最新5高中数学导数的应用之极值和最值汇总
- 格式:doc
- 大小:505.00 KB
- 文档页数:19
专题4 利用导数研究函数的极值和最值 专题知识梳理1.函数的极值(1)函数极值定义:一般地,设函数在点附近有定义,如果对附近的所有的点,都有,就说是函数的一个极大值,记作y 极大值=,是极大值点。
如果对附近的所有的点,都有.就说是函数的一个极小值,记作y极小值=,是极小值点。
极大值与极小值统称为极值.(2)判别f (x 0)是极大、极小值的方法: 若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是极小值.(3)求可导函数f (x )的极值的步骤:①确定函数的定义区间,求导数 ;①求出方程的定义域内的所有实数根;①用函数的导数为的点,顺次将函数的定义域分成若干小开区间,并列成表格.标出在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值。
①根据表格下结论并求出需要的极值。
2. 函数的最值(1)定义:若在函数的定义域内存在,使得对于任意的,都有,则称为函数的最大值,记作;若在函数的定义域内存在,使得对于任意的,都有,则称为函数的最小值,记作;(2)在闭区间上图像连续不断的函数在上必有最大值与最小值.(3)求函数在上的最大值与最小值的步骤:①求在内的极值;①将的各极值与比较,其中最大的一个是最大值,最小的一个是最小值, 从而得出函数在上的最值。
考点探究)(x f x 0x 0f (x )<f (x 0)f (x 0))(x f f (x 0)x 0x 0f (x )>f (x 0)f (x 0))(x f f (x 0)x 00x 0)(0='x f 0x )(x f 0x )(x f )(0x f )(x f '0x 0x )(x f )(0x f )(x f '0x 0x )(x f )(0x f )(x f '¢f (x )=00)(x f ')(x f I x 0x ÎI f (x )£f (x 0))(0x f y max =f (x 0))(x f I x 0x ÎI f (x )³f (x 0))(0x f y min =f (x 0)[]b a ,)(x f []b a ,)(x f []b a ,)(x f (,)a b )(x f f (a ),f (b ))(x f []b a ,考向1 利用导数研究函数的极值 【例】已知函数x x x f ln 1)(+=,求函数()f x 的极值.题组训练1.函数的极大值是________,极小值是________.2.已知函数322()f x x ax bx a =+++在1x =处有极值10,求f (2)的值。
导数应用三:求函数的极值、最值(一)函数极值的概念(二)函数极值的求法:(1)考虑函数的定义域并求f'(x);(2)解方程f'(x)=0,得方程的根x 0(可能不止一个) (3)如果在x 0附近的左侧f'(x)>0,右侧f'(x)<0,那么f(x 0)是 极大值;反之,那么f(x 0)是极大值 题型一、 极值求法 1 求下列函数的极值(1)f(x)=x 3-3x 2-9x+5; (2)f(x)=ln x x (3)f(x)=1cos ()2x x x ππ+-<<2、设a 为实数,函数y=e x-2x+2a,求y 的单调区间与极值3、设函数f(x)=313x -+x 2+(m 2-1)x,其中m>0。
(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率 (2)求函数f(x)的单调区间与极值4、若函数f(x)=21x a x ++,(1)若f(x)在点(1,f(1))处的切线的斜率为12,求实数a 的值(2)若f(x)在x=1处取得极值,求函数的单调区间5、函数f(x)=x 3+ax 2+3x-9已知f(x)在x=-3时取得极值,求a6、若函数y=-x 3+6x 2+m 的极大值为13,求m 的值7、已知函数f(x)=x 3+ax 2+bx+a 2在x=1处有极值10. (1)求a,b 的值; (2)f(x)的单调区间8、已知函数f(x)=ax 2+blnx 在x=1处有极值12(1)求a,b 的值;(2)判定函数的单调性,并求出单调区间 9、设函数f(x)=323a x bx cx d +++(a>0),且方程f'(x)-9x=0的两根分别为1,4,若f(x)在(,-∞+∞)内无极值点,求a 的取值范围(三)函数的最值与导数注:求函数f(x)在闭区间[a,b]内的最值步骤如下 (1)求函数y=f(x)在(a,b)内的极值(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个就是 最大值,最小的一个就是最小值 题型一 求闭区间上的最值1、设在区间[a,b]上函数f(x)的图像是一条连续不断的曲线,且在区间(a,b)上可导,下列命题正确的是 (1)若函数在[a,b]上有最大值,则这个最大值必是[a,b]上的极大值 (2)若函数在[a,b]上有最小值,则这个最小值必是[a,b]上的极小值 (3)若函数在[a,b]上有最值,则这个最值必在x=a 或x=b 处取得2、求函数f(x)=x 2-4x+6在区间[1,5]上的最值 3、求函数f(x)=x 3-3x 2+6x-10在区间[-1,1]上的最值 4、已知f(x)=x3+2x2-4x+5,求函数在[-3,1]上的最值题型二 有函数的最值确定参数的值1、已知函数f(x)=ax 3-6ax 2+b,x ∈[-3,1]的最大值为3,最小值为-29,求a,b 的值2、设213a <<,函数f(x)=x 3-32ax 2+b(-11x ≤≤)的最大值为1,最小值为2-,求a,b(四)导数综合应用1、已知函数f(x)=x 2+ax+blnx(x>0,a,b 为实数).(1)若a=1,b=-1,求函数f(x)的极值.(2)若 a+b=-2,讨论f(x)的单调性.2、设函数f(x)=ax-bx+lnx 。
利用导数求函数的极值、最值一、知识梳理1.函数的极值与导数形如山峰形如山谷2.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值二、例题精讲 + 随堂练习考点一利用导数解决函数的极值问题角度1根据函数图象判断函数极值【例1-1】已知函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f (x )有极大值f (2)和极小值f (-2)D.函数f (x )有极大值f (-2)和极小值f (2)解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 答案 D规律方法 由图象判断函数y =f (x )的极值,要抓住两点:(1)由y =f ′(x )的图象与x 轴的交点,可得函数y =f (x )的可能极值点;(2)由导函数y =f ′(x )的图象可以看出y =f ′(x )的值的正负,从而可得函数y =f (x )的单调性.两者结合可得极值点.角度2 已知函数求极值【例1-2】 (2019·天津和平区模拟)已知函数f (x )=ln x -ax (a ∈R ). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解 (1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x2x , 令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表.故f (x )在定义域上的极大值为f (x )极大值=f (2)=ln 2-1,无极小值. (2)由(1)知,函数的定义域为(0,+∞), f ′(x )=1x -a =1-ax x (x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点; 当a >0时,当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,故函数在x =1a 处有极大值.综上可知,当a ≤0时,函数f (x )无极值点, 当a >0时,函数y =f (x )有一个极大值点,且为x =1a .规律方法 运用导数求可导函数y =f (x )的极值的一般步骤:(1)先求函数y =f (x )的定义域,再求其导数f ′(x );(2)求方程f ′(x )=0的根;(3)检查导数f ′(x )在方程根的左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.特别注意:导数为零的点不一定是极值点.角度3 已知函数的极(最)值求参数的取值 【例1-3】 (2019·泰安检测)已知函数f (x )=ln x . (1)求f (x )图象的过点P (0,-1)的切线方程;(2)若函数g (x )=f (x )-mx +mx 存在两个极值点x 1,x 2,求m 的取值范围.解 (1)f (x )的定义域为(0,+∞),且f ′(x )=1x .设切点坐标为(x 0,ln x 0),则切线方程为y =1x 0x +ln x 0-1.把点P (0,-1)代入切线方程,得ln x 0=0,∴x 0=1. ∴过点P (0,-1)的切线方程为y =x -1. (2)因为g (x )=f (x )-mx +m x =ln x -mx +mx (x >0), 所以g ′(x )=1x -m -m x 2=x -mx 2-mx 2=-mx 2-x +m x 2,令h (x )=mx 2-x +m ,要使g (x )存在两个极值点x 1,x 2,则方程mx 2-x +m =0有两个不相等的正数根x 1,x 2.故只需满足⎩⎪⎨⎪⎧h (0)>0,12m >0,h ⎝ ⎛⎭⎪⎫12m <0即可,解得0<m <12.规律方法 已知函数极值,确定函数解析式中的参数时,要注意:(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)因为导数值等于0不是此点为极值点的充要条件,所以用待定系数法求解后必须检验.【训练1】 (1)(2017·全国Ⅱ卷)若x =-2是函数f (x )=(x 2+ax -1)·e x -1的极值点,则f (x )的极小值为( ) A.