实验3全加器和数据选择器
- 格式:doc
- 大小:119.50 KB
- 文档页数:2
实验四组合逻辑电路的设计(数据选择器和全加器)一、实验目的1.熟悉各种常用 MSI 组合逻辑电路的功能与使用方法。
2.掌握多片 MSI 组合逻辑电路的级联、功能扩展。
3.掌握使用数据选择器和全加器设计组合逻辑电路。
4.进一步培养查找和排除数字电路常见故障的能力。
二、实验器件1. 74LS151 八选一数据选择器。
2. 74LS283 四位二进制全加器。
三、实验原理1.数据选择器又叫多路开关。
数据选择器在地址码(或叫选择控制)电位的控制下,从几个数据输入选择一个并将其送到一个公共的输出端。
它的功能类似一个多掷开关。
2. 74LS151 为互补输出的 8 选 1 数据选择器,选择控制端(地址端)为A、 B、 C,按二进制译码,从 8 个输入数据中选择一个需要的数据送到输出端 Y, S 为使能端,低电平有效。
当 S=0 时,若 CBA=000 时,则选择D0 数据到输出端,即 Y= D0 ,若 CBA=001时,则选择D1数据到输出端,即 Y= D1,其余类推。
引脚图如图11,功能表如表8所示。
当函数输入变量数大于数据选择器地址端时,可以选用一个或几个变量做数据。
3. 全加器是数字系统尤其是计算机中最基本的运算单元电路,其主要功能是实现二进制数算数加法运算,所谓全加器是指既考虑低位来的进位也考虑对高位进位的加法器。
以串行方式完成全加运算的逻辑电路,称为串行全加器;以并行方式完成全加运算的逻辑电路,称为并行全加器。
我们常用的是具有超前进位功能的 4 位全加器 74LS283,是典型的中规模二进制超前进位全加器。
C0 是最低位的进位输入,C4 为相加后的进位输出,它可以完成 A 4A 3A 2A1 +B4B3B2B1 +C0 =C 4S3S2S1S0 二进制加法运算,其引脚图如图12 所示,功能表如表 9 所示。
四、实验内容1、用八选一数据选择器 74LS151 设计一个 8421BCD 非法码检测电路,当输入为非法码组时,输出为 1,否则为零。
电力学院数字电路与数字逻辑院(系):计算机科学与技术学院实验题目:数据选择器和译码器应用专业年级:学生:学号:一、实验目的和要求:1、了解并掌握集成组合电路的使用方法。
2、了解并掌握仿真(功能仿真及时序仿真)方法及验证设计正确性。
3、使用数据选择器和译码器实现特定电路。
二、实验容:1.要求用数据选择器74153和基本门设计用3个开关控制1一个电灯的电路,改变任何一个开关的状态都能控制电灯由亮变暗或由暗变亮。
(提示:用变量A、B、C表示三个开关,0、1表示通、断状态;用变量L表示灯,0、1表示灯灭、亮状态。
)画出电路的原理图,将电路下载到开发板进行验证。
根据题意画出真值表如下根据上表,可画出原理图试验现象:当开关断开的数量是奇数时,灯是亮的,除此之外是灭的.2. 人的血型有A,B,AB和O这4种,试用数据选择器74153和基本门设计一个逻辑电路,要求判断供血者和受血者关系是否符合下图的关系(提示:可用两个变量的4种组合表示供血者的血型,用另外两个变量的4种组合表示受血者的血型,用Y表示判断的结果)。
画出电路的原理图,通过仿真进行验证。
血型献血受血a b c dA 0 0 0 0B 0 1 0 1AB 1 0 1 0O 1 1 1 1真值表:a b c d Y0 0 0 0 10 0 0 1 00 0 1 0 10 0 1 1 00 1 0 0 00 1 0 1 10 1 1 0 10 1 1 1 01 0 0 0 01 0 0 1 01 0 1 0 11 0 1 1 01 1 0 0 11 1 0 1 11 1 1 0 11 1 1 1 1 根据上表,可画出原理图验证逻辑功能表,仿真结果如下3.试用集成译码器74LS138和基本门实现1位全加器,画出电路连线图,并通过仿真验证其功能。
