第四章 旋转变压器
- 格式:ppt
- 大小:1.98 MB
- 文档页数:88
第四章 旋转变压器工作原理:一、二次绕组的电磁感应耦合程度由转子的转角决定。
当旋转变压器的一次侧外施单相交流电压励磁时,二次侧的输出电压将与转子转角严格保持某种函数关系。
第一节 旋转变压器的结构特点和分类结构:旋转变压器的典型结构由定子和转子两部分构成。
铁心:高磁导率的铁镍软磁合金片或硅钢片经冲制、绝缘、叠装而成。
定、转子之间的气隙是均匀的,绕组:两个轴线在空间互相垂直的分布绕组。
转子绕组引出线和滑环相接,滑环应有四个,固定在转轴的一端, 分类:按照输出电压和转子转角的函数关系来分:1) 正余弦旋转变压器(代号XZ) 2) 线性旋转变压器(代号XX) 3) 比例式旋转变压器(代号XL)4) 特殊函数旋转变压器(正切函数、倒数函数、圆函数、对数函数等)按照电机极对数多少来分:单极对和多极对(可以提高系统的精度)。
按照有无电刷与滑环间的滑动接触来分:接触式和无接触式两类。
第二节 正余弦旋转变压器的工作原理4.2.1正弦绕组在旋转变压器中常用的绕组有两种形式,即双层短距分布绕组和同心式正弦绕组。
双层短距分布绕组能够达到较高的绕组精度并有良好的工艺性,但在绕组中存在一定量的谐波磁动势分量,其所引起的正余弦函数的误差达0.01%-0.07%,再加上工艺因素引起的误差,使旋转变压器的精度受到一定的限制,故双层短距分布绕组只适合对精度要求不很高的旋转变压器。
同心式正弦绕组为高精度绕组,它使各次谐波削弱到相当小,正余弦函数的误差从0.06%降到0.03%以下。
缺点为工艺性差,绕组系数低。
正弦绕组是指绕组各元件的导体数沿定子内圆或转子外圆按正弦规律分布的同心式绕组。
通常有两种分布形式:第一类是绕组的轴线对准槽的中心线,第二类是绕组的轴线对准齿的中心线。
旋转变压器大都采用这两类正弦绕组。
图4-2表示了正弦绕组中各元件在空间沿转子圆周外圆分布的情况及空间磁动势的分布情况。
为了使正弦绕组中各元件匝数沿圆周按正弦分布,各元件的匝数应满足Z)i (cosN N cm ci π12-= 正弦绕组每相的总匝数为])142cos(...3cos [cos 41Z Z Z Z N N N cm Zi ci πππ-+++==∑=4.2.2 正余弦旋转变压器的工作原理正余弦旋转变压器通常为两极结构,定子和转子分别安装两套互相垂直的正弦绕组。
微特电机第四章旋转变压器1.引言旋转变压器是一种特殊类型的变压器,它采用旋转结构来实现变压变比的调节。
与传统的固定变压器相比,旋转变压器具有更大的灵活性和可调节性,可以适应不同负载条件下的电压需求。
本章将介绍微特电机公司研发的一款旋转变压器,包括其工作原理、结构设计、性能参数以及应用领域等内容。
2.工作原理旋转变压器的工作原理基于电磁感应定律和旋转结构的机械转动。
通过调整转子与固定绕组之间的相对位置,可以改变绕组之间的耦合系数,从而实现变压变比的调节。
当转子与绕组之间没有相对运动时,变压器的变比为1:1,即输入电压等于输出电压。
当转子旋转时,绕组之间的耦合系数发生变化,从而实现不同的变比输出。
3.结构设计微特电机的旋转变压器采用了先进的磁力平衡技术和高强度材料制成的磁芯。
磁芯的设计旨在减小磁场漏磁和铁心损耗,提高变压器的效率和性能。
同时,采用了特殊的绕组结构和绝缘材料,确保了电压输出的稳定性和可靠性。
除此之外,旋转变压器还配备了高精度的角度传感器和控制单元,用于实时监测和调节转子位置,保证变压器的稳定工作。
4.性能参数微特电机的旋转变压器具有以下主要性能参数:-额定功率:根据客户需求可定制,通常范围在1kVA到100kVA之间。
-输入电压范围:根据客户需求可定制,通常范围在220V到660V之间。
-输出电压范围:根据客户需求可定制,通常范围在0V到440V之间。
-效率:高达98%,具有较高的能量转换效率。
-变比调节范围:根据客户需求可定制,通常范围在1:1到1:10之间。
-响应时间:微秒级响应速度,适用于需要快速反应的应用场景。
5.应用领域微特电机的旋转变压器广泛应用于各种工业领域,包括:-变频器和电机驱动系统:用于变频器输出电压的稳定调节。
-电力系统:用于电网电压调节和负载均衡控制。
-物流设备和自动化系统:用于包括输送带、起重机和机器人在内的设备的电压供应和控制。
-光伏发电系统:用于光伏逆变器中的电压调节和能量转换。