-1B.-2e -3C.5e -3D.1解析 f ′(x )=[x 2+(a +2)x +a -1]·e x -1,则f ′(-2)=[4-2(a +2)+a -1]·e -3=0⇒a =-1, 则f (x )=(x 2-x -1)·e x -1,f ′(x )=(x 2+x -2)·e x -1, 令f ′(x )=0,得x =-2或x =1, 当x <-2或x >1时,f ′(x )>0, 当-2<x <1时,f ′(x )<0,所以x =1是函数f (x )的极小值点, 则f (x )极小值为f (1)=-1. 答案 A(2)(2018·北京卷)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . ①若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; ②若f (x )在x =2处取得极小值,求a 的取值范围. 解 ①因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x .f ′(1)=(1-a )e. 由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.②f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0.所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0, 所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.考点二 利用导数求函数的最值【例2】 (2019·广东五校联考)已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值. 解 (1)易知f (x )的定义域为(0,+∞),当a =-1时,f (x )=-x +ln x ,f ′(x )=-1+1x =1-xx , 令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.∴f (x )在(0,1)上是增函数,在(1,+∞)上是减函数. ∴f (x )max =f (1)=-1.∴当a =-1时,函数f (x )在(0,+∞)上的最大值为-1. (2)f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎢⎡⎭⎪⎫1e ,+∞.①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上是增函数, ∴f (x )max =f (e)=a e +1≥0,不合题意.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a;令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a <x ≤e.从而f (x )在⎝ ⎛⎭⎪⎫0,-1a 上为增函数,在⎝ ⎛⎦⎥⎤-1a ,e 上为减函数,∴f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a .令-1+ln ⎝ ⎛⎭⎪⎫-1a =-3,得ln ⎝ ⎛⎭⎪⎫-1a =-2,即a =-e 2.∵-e 2<-1e ,∴a =-e 2为所求.故实数a 的值为-e 2.规律方法 1.利用导数求函数f (x )在[a ,b ]上的最值的一般步骤:(1)求函数在(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.2.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.【训练2】 (2019·合肥质检)已知函数f (x )=e x cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解 (1)∵f (x )=e x ·cos x -x ,∴f (0)=1, f ′(x )=e x (cos x -sin x )-1,∴f ′(0)=0,∴y =f (x )在(0,f (0))处的切线方程为y -1=0·(x -0), 即y =1.(2)f ′(x )=e x (cos x -sin x )-1,令g (x )=f ′(x ), 则g ′(x )=-2e xsin x ≤0在⎣⎢⎡⎦⎥⎤0,π2上恒成立, 且仅在x =0处等号成立, ∴g (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减,∴g (x )≤g (0)=0,∴f ′(x )≤0且仅在x =0处等号成立, ∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减, ∴f (x )max =f (0)=1,f (x )min =f ⎝ ⎛⎭⎪⎫π2=-π2.考点三 利用导数求解最优化问题【例3】 (2018·衡水中学质检)在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v (米/单位时间),每单位时间的用氧量为⎝ ⎛⎭⎪⎫v 103+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为v2(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y (升). (1)求y 关于v 的函数关系式;(2)若c ≤v ≤15(c >0),求当下潜速度v 取什么值时,总用氧量最少.解 (1)由题意,下潜用时60v (单位时间),用氧量为⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫v 103+1×60v =3v 250+60v (升),水底作业时的用氧量为10×0.9=9(升),返回水面用时60v 2=120v (单位时间),用氧量为120v ×1.5=180v (升),因此总用氧量y =3v 250+240v +9(v >0).(2)y ′=6v 50-240v 2=3(v 3-2 000)25v 2,令y ′=0得v =1032,当0<v <1032时,y ′<0,函数单调递减; 当v >1032时,y ′>0,函数单调递增.若c <1032 ,函数在(c ,1032)上单调递减,在(1032,15)上单调递增,∴当v =1032时,总用氧量最少. 若c ≥1032,则y 在[c ,15]上单调递增, ∴当v =c 时,这时总用氧量最少.规律方法 1.利用导数解决生活中优化问题的一般步骤:(1)设自变量、因变量,建立函数关系式y =f (x ),并确定其定义域; (2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.2.如果目标函数在定义域内只有一个极值点,那么根据实际意义该极值点就是最值点.三、课后练习1.(2019·郑州质检)若函数y =f (x )存在n -1(n ∈N *)个极值点,则称y =f (x )为n 折函数,例如f (x )=x 2为2折函数.已知函数f (x )=(x +1)e x -x (x +2)2,则f (x )为( ) A.2折函数 B.3折函数 C.4折函数D.5折函数解析 f ′(x )=(x +2)e x -(x +2)(3x +2)=(x +2)(e x -3x -2),令f ′(x )=0,得x =-2或e x =3x +2. 易知x =-2是f (x )的一个极值点,又e x =3x +2,结合函数图象,y =e x 与y =3x +2有两个交点.又e -2≠3(-2)+2=-4.∴函数y =f (x )有3个极值点,则f (x )为4折函数. 答案 C2.若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范围是________.解析 因为f (x )的定义域为(0,+∞),又因为f ′(x )=4x -1x ,所以由f ′(x )=0解得x =12,由题意得⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32.答案 ⎣⎢⎡⎭⎪⎫1,323.(2019·杭州质检)传说中孙悟空的“如意金箍棒”是由“定海神针”变形得来的.这定海神针在变形时永远保持为圆柱体,其底面半径原为12 cm 且以每秒1 cm 等速率缩短,而长度以每秒20 cm 等速率增长.已知神针的底面半径只能从12 cm 缩到4 cm ,且知在这段变形过程中,当底面半径为10 cm 时其体积最大.假设孙悟空将神针体积最小时定形成金箍棒,则此时金箍棒的底面半径为________ cm. 解析 设神针原来的长度为a cm ,t 秒时神针的体积为V (t ) cm 3, 则V (t )=π(12-t )2·(a +20t ),其中0≤t ≤8, 所以V ′(t )=[-2(12-t )(a +20t )+(12-t )2·20]π.因为当底面半径为10 cm 时其体积最大,所以10=12-t ,解得t =2,此时V ′(2)=0,解得a =60,所以V (t )=π(12-t )2·(60+20t ),其中0≤t ≤8.V ′(t )=60π(12-t )(2-t ),当t ∈(0,2)时,V ′(t )>0,当t ∈(2,8)时,V ′(t )<0,从而V (t )在(0,2)上单调递增,在(2,8)上单调递减,V (0)=8 640π,V (8)=3 520π,所以当t =8时,V (t )有最小值3 520π,此时金箍棒的底面半径为4 cm.答案 44.设f (x )=x ln x -ax 2+(2a -1)x (常数a >0). (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解 (1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 所以g ′(x )=1x -2a =1-2ax x . 又a >0,当x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减.∴函数y =g (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12a ,单调递减区间为⎝ ⎛⎭⎪⎫12a ,+∞.(2)由(1)知,f ′(1)=0.①当0<a <12时,12a >1,由(1)知f ′(x )在⎝ ⎛⎭⎪⎫0,12a 内单调递增,可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )>0.所以f (x )在(0,1)内单调递减,在⎝ ⎛⎭⎪⎫1,12a 内单调递增. 所以f (x )在x =1处取得极小值,不合题意.②当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.③当a >12时,0<12a <1,当x ∈⎝ ⎛⎭⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取极大值,符合题意. 综上可知,实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.。