根据题意画出真值表如下输入输出Ci A B S Co0 0 0 0 00 0 1 1 00 1 0 1 00 1 1 0 11 0 0 1 01 0 1 0 11 1 0 0 11 1 1 1 1根据上表,可画出原理图.验证逻辑功能表,仿真结果如下4.试用数据选择器74151实现1位全加器电路,画出电路连线图,并通过仿真验证其功能。
实验三:数据选择器和译码器应用1. 能力培养目标● 理解数据选择器和译码器的逻辑功能● 运用数据选择器和译码器的逻辑关系设计实际应用2. 项目任务要求(1)测试4选1数据选择器的逻辑功能,通过示波器观测每种组合下数据选择器的输出波形(2)测试2-4线译码器的逻辑功能(3)将2-4线译码器扩展组成3-8线译码器,利用两个2-4线译码器扩展组成3-8线译码器(4)利用2-4线译码器设计并实现组合逻辑电路B A F ⊕=【选做】3. 项目分析(1) 数据选择器及主流芯片数据选择器是一种多输入、单输出的组合逻辑电路,其应用主要包括通过级联进行通道扩展数据输入端的个数;或者配合门电路实现逻辑函数,组成函数发生器。
数据选择器中常见的芯片有双4选1数据选择器74LS153芯片。
74LS153中的引脚G 用于控制输出。
当G 为高电平时,禁止输出,引脚Y 输出为低电平;当G 为低电平时,允许输出,由数据选择端B 、A 决定C 0、C 1、C 2、C 3中的哪个数据送往数据输出端Y 。
14131211109161234567双4选1数据选择器 74LS153Vcc2GA2C 32C 22C 12C 01Y1GB1C 31C 21C 11C 01582YGND图2-3-1 74LS153引脚结构图 表2-3-1 4选1数据选择器真值表选择输入 数据输入 选通 输出 B A C 0 C 1 C 2 C 3 G Y X X X X X X H L L L L X X X L L L L H X X X L H L H X L X X L L L H X H X X L H H L X X L X L L H L X X H X L H H H X X X L L L H HX X X HLH(2) 译码器及主流芯片译码器中常见的芯片有双2-4线译码器74LS139,其引脚结构图和真值表分别如下:14131211109161234567双2-4线译码器 74LS139Vcc2G2A2B2Y 02Y 12Y 21Y 31G1A1B1Y 01Y 11Y 21582Y 3GND图2-3-2 74LS139引脚结构图 表2-3-2 2-4线译码器真值表输入端输出端允许G选择B AY 0(____________________0BA G Y =) Y 1(_________________1B A G Y =) Y 2(_________________2B A G Y =)Y 3(______________3B A G Y =)H X X H H H H L L L L H H H L L H H L H H L H L H H L H LH HH H H L在74LS139中,引脚G 用于控制输出。
数据选择器的应用一、实验目的了解74LS00,74LS86,74LS153芯片的内部结构和功能;了解数据选择器的结构和功能;了解全加器和全减器的结构和功能;学习使用数据选择器(74LS153)设计全加器和全减器;进一步熟悉逻辑电路的设计和建立过程。
二、实验原理1.四选一数据选择器74LS153所谓双4选1数据选择器就是在一块集成芯片上有两个4选1数据选择器。
引脚排列如图3-3,功能如表3-2。
图3-3 74LS153引脚功能表3-2S1、S2为两个独立的使能端;A1、A0为公用的地址输入端;1D0~1D3和2D0~2D3分别为两个4选1数据选择器的数据输入端;Q1、Q2为两个输出端。
1)当使能端S1(S2)=1时,多路开关被禁止,无输出,Q=0。
2)当使能端S1(S2)=0时,多路开关正常工作,根据地址码A1、A0的状态,将相应的数据D0~D3送到输出端Q。
如:A1A0=00 则选择DO数据到输出端,即Q=D0。
A1A0=01 则选择D1数据到输出端,即Q=D1,其余类推。
