强度增强. 2、发色团:分子中能吸收紫外或可见光的结构系统. 3、红移:吸收峰向长波方向移动,强度增加,增色作用. 4、蓝移:吸收峰向短波方向移动,减色作用. 5、增色作用:使吸收强度增加的作用. 6、减色作用:使吸收强度减低的作用. 7、吸收带:跃迁类型相同的吸收峰. 二、选择题1、不是助色团的是:D A、-B、-C、-D、32- 2、所需电子能量最小的电子跃迁是:D A、ζ→ζ*B、n →ζ*C、π→π*D、n →π* 3、下列说法正确的是:A A、饱和烃类在远紫外区有吸收 B、吸收无加和性C、π→π*跃迁的吸收强度比n →ζ*跃迁要强10-100倍 D、共轭双键数目越多,吸收峰越向蓝移4、紫外光谱的峰强用ε表示,当ε=5000~10000时,表示峰带:B A、很强吸收B、强吸收C、中强吸收 D、弱吸收 5、近紫外区的波长为:C A、 4-200 B、200-300 C、200-400 D、300-400 6、紫外光谱中,苯通常有3个吸收带,其中λ在230~270之间,中心为254 的吸收带是:B A、R带B、B带 C、K带 D、E1带7、紫外-可见光谱的产生是外层价电子能级跃迁所致,其能级差的大小决定了 C A、吸收峰的强度B、吸收峰的数目 C、吸收峰的位置D、吸收峰的形状 8、紫外光谱是带状光谱的原因是于:D A、紫外光能量大B、波长短C、电子能级差大 D、电子能级跃迁的同时伴随有振动及转动能级跃迁的原因9、π→π*跃迁的吸收峰在下列哪种溶剂中测量,其最大吸收波长最大:A A、水B、乙醇C、甲醇 D、正己烷10、下列化合物中,在近紫外区无吸收的是:A A、B、 C、D、11、下列化合物,紫外吸收λ值最大的是:A A、B、C、D、12、频率为×108的辐射,其波长数值为 A A、 B、μ C、D、 13、化合物中,下面哪一种跃迁所需的能量最高 A A、ζ→ζ*B、π→π*C、n→ζ* D、n→π* 第二章红外光谱一、名词解释:1、中红外区 2、共振 3、基频峰 4、倍频峰 5、合频峰6、振动自度 7、指纹区 8、相关峰 9、不饱和度 10、共轭效应 11、诱导效应 12、差频二、选择题1、线性分子的自度为:A A:35 B: 36 C: 35 D:36 2、非线性分子的自度为:B A:35 B: 36 C:35 D: 36 3、下列化合物的ν的频率最大的是:DA B C D 4、下图为某化合物的图,其不应含有:D 1 A:苯环 B:甲基C:2 D:5、下列化合物的ν的频率最大的是:A A B CD 6、亚甲二氧基与苯环相连时,其亚甲二氧基的δ特征强吸收峰为:A A: 925~9351 B:800~8251 C:955~9851 D:1005~10351 7、某化合物在3000-25001有散而宽的峰,其可能为:A A:有机酸 B:醛C:醇D:醚8、下列羰基的伸缩振动波数最大的是:C 9、 R C N 中三键的区域在:B A ~33001 B 2260~22401 C 2100~20001 D 1475~13001 10、偕三甲基(特丁基)的弯曲振动的双峰的裂距为:D A 10~20 1 B15~30 1 C 20~301 D 301以上第三章核磁共振一、名词解释1、化学位移2、磁各向异性效应3、自旋-自旋驰豫和自旋-晶格驰豫 4、屏蔽效应5、远程偶合 2 6、自旋裂分 7、自旋偶合 8、核磁共振 9、屏蔽常数 +1规律 11、杨辉三角 12、双共振 13、效应 14、自旋去偶 15、两面角 16、磁旋比 17、位移试剂二、填空题1、1化学位移δ值范围约为 0~14 。
波谱解析名词解释紫外吸收光谱1. 紫外吸收光谱系分子吸收紫外光能、发生价电子能级跃迁而产生的吸收光谱,亦称电子光谱。
2. 曲折或肩峰:当吸收曲线在下降或上长升处有停顿或吸收稍有增加的现象。
这种现象常由主峰内藏有其它吸收峰造成。
3. 末端吸收:是指紫外吸收曲线的短波末端处吸收增强,但未成峰形。
4. 电子跃迁选律:P95. 紫外吸收光谱的有关术语:P12-136. Woodward-fieser规那么: P217. Fieser-kuhns规那么:P23 红外吸收光谱1. 振动偶合:分子内有近似相同振动频率且位于相邻部位〔两个振动共用一个原子,或振动基团间有一个公用键〕的振动基团,常常彼此相互作用,产生二种以上基团参加的混合振动,称之为振动偶合。
2. 基频峰:本征跃迁产生的吸收带称为本征吸收带,又称基频峰。
3. 倍频峰:由于真实分子的振动公是近似的简谐振动,不严格遵守⊿V=±1的选律,也可产生⊿V=±2或±3等跃迁,在红外光谱中产生波数为基频峰二倍或三倍处的吸收峰〔不严格等于基频峰的整数倍,略小〕称为倍频峰。
4. 结合频峰:基频峰间的相互作用,形成频率等于两个基频峰之和或之差的峰,叫结合频峰。
5. 泛频峰:倍频峰和结合频峰统称为泛频峰。
6. 热峰:跃迁发生在激发态之间,这种跃迁产生的吸收峰称为热峰。
7. 红外非活性振动:不产生红外吸收的振动称红外非活性振动。
核磁共振光谱1. 磁偶极子:任何带电物体的旋转运动都会产生磁场,因此可把自旋核看作一个小磁棒,称为磁偶极子。
2. 核磁距:核磁偶极的大小用核磁矩表示。
核磁矩与核的自旋角动量〔P〕和e/2M的乘积成正比。
3. 进动:具有磁矩的原子核在外磁场中一方面自旋一方面以一定角度〔θ〕绕磁场做盘旋运动,这种现象叫做进动。
4. 核磁共振:当射频磁场的能量〔〕等于核自旋跃迁能时〔〕,即旋转磁场角频率〔〕与核磁矩进动角频率〔〕相等时,自旋核将吸收射频场能量,由α自旋态〔低能态〕跃迁至β自旋态〔高能态〕。