高中数学知识点总结及公式大全导数与函数的极值与最值高中数学知识点总结及公式大全:导数与函数的极值与最值数学作为一门基础学科,是中学阶段学习中的重要科目之一。
其中,数学的知识点及公式涵盖了广泛的内容,为学生的数学学习和应用提供了基础。
导数与函数的极值与最值是高中数学中的一个重要知识点,本文将对该知识点进行总结,并提供相应的公式大全,以帮助学生更好地理解和掌握。
一、导数导数是函数求取变化率的数学工具,它描述了函数在某一点上的斜率或变化速率。
导数的概念和运算规则对理解函数的性质及相关应用都具有重要意义。
1. 导数的定义导数的定义是函数在某一点处的极限,表示为:f'(x) = lim┬(Δx→0)((f(x+Δx)-f(x))/Δx)其中,f'(x)表示函数f(x)在点x处的导数。
根据上述定义,导数可解释为函数在该点上的切线与x轴正方向之间的夹角的正切值,即斜率。
2. 常见函数的导数公式为了更方便地计算函数的导数,在高中数学中,有一些常见函数的导数公式需要记忆。
这些公式如下:常数函数:(C)' = 0幂函数:(x^n)' = n*x^(n-1)指数函数:(a^x)' = a^x*ln(a),其中a为常数对数函数:(log┬a(x))' = 1/(x*ln(a)),其中a为常数三角函数:(sin(x))' = cos(x),(cos(x))' = -sin(x),(tan(x))' = sec^2(x)反三角函数:(arcsin(x))' = 1/√(1-x^2),(arccos(x))' = -1/√(1-x^2),(arctan(x))' = 1/(1+x^2)和、差、积、商的导数公式:(u±v)' = u'±v',(u*v)' = u'*v+v'*u,(u/v)' = (u'*v-v'*u)/v^2复合函数的导数公式:(f(g(x)))' = f'(g(x))*g'(x)二、函数的极值与最值函数的极值与最值是指函数在定义域内的局部最大值和最小值。
导数的应用二------函数的极值与最值【考点梳理】考点一、函数的极值(一)函数的极值的定义:一般地,设函数)(x f 在点0x x =及其附近有定义,(1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作)(0x f y =极大值;(2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作)(0x f y =极小值. 极大值与极小值统称极值.在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值.注意:(1)一个函数的极大值未必大于极小值.极小值不一定是整个定义区间上的最小值.(2)区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.(二)用导数求函数极值的的基本步骤:①确定函数的定义域; ②求导数)(x f '; ③求方程0)(='x f 的根;④检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法)注意:①可导函数的极值点一定是导函数为0的点,但导数为0的点不一定是极值点.②可导函数)(x f 在点0x 取得极值的充要条件是0()0f x '=,且在0x 两侧)(x f '的符号相异。
【典型例题】类型一: 求函数的极值 例1. 下列函数的极值。
(1)2()x f x x e -=; 【解析】(1)函数的定义域为R 。
22'()2()'2(2)x x x x x f x xe x e x xe x e x x e -----=+⋅-=-=-。
令'()0f x =,得x=0或x=2。
当x 变化时,'()f x ,()f x 变化状态如下表:由上表可以看出,当x=0时,函数有极小值,且(0)0f =。
利用导数求函数的极值与最值内容再现1、函数的单调性与其导数正负的关系:在某个区间内,如果,那么函数在这个区间内单调递增;在某个区间内,如果,那么函数在这个区间内单调递减;若恒有,则函数在这个区间内是常函数。
2、利用函数判断函数值的增减快慢:如果一个函数在某一范围内导数的绝对值,那么函数在这个范围内变化的快,这时函数的图像比较“陡峭”(向上或向下):反之,若函数在这个范围内导数的绝对值,那么函数在这个范围内变化的比较慢,这时函数的图像比较“平缓”。
3、判断函数极大、极小值的方法: 解方程,当时:(1)如果在附近的左侧,右侧,那么是极大值,是极大值点。
(2)如果在附近的左侧,右侧,那么是极小值点。
4、(1)函数的闭区间上的最值:如果在闭区间上函数的图像是一条曲线,则该函数在上一定能取得和,并且函数的最值必在或取得。
(2)求函数在区间上的最值的步骤:求函数在的;将函数的与比较,其中最大的一个是最大值,最小的一个是最小值。
三、巩固练习1、已知函数在区间内可导,且,则( )(A) (B) (C) (D)2、函数在区间 ( )(A) 上单调递减 (B) 上单调递减(C) 上单调递减 (D) 上单调递增3、已知在上有最小值,则在上,的最大值是4、已知是函数的一个极值点,其中,(I)求与的关系式;(II)求的单调区间;(III)当时,函数的图象上任意一点的切线斜率恒大于3,求的取值五、典型例题1、一个物体的运动方程为其中S的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是()A、 7米/秒B、6米/秒C、 5米/秒D、 8米/秒DCxOA By 2、用边长为48cm 的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊接成铁盒,所做铁盒容积最大时,在四角截去的正方形的边长为( ) A .6cm B .8cm C .10cm D .12cm3、如图,某农场要修建3个养鱼塘,每个面积为10 000米2,鱼塘前面要留4米的运料通道,其余各边为2米宽的堤埂,则占地面积最少时,每个鱼塘的长宽分别为 ( ) A .长102米,宽米B .长150米,宽66米C .长宽均为100米D .长100米,宽米4、过抛物线y=x 2-3x 上一点P 的切线的倾斜角为45°,它与两坐标轴交于A ,B 两点,则△AOB 的面积是5、如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为_______时,其容积最大.6、6、某旅行社在暑假期间推出如下旅游团组团办法:达到100人的团体,每人收费1000元。
第6讲 导数的应用之单调性、极值和最值1.函数单调性与导函数符号的关系一般地,函数的单调性与其导数正负有以下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在该区间内单调递增;如果()0f x '<,那么函数()y f x =在该区间内单调递减.2.求可导函数单调区间的一般步骤 (1)确定函数()f x 的定义域;(2)求()f x ',令()0f x '=,解此方程,求出它在定义域内的一切实数; (3)把函数()f x 的间断点(即()f x 的无定义点)的横坐标和()0f x '=的各实根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义域分成若干个小区间;(4)确定()f x '在各小区间内的符号,根据()f x '的符号判断函数()f x 在每个相应小区间内的增减性.注①使()0f x '=的离散点不影响函数的单调性,即当()f x '在某个区间内离散点处为零,在其余点处均为正(或负)时,()f x 在这个区间上仍旧是单调递增(或递减)的.例如,在(,)-∞+∞上,3()f x x =,当0x =时,()0f x '=;当0x ≠时,()0f x '>,而显然3()f x x =在(,)-∞+∞上是单调递增函数.②若函数()y f x =在区间(,)a b 上单调递增,则()0f x '≥(()f x '不恒为0),反之不成立.因为()0f x '≥,即()0f x '>或()0f x '=,当()0f x '>时,函数()y f x =在区间(,)a b 上单调递增.当()0f x '=时,()f x 在这个区间为常值函数;同理,若函数()y f x =在区间(,)a b 上单调递减,则()0f x '≤(()f x '不恒为0),反之不成立.这说明在一个区间上函数的导数大于零,是这个函数在该区间上单调递增的充分不必要条件.于是有如下结论: ()0f x '>⇒()f x 单调递增; ()f x 单调递增()0f x '⇒≥; ()0f x '<⇒()f x 单调递减; ()f x 单调递减()0f x '⇒≤.3.函数极值的概念设函数()y f x =在点0x 处连续且0()0y f x '==,若在点0x 附近的左侧()0f x '>,右侧()0f x '<,则0x 为函数的极大值点;若在0x 附近的左侧()0f x '<,右侧()0f x '>,则0x 为函数的极小值点.函数的极值是相对函数在某一点附近的小区间而言,在函数的整个定义区间内可能有多个极大值或极小值,且极大值不一定比极小值大.