数据选择器的用途很多,例如多通道传输,数码比较,并行码变串行码,以及实现逻辑函数等。
2.实现全加器:列出全加器的真值表:S 真值表:得到o C 真值表:对S 的真值表进行降维,得到:对o C 的真值表进行降维,得到:使用数据选择器实现时,D0,D1,D2,D3分别代表四选一数据选择器的四个输入端,并用A,B 作控制端,电路图如下图:图一0(D0)i C (D2)i C (D1)1(D3)一.实验内容1.按图一搭建逻辑电路,测试实验结果,与真值表进行对照。
*该过程中应注意:实验室所提供的器件与非门并不够用,需要用一个异或门改装成非门,如下图:F=⊕=AA1四.实验收获1.学会了全加器全减器的设计过程,为以后更好的应用打好了基础;2.更加了解了逻辑电路的设计流程;3.搭建逻辑电路的过程中,一定要小心翼翼操作,防止任何错误。
实验三加法器一、实验目的1、掌握用SSI器件实现全加器的方法。
2、掌握用MSI组合逻辑器件实现全加器的方法。
3、掌握集成加法器的应用。
二、实验设备及器件1、数字逻辑电路实验板1块2、74HC(LS)00(四二输入与非门)1片3、74HC(LS)86(四二输入异或门)1片4、74HC(LS)153(双四选一数据选择器)1片5、74HC(LS)283(4位二进制全加器)1片6、万用表1块三、实验原理组合逻辑电路是数字电路中最常见的逻辑电路之一。
组合逻辑电路的特点,就是在任意时刻电路的输出仅取决于该时刻的输入信号,而与信号作用前电路所处的状态无关。
本实验是根据给定的逻辑功能,设计出实现这些功能的组合逻辑电路。
不考虑低位进位,只本位相加,称半加。
实现半加的电路,为半加器。
考虑低位进位的加法称为全加。
实现全加的电路,为全加器。
实现三个输入变量(一位二进制数)全加运算功能的电路称为1位全加器。
实现多位二进制数相加有串行多位加法和并行多位加法两种形式,其中比较简单的一种电路是采用多个1位全加器并行相加,逐位进位的方式。
实验用器件管脚介绍:1、74HC(LS)00(四二输入与非门)管脚如下图所示。
2、74HC(LS)86(四二输入异或门)管脚如下图所示。
3、74HC(LS)153(双四选一数据选择器)管脚如下图所示。
4、74HC(LS)283(4位二进制全加器)管脚如下图所示。
四、 实验内容与步骤1、用门电路实现全加器(基本命题)参照表达式i i i i C B A S ⊕⊕=,i i i i i i B A C B A C +⊕=+)(1,其中i S 为本位和,i C 为低位向本位的进位,1+i C 为本位向高位进位,设计用与非门74HC(LS)00及异或门74HC(LS)86实现1位全加器的实验电路图,搭接电路,用LED 显示其输出,并记录结果在下表中。
1.1电路图1.2实验结果(基本命题)2、用数选器实现全加器输出Sn参照和实验内容与步骤1完全相同的逻辑功能,设计用与非门74HC(LS)00和数选器74HC(LS)153实现1位全加器输出S n的实验电路图,搭接电路,用LED显示其输出,观察电路的逻辑功能是否与设计功能一致。
一、实验目的1. 理解组合逻辑电路的基本原理和设计方法。
2. 掌握半加器和全加器的逻辑功能及其实现方法。
3. 学会使用数字逻辑实验箱和常用逻辑门电路进行电路搭建。
4. 验证全加器的逻辑功能,并掌握全加器在数字电路中的应用。
二、实验原理全加器是一种能够实现二进制数相加的数字电路,它能够处理两个加数以及一个来自低位的进位信号,并产生一个和数以及一个进位信号。
全加器由半加器和与门组成,半加器用于计算两个加数之间的和,与门用于处理进位信号。
三、实验器材1. 数字逻辑实验箱2. 74LS00(四二输入与非门)1片3. 74LS86(四二输入异或门)1片4. 74LS10(四二输入或非门)1片5. 74LS54(双四选一数据选择器)1片6. 开关7. 指示灯8. 导线四、实验步骤1. 搭建半加器电路- 使用一片74LS86和一片74LS00搭建半加器电路。
- 将输入端A、B分别连接到开关,输出端S和C分别连接到指示灯。