极大值与极小值统称为极值,极大值点与极小值点统称为极值点. 4.求可导函数()f x 极值的一般步骤 (1)先确定函数()f x 的定义域; (2)求导数()f x ';(3)求方程()0f x '=的根;(4)检验()f x '在方程()0f x '=的根的左右两侧的符号,如果在根的左侧附近为正,在右侧附近为负,那么函数()y f x =在这个根处取得极大值;如果在根的左侧附近为负,在右侧附近为正,那么函数()y f x =在这个根处取得极小值.注①可导函数()f x 在点0x 处取得极值的充要条件是:0x 是导函数的变号零点,即0()0f x '=,且在0x 左侧与右侧,()f x '的符号导号.②0()0f x '=是0x 为极值点的既不充分也不必要条件,如3()f x x =,(0)0f '=,但00x =不是极值点.另外,极值点也可以是不可导的,如函数()f x x =,在极小值点00x =是不可导的,于是有如下结论:0x 为可导函数()f x 的极值点0()0f x '⇒=;但0()0f x '=⇒0x 为()f x 的极值点. 5.函数的最大值、最小值若函数()y f x =在闭区间[],a b 上的图像是一条连续不间断的曲线,则该函数在[],a b 上一定能够取得最大值与最小值,函数的最值必在极值点或区间端点处取得.6.求函数的最大值、最小值的一般步骤设()y f x =是定义在区间[],a b 上的函数,()y f x =在(,)a b 可导,求函数()y f x =在[],a b 上的最大值与最小值,可分两步进行:(1)求函数()y f x =在(,)a b 内的极值;(2)将函数()y f x =的各极值与端点处的函数值(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值.注①函数的极值反映函数在一点附近情况,是局部函数值的比较,故极值不一定是最值;函数的最值是对函数在整个区间上函数值比较而言的,故函数的最值可能是极值,也可能是区间端点处的函数值;②函数的极值点必是开区间的点,不能是区间的端点; ③函数的最值必在极值点或区间端点处取得.1.已知0x 是函数()e ln x f x x =-的极值点,若()00,a x ∈, ()0,b x ∈+∞,则 A. ()0f a '>, ()0f b '< B. ()0f a '<, ()0f b '< C. ()0f a '>, ()0f b '> D. ()0f a '<, ()0f b '> 【答案】D【解析】因为()1(0)x f x e x x '=->,令()1=0x f x e x '=-,即1=x e x ,在平面直角坐标系画出1,x y e y x==的图象,如图:根据图象可知, ()()()()000,,0,,,0x x f x x x f x '∞'∈∈+,所以 ()0f a '<, ()0f b '>,故选D.2.已知20a b =≠,且关于x 的函数()321132f x x a x a bx =++⋅在R 上有极值,则a 与b 的夹角范围为( )A. 0,6π⎛⎫⎪⎝⎭B. ,6ππ⎛⎤ ⎥⎝⎦C. ,3ππ⎛⎤ ⎥⎝⎦D. 2,33ππ⎛⎤ ⎥⎝⎦【答案】C【解析】()321132f x x a x a bx =++⋅在R 有极值, ()2'0f x x a x a b ∴=++⋅=有不等式的根, 0∴∆>,即2240,4cos 0a a b a a b θ-⋅>∴->,120,cos 2a b θ=≠∴<, 0,3πθπθπ≤≤∴<≤,即向量,a b 夹角范围是,3ππ⎛⎤⎥⎝⎦,故选C. 【方法点睛】本题主要考查向量的模及平面向量数量积公式、利用导数研究函数的极值,属于难题.平面向量数量积公式有两种形式,一是cos a b a b θ⋅=,二是1212a b x x y y ⋅=+,主要应用以下几个方面:(1)求向量的夹角, ·cos ·a ba bθ=(此时·a b 往往用坐标形式求解);(2)求投影, a 在b 上的投影是a b b⋅;(3),a b 向量垂直则0a b ⋅=;(4)求向量ma nb + 的模(平方后需求a b ⋅).3.在ABC ∆中, ,,a b c 分别为,,A B C ∠∠∠所对的边,若函数()()3222113f x x bx a c ac x =+++-+有极值点,则sin 23B π⎛⎫- ⎪⎝⎭的最小值是( ) A. 0 B. 32- C. 32D. -1 【答案】D【解析】()()3222113f x x bx a c ac x =+++-+,∴f′(x )=x 2+2bx+(a 2+c 2-ac ),又∵函数()()3222113f x x bx a c ac x =+++-+有极值点,∴x 2+2bx+(a 2+c 2-ac )=0有两个不同的根,∴△=(2b )2-4(a 2+c 2-ac )>0,即ac >a 2+c 2-b 2,即ac >2accosB ;即cosB <12,故∠B 的范围是(π3π,),所以23B π- 5,33ππ⎛⎫∈ ⎪⎝⎭,当3112B 326B πππ-==,即 时sin 23B π⎛⎫- ⎪⎝⎭的最小值是-1 故选D4.设定义在(0,+∞)上的函数f(x)满足xf′(x)-f(x)=xlnx , 11f e e⎛⎫= ⎪⎝⎭,则f(x)( )A. 有极大值,无极小值B. 有极小值,无极大值C. 既有极大值,又有极小值D. 既无极大值,又无极小值 【答案】D【解析】因为xf ′(x )-f (x )=x ln x ,所以()()2ln xf x f x x x x -=',所以()'ln ()f x xx x=,所以f (x )=12x ln 2x +cx .因为f (1e )=12e ln 21e +c ×1e =1e ,所以c =12,所以f ′(x )=12ln 2x +ln x +12=12(ln x +1)2≥0,所以f (x )在(0,+∞)上单调递增,所以f (x )在(0,+∞)上既无极大值,也无极小值,故选D.点睛:根据导函数求原函数,常常需构造辅助函数,一般根据导数法则进行:如()()f x f x '-构造()()x f x g x e =, ()()f x f x '+构造()()x g x e f x =,()()xf x f x '-构造()()f xg x x=, ()()xf x f x '+构造()()g x xf x =等 5.设a R ∈,若函数,x y e ax x R =+∈有大于零的极值点,则( )A. 1a e<- B. 1a e >- C. 1a >- D. 1a <-【答案】D【解析】()x f x e a '=+(x>0),显然当0a ≥时, ()0f x '>,f(x)在R 上单调递增,无极值点,不符。
高考数学之利用导数研究函数的极值和最值一.知识点睛1.可导函数的极值:①如果函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,我们就把a叫做函数的极小值点,f(a)叫做函数的极小值.②如果函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,我们就把b叫做函数的极大值点,f(b)叫做函数的极大值.注意:①.可导函数y=f(x)在点x0取得极值的充要条件是f′(x0)=0,且在点x0左侧和右侧,f′(x)异号②.导数为0的点不一定是极值点,比如y=x3即导数为0的点是该点为极值点的必要条件,而不是充分条件。
③.若极值点处的导数存在,则一定为02.求可导函数极值的步骤:①.确定函数的定义域②求导f′(x)③求方程f′(x)=0的根④把定义域划分为部分区间,并列成表格,检查f′(x)在方程根左右的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值。
二.方法点拨:1.已知具体函数求极值2.已知含参函数的极值点和极值,确定参数:①极值点处导数为0②由极值点,极值组成的坐标在曲线上,由这两点建立有关参数的方程,求出参数值以后还须检验,看参数是否符合函数取得极值的条件。
3.已知含参函数极值点个数,确定参数范围:函数f(x)的极值点导函数f′(x) 的异号零点f′(x)=0的根函数y=k与函数y=g(x)图像交点的横坐标注意:导函数f′(x)的零点并不是函数f(x)的极值点,导函数f′(x)的异号零点才对应函数f(x)的极值点。
因此方程f′(x)=0的根及函数y=k与函数y=g(x)图像交点的横坐标,必须对应f′(x) 的异号零点。
方法总结:解决函数的零点,极值点,及方程根的关系问题时,优先考虑分离参数法,若分离参数不容易实现或者分离后依然不好解决问题,再考虑以下解题思路:(1)研究函数图像与X轴的位置关系⑵研究非水平的动直线(定点直线系或者斜率不为0的平行直线系)与固定函数曲线的位置关系⑶研究动态曲线与曲线的位置关系。
高考数学导数与函数的极值、最值最新考纲了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次).知识梳理1.函数的极值与导数(1)判断f(x0)是极值的方法一般地,当函数f(x)在点x0处连续且f′(x0)=0,①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)≤0,右侧f′(x)≥0,那么f(x0)是极小值.(2)求可导函数极值的步骤①求f′(x);②求方程f′(x)=0的根;③检查f′(x)在方程f′(x)=0的根的左右两侧的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.2.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是连续不断的曲线,那么它必有最大值和最小值.(2)设函数f(x)在[a,b]上连续且在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.诊断自测1.判断正误(在括号内打“√”或“×”)(1)函数在某区间上或定义域内极大值是唯一的.()(2)函数的极大值不一定比极小值大.()(3)对可导函数f (x ),f ′(x 0)=0是x 0点为极值点的充要条件.( ) (4)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( ) 解析 (1)函数在某区间上或定义域内的极大值不唯一.(3)x 0为f (x )的极值点的充要条件是f ′(x 0)=0,且x 0两侧导数符号异号. 答案 (1)× (2)√ (3)× (4)√ 2.函数f (x )=-x 3+3x +1有( ) A.极小值-1,极大值1 B.极小值-2,极大值3 C.极小值-2,极大值2D.极小值-1,极大值3解析 因为f (x )=-x 3+3x +1,故有y ′=-3x 2+3,令y ′=-3x 2+3=0,解得x =±1,于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-1)-1 (-1,1) 1 (1,+∞)f ′(x ) - 0 + 0 - f (x )极大值极小值所以f (x )的极小值为f (-1)=-1,f (x )的极大值为f (1)=3. 答案 D3.(选修2-2P32A4改编)如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A.1B.2C.3D.4解析 由题意知在x =-1处f ′(-1)=0,且其左右两侧导数符号为左负右正. 答案 A4.函数y =2x 3-2x 2在区间[-1,2]上的最大值是________. 解析 y ′=6x 2-4x ,令y ′=0,得x =0或x =23.∵f (-1)=-4,f (0)=0,f ⎝ ⎛⎭⎪⎫23=-827,f (2)=8, 所以最大值为8.答案 85.函数f (x )=ln x -ax 在x =1处有极值,则常数a =________.解析 ∵f ′(x )=1x -a ,∴f ′(1)=1-a =0,∴a =1,经检验符合题意. 答案 16.函数y =x +2cos x 在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值为________;最小值为________.解析 ∵y =x +2cos x ,x ∈⎣⎢⎡⎦⎥⎤0,π2,∴y ′=1-2sin x ,x ∈⎣⎢⎡⎦⎥⎤0,π2,令y ′=0,得x =π6,当x ∈⎣⎢⎡⎭⎪⎫0,π6时,y ′>0,当x ∈⎝ ⎛⎦⎥⎤π6,π2时,y ′<0,故x =π6时,∴y 最大=y 极大=π6+3,又x =0时,y =2;x =π2时,y =π2,∴y 最小=π2. 答案 π6+3 π2考点一 用导数解决函数的极值问题 【例1】 求下列函数的极值: (1)f (x )=x 2-2x -4ln x ;(2)f (x )=ax 3-3x 2+1-3a (a ∈R 且a ≠0). 解 (1)f (x )的定义域为(0,+∞), f ′(x )=2x -2-4x =2(x -2)(x +1)x ,令f ′(x )=0得x =2或-1(舍).随着x 的变化,f ′(x )与f (x )的变化情况如下表:x (0,2) 2 (2,+∞)f ′(x ) - 0 +f (x )极小值∴f (x )有极小值(2)由题设知a ≠0,f ′(x )=3ax 2-6x =3ax ⎝ ⎛⎭⎪⎫x -2a .令f ′(x )=0得x =0或2a .当a >0时,随着x 的变化,f ′(x )与f (x )的变化情况如下表:∴f (x )极大值=f (0)=1-3a , f (x )极小值=f ⎝ ⎛⎭⎪⎫2a =-4a 2-3a +1.当a <0时,随着x 的变化,f ′(x )与f (x )的变化情况如下表:∴f (x )极大值=f (0)=1-3a , f (x )极小值=f ⎝ ⎛⎭⎪⎫2a =-4a 2-3a +1. 综上,f (x )极大值=f (0)=1-3a , f (x )极小值=f ⎝ ⎛⎭⎪⎫2a =-4a 2-3a +1.规律方法 函数极值的两类热点问题(1)求函数f (x )极值这类问题的一般解题步骤为:①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④列表检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值. (2)由函数极值求参数的值或范围.讨论极值点有无(个数)问题,转化为讨论f ′(x )=0根的有无(个数).然后由已知条件列出方程或不等式求出参数的值或范围,特别注意:极值点处的导数为0,而导数为0的点不一定是极值点,要检验极值点两侧导数是否异号.【训练1】 (1)设函数f (x )=ax 3-2x 2+x +c .若f (x )在R 上无极值点,则实数a 的取值范围为________.(2)设a ∈R ,若函数y =e ax +3x ,x ∈R 有大于零的极值点,则( )A.a >-3B.a <-3C.a >-13D.a <-13解析 (1)由题得f ′(x )=3ax 2-4x +1.若f (x )在R 上无极值点,则f (x )在R 上是单调函数,即f ′(x )≥0或f ′(x )≤0恒成立. ①当a =0时,f ′(x )=-4x +1,显然不满足条件;②当a ≠0时,f ′(x )≥0或f ′(x )≤0恒成立的充要条件是Δ=(-4)2-4×3a ×1≤0,即16-12a ≤0,解得a ≥43.综上,实数a 的取值范围为⎣⎢⎡⎭⎪⎫43,+∞.(2)y ′=f ′(x )=a e ax +3,当a ≥0时,f ′(x )>0在R 上恒成立,∴f (x )无极值点; 当a <0时,令f ′(x )=0得x =1a ln ⎝ ⎛⎭⎪⎫-3a ,∴1a ln ⎝ ⎛⎭⎪⎫-3a >0得a <-3,故选B.答案 (1)⎣⎢⎡⎭⎪⎫43,+∞ (2)B考点二 用导数解决函数的最值问题【例2】已知函数f (x )=(4x 2+4ax +a 2)x ,其中a <0. (1)当a =-4时,求f (x )的单调递增区间; (2)若f (x )在区间[1,4]上的最小值为8,求a 的值. 解 (1)当a =-4时,由f ′(x )=2(5x -2)(x -2)x=0得x =25或x =2,由f ′(x )>0得x ∈⎝ ⎛⎭⎪⎫0,25或x ∈(2,+∞),故函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,25和(2,+∞).(2)因为f ′(x )=(10x +a )(2x +a )2x ,a <0,由f ′(x )=0得x =-a 10或x =-a2.当x ∈⎝ ⎛⎭⎪⎫0,-a 10时,f (x )单调递增.当x ∈⎝ ⎛⎭⎪⎫-a10,-a 2时,f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫-a 2,+∞时,f (x )单调递增.易知f (x )=(2x +a )2x ≥0,且f ⎝ ⎛⎭⎪⎫-a 2=0.①当-a2≤1时,即-2≤a <0时,f (x )在[1,4]上的最小值为f (1),由f (1)=4+4a +a 2=8,得a =±22-2,均不符合题意.②当1<-a 2≤4时,即-8≤a <-2时,f (x )在[1,4]上的最小值为f ⎝ ⎛⎭⎪⎫-a 2=0,不符合题意.③当-a2>4时,即a <-8时,f (x )在[1,4]上的最小值可能在x =1或x =4处取得,而f (1)≠8,由f (4)=2(64+16a +a 2)=8得a =-10或a =-6(舍去),当a =-10时,f (x )在(1,4)上单调递减,f (x )在[1,4]上的最小值为f (4)=8,符合题意.综上有,a =-10.规律方法 (1)求函数f (x )在[a ,b ]上的最大值和最小值的步骤:①求函数在(a ,b )内的极值;②求函数在区间端点的函数值f (a ),f (b );③将函数f (x )的极值与 f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.(2)含参数的函数的最值一般不通过比值求解,而是先讨论函数的单调性,再根据单调性求出最值.含参函数在区间上的最值通常有两类:一是动极值点定区间,二是定极值点动区间,这两类问题一般根据区间与极值点的位置关系来分类讨论.【训练2】 已知函数f (x )=(ax -2)e x 在x =1处取得极值. (1)求a 的值;(2)求函数在区间[m ,m +1]上的最小值. 解 (1)f ′(x )=(ax +a -2)e x , 由已知得f ′(1)=(a +a -2)e =0,解得a =1,经检验a =1符合题意,所以a 的值为1. (2)由(1)得f (x )=(x -2)e x ,f ′(x )=(x -1)e x .令f ′(x )>0得x >1,令f ′(x )<0得x <1.所以函数f (x )在(-∞,1)上递减,在(1,+∞)上递增.当m ≥1时,f (x )在[m ,m +1]上递增,f (x )min =f (m )=(m -2)e m ,当0<m <1时,f (x )在[m ,1]上递减,在(1,m +1]上递增,f (x )min =f (1)=-e. 当m ≤0时,m +1≤1,f (x )在[m ,m +1]上单调递减, f (x )min =f (m +1)=(m -1)e m +1. 综上,f (x )在[m ,m +1]上的最小值为f (x )min =⎩⎨⎧(m -2)e m ,m ≥1,-e ,0<m <1,(m -1)e m +1,m ≤0.[思想方法]1.利用导数研究函数的单调性、极值、最值可列表观察函数的变化情况,直观而且条理,减少失分.2.求极值、最值时,要求步骤规范、表格齐全;含参数时,要讨论参数的大小.3.可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同.4.若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值. [易错防范]1.求函数单调区间与函数极值时要养成列表的习惯,可使问题直观且有条理,减少失分的可能.2.求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论.基础巩固题组 (建议用时:40分钟)一、选择题1.已知a 为函数f (x )=x 3-12x 的极小值点,则a =( )A.-4B.