- 按照半加器的逻辑功能,进行实验测试。
2. 搭建全加器电路- 使用两个半加器、一个与门和一个或门搭建全加器电路。
- 将输入端A、B和进位信号Cin分别连接到开关,输出端S和Cout分别连接到指示灯。
- 按照全加器的逻辑功能,进行实验测试。
3. 验证全加器的逻辑功能- 设置不同的输入值,观察输出端S和Cout的变化,验证全加器的逻辑功能。
- 与理论计算结果进行对比,确保实验结果的正确性。
五、实验结果与分析1. 半加器电路测试结果- 当输入端A、B均为0时,输出端S为0,C为0。
- 当输入端A、B均为1时,输出端S为1,C为0。
- 当输入端A为0,B为1时,输出端S为1,C为1。
- 当输入端A为1,B为0时,输出端S为1,C为1。
2. 全加器电路测试结果- 当输入端A、B和进位信号Cin均为0时,输出端S为0,Cout为0。
- 当输入端A、B和进位信号Cin均为1时,输出端S为1,Cout为1。
实验三数据选择器实验人员:班号:学号:一、实验目的(1) 熟悉并掌握数据选择器的功能。
(2) 用双4选1数据选择器74LS153设计出一个16选1的数据选择器。
(3) 用双4选1数据选择器74LS153 设计出一个全加法器。
二、实验设备数字电路实验箱,74LS00,74LS153。
三、实验内容(1) 测试双4选1数据选择器74LS153的逻辑功能。
74LS153含有两个4选1数据选择器,其中A0和A1为芯片的公共地址输入端,Vcc 和GND分别为芯片的公共电源端和接地端。
Figure1为其管脚图:Figure 11Q=A1A01D0+A1A0?1D1+A1A0?1D2+A1A0?1D32Q=A1A02D0+A1A0?2D1+A1A0?2D2+A1A0?2D3按下图连接电路:Figure 2(2) 设某一导弹发射控制机构有两名司令员A、B和两名操作员C、D,只有当两名司令员均同意发射导弹攻击目标且有操作员操作,则发射导弹F。
利用所给的实验仪器设计出一个符合上述要求的16选1数据选择器,并用数字电路实验箱上的小灯和开关组合表达实验结果。
思路:由于本实验需要有四个地址输入端来选中16个数据输入端的地址之中的一个,进而实现选择该数据输入端中的数据的功能,即16选1。
而公共的A0、A1两个地址输入端和S使能端(用于片选,已达到分片工作的目的,进而扩展了一位输入)一共可以提供三个地址输入端,故需要采用降维的方法,将一个地址输入隐藏到一个数据输入端Dx 中。
本实验可以降一维,也可以降两位。
由于两位比较复杂,本实验选择使用降一维的方式。
做法:画出如应用题中实现所需功能的卡诺图:将D 降到数据输入端中。
对应的卡诺图如下:其中,“1”表示高电平,“0”表低电平,均由开关上下拨动来控制;A 、B 、C 、D 分别为题中的两个司令员的同意情况和两个操作员的操作情况;F 为导弹发射情况,将F 接到小灯上即可。
电路如Figure 3所示(图中Cx 即Dx,后面的图均为如此):Figure 3(3) 用74LS00与74LS153设计一位全加器,并用数字电路实验箱上的小灯和开关组合表达实验结果。
实验三全加器和数据选择器
一、实验目的
1、掌握全加器、数据选择器的工作原理;
2、熟悉全加器、数据选择器的的逻辑功能;
3、掌握应用全加器和数据选择器设计电路的方法。
二、实验仪器及设备
1、EEL-II型电工电子实验台
2、数字电路实验箱
3、万用表
4、集成器件74154、74283
三、实验内容
1、全加器实验(四位二进制超前进位全加器74283)
输入接逻辑开关,输出接逻辑电平显示器,测试数据填入表3.1。
2、双四选一数据选择器74LS153逻辑功能测试
输入接逻辑开关,输出接逻辑电平显示器,测试数据填入表3.2。
表3.2数据选择器功能表
3、用74LS153实现全加器
(1)写出设计过程
(2)画出接线图
(3)验证逻辑功能
四、实验报告
1、画实验线路图
2、整理实验结果
3、写逻辑表达式
五、器件介绍
1、四位二进制超前进位全加器74283
2、双四选一数据选择器74153。