-2C.4D.2解析 f ′(x )=3x 2-12,∴x <-2时,f ′(x )>0,-2<x <2时,f ′(x )<0,x >2时, f ′(x )>0,∴x =2是f (x )的极小值点. 答案 D2.函数f (x )=12x 2-ln x 的最小值为( ) A.12B.1C.0D.不存在解析 f ′(x )=x -1x =x 2-1x ,且x >0.令f ′(x )>0,得x >1;令f ′(x )<0,得0<x <1.∴f (x )在x =1处取得极小值也是最小值,且f (1)=12-ln 1=12. 答案 A3.已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22等于( ) A.23 B.43 C.83D.163解析 由图象可知f (x )的图象过点(1,0)与(2,0),x 1,x 2是函数f (x )的极值点,因此1+b +c =0,8+4b +2c =0,解得b =-3,c =2,所以f (x )=x 3-3x 2+2x ,所以f ′(x )=3x 2-6x +2.x 1,x 2是方程f ′(x )=3x 2-6x +2=0的两根,因此x 1+x 2=2,x 1x 2=23,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=4-43=83. 答案 C4.已知函数f (x )=e x -x 2,若∀x ∈[1,2],不等式-m ≤f (x )≤m 2-4恒成立,则实数m 的取值范围是( ) A.(-∞,1-e] B.[1-e ,e] C.[-e ,e +1]D.[e ,+∞)解析 因为f (x )=e x -x 2,所以f ′(x )=e x -2x ,令g (x )=f ′(x ),所以g ′(x )=e x -2,因为x ∈[1,2],所以g ′(x )=e x -2>0,故f ′(x )=e x -2x 在[1,2]上是增函数,故f ′(x )=e x -2x ≥e -2>0;故f (x )=e x -x 2在[1,2]上是增函数,故e -1≤e x -x 2≤e 2-4;故-m ≤f (x )≤m 2-4恒成立可化为-m ≤e -1≤e 2-4≤m 2-4;故m ≥e.答案 D5.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是( ) A.(-1,2) B.(-∞,-3)∪(6,+∞) C.(-3,6)D.(-∞,-1)∪(2,+∞)解析 ∵f ′(x )=3x 2+2ax +(a +6), 由已知可得f ′(x )=0有两个不相等的实根. ∴Δ=4a 2-4×3(a +6)>0,即a 2-3a -18>0, ∴a >6或a <-3. 答案 B 二、填空题6.函数f (x )=x 33+x 2-3x -4在[0,2]上的最小值是________. 解析 f ′(x )=x 2+2x -3,由f ′(x )=0,x ∈[0,2], 得x =1.比较f (0)=-4,f (1)=-173, f (2)=-103,可知最小值为-173. 答案 -1737.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab 的值为________.解析 由题意知,f ′(x )=3x 2+2ax +b ,f ′(1)=0,f (1)=10,即⎩⎨⎧3+2a +b =0,1+a +b -a 2-7a =10,解得⎩⎨⎧a =-2,b =1或⎩⎨⎧a =-6,b =9,经检验⎩⎨⎧a =-6,b =9满足题意,故a b =-23. 答案 -238.函数f (x )=x 3-3ax +b (a >0)的极大值为6,极小值为2,则f (x )的单调递减区间是________;函数的极大值为________. 解析 令f ′(x )=3x 2-3a =0,得x =±a ,则f (x ),f ′(x )随x 的变化情况如下表:⎩(a )3-3a a +b =2,解得⎩⎨⎧a =1,b =4.f (x )=x 3-3x +4,所以f (x )的单调递减区间是(-1,1),当x =-a =-1时,f (x )极大=f (-1)=6. 答案 (-1,1) 6 三、解答题9.设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求实数a 的取值范围.解 对f (x )求导得f ′(x )=e x ·1+ax 2-2ax(1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0, 解得x 1=32,x 2=12.结合①,可知所以x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,即Δ=4a 2-4a =4a (a -1)≤0,由此并结合a >0,知0<a ≤1.所以实数a 的取值范围为{a |0<a ≤1}. 10.已知函数f (x )=(x -k )e x . (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值. 解 (1)由题意知f ′(x )=(x -k +1)e x . 令f ′(x )=0,得x =k -1.f (x )与f ′(x )随x 的变化情况如下表:所以,f (x )). (2)当k -1≤0,即k ≤1时,f (x )在[0,1]上单调递增, 所以f (x )在区间[0,1]上的最小值为f (0)=-k ; 当0<k -1<1,即1<k <2时,f (x )在[0,k -1]上单调递减,在[k -1,1]上单调递增, 所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1; 当k -1≥1,即k ≥2时,f (x )在[0,1]上单调递减, 所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e. 综上,当k ≤1时,f (x )在[0,1]上的最小值为f (0)=-k ; 当1<k <2时,f (x )在[0,1]上的最小值为 f (k -1)=-e k -1;当k ≥2时,f (x )在[0,1]上的最小值为f (1)=(1-k )e.能力提升题组 (建议用时:30分钟)11.函数f (x )=xe x ( ) A.仅有最小值12eB.仅有最大值12eC.有最小值0,最大值12eD.无最值解析 函数f (x )的定义域为[0,+∞),f ′(x )=1-2x 2x e x,∴当x ∈⎝ ⎛⎭⎪⎫0,12时,f ′(x )>0,f (x )递增;当x ∈⎝ ⎛⎭⎪⎫12,+∞时,f ′(x )<0,f (x )递减.又f (0)=0,f ⎝ ⎛⎭⎪⎫12=12e,当x ∈⎝ ⎛⎭⎪⎫12,+∞时,f (x )>0,∴f (x )min =0,f (x )max =12e . 答案 C12.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是( ) A.[-5,0)B.(-5,0)C.[-3,0)D.(-3,0)解析 由题意,f ′(x )=x 2+2x =x (x +2),故f (x )在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数,作出其图象如图所示.令13x 3+x 2-23=-23得,x =0或x =-3,则结合图象可知,⎩⎨⎧-3≤a <0,a +5>0,解得a ∈[-3,0),故选C. 答案 C13.已知函数F (x )=1-x x +k ln x (其中k <1e 且k ≠0),则F (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值为________,最小值为________.解析 F (x )=1-x x +k ln x (x >0),∴F ′(x )=(1-x )′x -(1-x )x ′x 2+k x =kx -1x 2.①若k <0,在⎣⎢⎡⎦⎥⎤1e ,e 上,恒有k ⎝ ⎛⎭⎪⎫x -1k x 2<0,∴F (x )在⎣⎢⎡⎦⎥⎤1e ,e 上单调递减,F (x )min =F (e)=1-e e +k =1e +k -1,F (x )max =F ⎝ ⎛⎭⎪⎫1e =e -k -1.②k >0时,∵k <1e ,∴1k >e ,x -1k <0,∴k ⎝ ⎛⎭⎪⎫x -1k x 2<0,∴F (x )在⎣⎢⎡⎦⎥⎤1e ,e 上单调递减,∴F (x )min =F (e)=1-e e +k =1e +k -1.F (x )max =F ⎝ ⎛⎭⎪⎫1e =e -k -1.综上所述,当k ≠0且k <1e 时,F (x )max =e -k -1,F (x )min =1e +k -1. 答案 e -k -1 1e +k -1 14.设函数f (x )=ln(x +a )+x 2.(1)若当x =-1时,f (x )取得极值,求a 的值,并讨论f (x )的单调性; (2)若f (x )存在极值,求a 的取值范围,并证明所有极值之和大于ln e2. 解 (1)f ′(x )=1x +a+2x ,依题意,有f ′(-1)=0,故a =32. 从而f ′(x )=(2x +1)(x +1)x +32,且f (x )的定义域为⎝ ⎛⎭⎪⎫-32,+∞, 当-32<x <-1时,f ′(x )>0; 当-1<x <-12时,f ′(x )<0; 当x >-12时,f ′(x )>0.∴f (x )在区间⎝ ⎛⎭⎪⎫-32,-1,⎝ ⎛⎭⎪⎫-12,+∞上单调递增,在⎝ ⎛⎭⎪⎫-1,-12上单调递减.(2)f (x )的定义域为(-a ,+∞),f ′(x )=2x 2+2ax +1x +a .方程2x 2+2ax +1=0的判别式Δ=4a 2-8,①若Δ≤0,即-2≤a ≤2时,f ′(x )≥0,故f (x )无极值.②若Δ>0,即a <-2或a >2,则2x 2+2ax +1=0有两个不同的实根,x 1=-a -a 2-22,x 2=-a +a 2-22.当a <-2时,x 1<-a ,x 2<-a , 故f ′(x )>0在定义域上恒成立, 故f (x )无极值.当a >2时,-a <x 1<x 2,故f (x )在(-a ,x 1)上递增,(x 1,x 2)上递减,(x 2,+∞)上递增.故f (x )在x =x 1,x =x 2取得极值.综上,f (x )存在极值时,a 的取值范围为(2,+∞). 由上可知,x 1+x 2=-a ,x 1x 2=12.所以,f (x )的极值之和为f (x 1)+f (x 2)=ln(x 1+a )+x 21+ln(x 2+a )+x 22 =ln(-x 2)+ln(-x 1)+(x 21+x 22)=ln(x 1x 2)+(x 1+x 2)2-2x 1x 2 =ln 12+a 2-1>ln 12+(2)2-1=ln e 2.15.若函数f (x )=ax 3-bx +4,当x =2时,函数f (x )有极值-43. (1)求函数f (x )的解析式;(2)若函数f (x )=k 有3个解,求实数k 的取值范围. 解 (1)对函数f (x )求导得:f ′(x )=3ax 2-b , 由题意⎩⎪⎨⎪⎧f ′(2)=12a -b =0,f (2)=8a -2b +4=-43,解得⎩⎪⎨⎪⎧a =13,b =4.∴函数f (x )的解析式为f (x )=13x 3-4x +4.(2)由(1)可得:f ′(x )=x 2-4=(x -2)(x +2), 令f ′(x )=0,得x =2或x =-2.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-2)-2 (-2,2) 2 (2,+∞)f ′(x ) + 0 - 0 + f (x )283-43因此,当x =-2时,f (x )有极大值283; 当x =2时,f (x )有极小值-43.∴函数f (x )=13x 3-4x +4的图象大致如图所示.因为方程f (x )=k 的解的个数即为y =k 与y =f (x )的交点个数. 所以实数k 的取值范围是⎝ ⎛⎭⎪⎫-43,283.高考导航 函数与导数作为高中数学的核心内容,常常与其他知识结合起来,形成层次丰富的各类题型,常涉及的问题:研究函数的性质(如求单调区间、求极值、最值),研究函数的零点(或方程的根、曲线的交点),研究不等式.热点一 利用导数研究函数的性质利用导数研究函数的单调性、极值、最值问题,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a . 若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. 综上,知当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a-1.因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g(1)=0.于是,当0<a<1时,g(a)<0;当a>1时,g(a)>0.因此,实数a的取值范围是(0,1).探究提高(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.(2)由函数的性质求参数的取值范围,通常根据函数的性质得到参数的不等式,再解出参数的范围.若不等式是初等的一次、二次、指数或对数不等式,则可以直接解不等式得参数的取值范围;若不等式是一个不能直接解出的超越型不等式时,如求解ln a+a-1<0,则需要构造函数来解.【训练1】已知a∈R,函数f(x)=(-x2+ax)e x(x∈R,e为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)若函数f(x)在(-1,1)上单调递增,求实数a的取值范围.解(1)当a=2时,f(x)=(-x2+2x)e x,所以f′(x)=(-2x+2)e x+(-x2+2x)e x=(-x2+2)e x.令f′(x)>0,即(-x2+2)e x>0,因为e x>0,所以-x2+2>0,解得-2<x< 2.所以函数f(x)的单调递增区间是(-2,2).(2)因为函数f(x)在(-1,1)上单调递增,所以f′(x)≥0对x∈(-1,1)都成立,因为f′(x)=(-2x+a)e x+(-x2+ax)e x=[-x2+(a-2)x+a]e x,所以[-x2+(a-2)x+a]e x≥0对x∈(-1,1)都成立.因为e x>0,所以-x2+(a-2)x+a≥0对x∈(-1,1)都成立,即a≥x2+2xx+1=(x+1)2-1x+1=(x+1)-1x+1对x∈(-1,1)都成立.令y=(x+1)-1x+1,则y′=1+1(x+1)2>0.所以y =(x +1)-1x +1在(-1,1)上单调递增, 所以y <(1+1)-11+1=32.即a ≥32. 因此实数a 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞.热点二 利用导数研究函数零点或曲线交点问题函数的零点、方程的根、曲线的交点,这三个问题本质上同属一个问题,它们之间可相互转化,这类问题的考查通常有两类:(1)讨论函数零点或方程根的个数;(2)由函数零点或方程的根求参数的取值范围.【例2】 已知函数f (x )=ax sin x -32(a >0),且在⎣⎢⎡⎦⎥⎤0,π2上的最大值为π-32.(1)求函数f (x )的解析式;(2)判断函数f (x )在(0,π)内的零点个数,并加以证明. 解 (1)由已知,得f ′(x )=a (sin x +x cos x ),且a >0. 当x ∈⎝ ⎛⎭⎪⎫0,π2时,有sin x +x cos x >0,从而f ′(x )>0,f (x )在⎝ ⎛⎭⎪⎫0,π2上是增函数,又f (x )在⎣⎢⎡⎦⎥⎤0,π2上的图象是连续不断的,故f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值为f ⎝ ⎛⎭⎪⎫π2,即π2a -32=π-32,解得a =1. 综上所述得f (x )=x sin x -32.(2)f (x )在(0,π)内有且只有两个零点.证明如下: 由(1)知,f (x )=x sin x -32,从而f (0)=-32<0,f ⎝ ⎛⎭⎪⎫π2=π-32>0.又f (x )在⎣⎢⎡⎦⎥⎤0,π2上的图象是连续不断的,所以f (x )在⎝ ⎛⎭⎪⎫0,π2内至少存在一个零点.又由(1)知f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增,故f (x )在⎝⎛⎭⎪⎫0,π2内有且只有一个零点.当x ∈⎣⎢⎡⎦⎥⎤π2,π时,令g (x )=f ′(x )=sin x +x cos x .由g ⎝ ⎛⎭⎪⎫π2=1>0,g (π)=-π<0,且g (x )在⎣⎢⎡⎦⎥⎤π2,π上的图象是连续不断的,故存在m ∈⎝ ⎛⎭⎪⎫π2,π,使得g (m )=0.由g ′(x )=2cos x -x sin x ,知x ∈⎝ ⎛⎭⎪⎫π2,π时,有g ′(x )<0,从而g (x )在⎝ ⎛⎭⎪⎫π2,π内单调递减.①当x ∈⎝ ⎛⎭⎪⎫π2,m 时,g (x )>g (m )=0,即f ′(x )>0,从而f (x )在⎝ ⎛⎭⎪⎫π2,m 内单调递增,故当x ∈⎣⎢⎡⎦⎥⎤π2,m 时,f (x )≥f ⎝ ⎛⎭⎪⎫π2=π-32>0,故f (x )在⎣⎢⎡⎦⎥⎤π2,m 上无零点;②当x ∈(m ,π)时,有g (x )<g (m )=0, 即f ′(x )<0,从而f (x )在(m ,π)内单调递减.又f (m )>0,f (π)<0,且f (x )的图象在[m ,π]上连续不间断,从而f (x )在区间(m ,π)内有且仅有一个零点.综上所述,f (x )在(0,π)内有且只有两个零点. 探究提高 利用导数研究函数的零点常用两种方法:(1)运用导数研究函数的单调性和极值,利用单调性和极值定位函数图象来解决零点问题;(2)将函数零点问题转化为方程根的问题,利用方程的同解变形转化为两个函数图象的交点问题,利用数形结合来解决.【训练2】设函数f(x)=ln x+mx,m∈R.(1)当m=e(e为自然对数的底数)时,求f(x)的极小值;(2)讨论函数g(x)=f′(x)-x3零点的个数.解(1)由题设,当m=e时,f(x)=ln x+e x,定义域为(0,+∞),则f′(x)=x-ex2,由f′(x)=0,得x=e.∴当x∈(0,e),f′(x)<0,f(x)在(0,e)上单调递减,当x∈(e,+∞),f′(x)>0,f(x)在(e,+∞)上单调递增,∴当x=e时,f(x)取得极小值f(e)=ln e+ee=2,∴f(x)的极小值为2.(2)由题设g(x)=f′(x)-x3=1x-mx2-x3(x>0),令g(x)=0,得m=-13x3+x(x>0).设φ(x)=-13x3+x(x>0),则φ′(x)=-x2+1=-(x-1)(x+1),当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上单调递增;当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上单调递减. ∴x=1是φ(x)的唯一极值点,且是极大值点,因此x=1也是φ(x)的最大值点.∴φ(x)的最大值为φ(1)=2 3.又φ(0)=0,结合y=φ(x)的图象(如图),可知①当m>23时,函数g(x)无零点;②当m =23时,函数g (x )有且只有一个零点; ③当0<m <23时,函数g (x )有两个零点; ④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点; 当m =23或m ≤0时,函数g (x )有且只有一个零点; 当0<m <23时,函数g (x )有两个零点. 热点三 利用导数研究不等式问题(规范解答)导数在不等式中的应用是高考的热点,常以解答题的形式考查,以中高档题为主,突出转化思想、函数思想的考查,常见的命题角度:(1)证明简单的不等式;(2)由不等式恒成立求参数范围问题;(3)不等式恒成立、能成立问题. 【例3】 (满分12分)设函数f (x )=e 2x -a ln x . (1)讨论f (x )的导函数f ′(x )零点的个数; (2)证明:当a >0时,f (x )≥2a +a ln 2a .满分解答 (1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -ax (x >0). 当a ≤0时,f ′(x )>0,f ′(x )没有零点.2分 当a >0时,设u (x )=e 2x ,v (x )=-ax ,因为u (x )=e 2x 在(0,+∞)上单调递增,v (x )=-ax 在(0,+∞)上单调递增,所以f ′(x )在(0,+∞)上单调递增.4分又f ′(a )>0,当b 满足0<b <a 4且b <14时,f ′(b )<0(讨论a ≥1或a <1来检验), 故当a >0时,f ′(x )存在唯一零点.6分(2)证明 由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0,当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0.故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以当x=x0时,f(x)取得最小值,最小值为f(x0)9分由于2e2x0-ax0=0,所以f(x0)=a2x0+2ax0+a ln2a≥2a+a ln2a.故当a>0时,f(x)≥2a+a ln 2a.12分❶得步骤分:抓住得分点的步骤,“步步为赢”,求得满分.如第(1)问中,求导正确,分类讨论;第(2)问中利用单调性求f(x)的最小值和基本不等式的应用.❷得关键分:解题过程不可忽视关键点,有则给分,无则没分,如第(1)问中,求出f(x)的定义域,f′(x)在(0,+∞)上单调性的判断;第(2)问,f(x)在x=x0处最值的判定.❸得计算分:解题过程中计算准确是得满分的根本保证.如第(1)问中,求导f′(x)准确,否则全盘皆输,求解使f′(b)<0的b满足的约束条件0<b<a4,且b<14.如第(2)问中x0满足条件的计算,若计算错误不得分,另外还应注意规范的文字、符号语言的表述.1.讨论零点个数的答题模板第一步:求函数的定义域;第二步:分类讨论函数的单调性、极值;第三步:根据零点存在性定理,结合函数图象确定各分类情况的零点个数.2.证明不等式的答题模板第一步:根据不等式合理构造函数;第二步:求函数的最值;第三步:根据最值证明不等式.【训练3】已知函数f(x)=ax+ln x(a∈R).(1)若a=2,求曲线y=f(x)在x=1处的切线方程;(2)求f(x)的单调区间;(3)设g(x)=x2-2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1]使得f(x1)<g(x2),求a 的取值范围.解 (1)由已知得f ′(x )=2+1x (x >0),所以f ′(1)=2+1=3,所以斜率k =3.又切点为(1,2),所以切线方程为y -2=3(x -1),即3x -y -1=0, 故曲线y =f (x )在x =1处的切线方程为3x -y -1=0. (2)f ′(x )=a +1x =ax +1x (x >0),①当a ≥0时,由于x >0,故ax +1>0,f ′(x )>0, 所以f (x )的单调增区间为(0,+∞). ②当a <0时,由f ′(x )=0,得x =-1a .在区间⎝ ⎛⎭⎪⎫0,-1a 上,f ′(x )>0,在区间⎝ ⎛⎭⎪⎫-1a ,+∞上,f ′(x )<0,所以函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,-1a ,单调递减区间为⎝ ⎛⎭⎪⎫-1a ,+∞.(3)由已知得所求可转化为f (x )max <g (x )max , g (x )=(x -1)2+1,x ∈[0,1],所以g (x )max =2, 由(2)知,当a ≥0时,f (x )在(0,+∞)上单调递增, 值域为R ,故不符合题意.当a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-1a 上单调递增,在⎝ ⎛⎭⎪⎫-1a ,+∞上单调递减,故f (x )的极大值即为最大值,是f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a =-1-ln(-a ),所以2>-1-ln(-a ),解得a <-1e 3.即a 的取值范围是⎝ ⎛⎭⎪⎫-∞,-1e 3.(建议用时:80分钟)1.设函数f (x )=3x 2+axe x (a ∈R ).(1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程;(2)若f (x )在[3,+∞)上为减函数,求实数a 的取值范围.解 (1)对f (x )求导得f ′(x )=(6x +a )e x -(3x 2+ax )e x (e x )2=-3x 2+(6-a )x +ae x ,因为f (x )在x =0处取得极值, 所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x ,故f (1)=3e ,f ′(1)=3e ,从而f (x )在点(1,f (1))处的切线方程为y -3e =3e (x -1),化简得3x -e y =0. (2)由(1)知f ′(x )=-3x 2+(6-a )x +ae x .令g (x )=-3x 2+(6-a )x +a , 由g (x )=0解得x 1=6-a -a 2+366,x 2=6-a +a 2+366.当x <x 1时,g (x )<0,即f ′(x )<0, 故f (x )为减函数;当x 1<x <x 2时,g (x )>0,即f ′(x )>0, 故f (x )为增函数;当x >x 2时,g (x )<0, 即f ′(x )<0,故f (x )为减函数. 由f (x )在[3,+∞)上为减函数,知x 2=6-a +a 2+366≤3,解得a ≥-92, 故实数a 的取值范围为⎣⎢⎡⎭⎪⎫-92,+∞.2.设a 为实数,函数f (x )=e x -2x +2a ,x ∈R . (1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1. (1)解 由f (x )=e x -2x +2a ,x ∈R , 知f ′(x )=e x -2,x ∈R . 令f ′(x )=0,得x =ln 2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )单调递增区间是(ln 2,+∞), f (x )在x =ln 2处取得极小值,极小值为f (ln 2)=e ln 2-2ln 2+2a =2-2ln 2+2a . (2)证明 设g (x )=e x -x 2+2ax -1,x ∈R , 于是g ′(x )=e x -2x +2a ,x ∈R . 由(1)知当a >ln 2-1时,g ′(x )取最小值为g ′(ln 2)=2(1-ln 2+a )>0. 于是对任意x ∈R ,都有g ′(x )>0, 所以g (x )在R 内单调递增.于是当a >ln 2-1时,对任意x ∈(0,+∞), 都有g (x )>g (0).而g (0)=0,从而对任意x ∈(0,+∞),都有g (x )>0. 即e x -x 2+2ax -1>0,故当a >ln 2-1且x >0时,e x >x 2-2ax +1.3.已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2. (1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点. (1)解 f ′(x )=3x 2-6x +a ,f ′(0)=a .曲线y =f (x )在点(0,2)处的切线方程为y =ax +2. 由题设得-2a =-2,所以a =1. (2)证明 由(1)知,f (x )=x 3-3x 2+x +2. 设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4. 由题设知1-k >0.当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )单调递增,g (-1)=k -1<0,g (0)=4,所以g (x )=0在(-∞,0]上有唯一实根. 当x >0时,令h (x )=x 3-3x 2+4, 则g (x )=h (x )+(1-k )x >h (x ).h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)上单调递减, 在(2,+∞)上单调递增,所以g (x )>h (x )≥h (2)=0. 所以g (x )=0在(0,+∞)上没有实根.综上,g (x )=0在R 上有唯一实根,即曲线y =f (x )与直线y =kx -2只有一个交点. 4.设f (x )=ax +x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ;(2)如果对于任意的s ,t ∈⎣⎢⎡⎦⎥⎤12,2,都有f (s )≥g (t )成立,求实数a 的取值范围.解 (1)存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max ≥M .由g (x )=x 3-x 2-3, 得g ′(x )=3x 2-2x =3x ⎝ ⎛⎭⎪⎫x -23.令g ′(x )>0得x <0或x >23,又x ∈[0,2],所以g (x )在区间⎣⎢⎡⎦⎥⎤0,23上单调递减,在区间⎣⎢⎡⎦⎥⎤23,2上单调递增,所以g (x )min =g ⎝ ⎛⎭⎪⎫23=-8527,g (x )max =g (2)=1.故[g (x 1)-g (x 2)]max =g (x )max -g (x )min =11227≥M , 则满足条件的最大整数M =4.(2)对于任意的s ,t ∈⎣⎢⎡⎦⎥⎤12,2,都有f (s )≥g (t )成立,等价于在区间⎣⎢⎡⎦⎥⎤12,2上,函数f (x )min ≥g (x )max .由(1)可知在区间⎣⎢⎡⎦⎥⎤12,2上,g (x )的最大值为g (2)=1.在区间⎣⎢⎡⎦⎥⎤12,2上,f (x )=a x +x ln x ≥1恒成立等价于a ≥x -x 2ln x 恒成立.设h (x )=x -x 2ln x ,h ′(x )=1-2x ln x -x , 可知h ′(x )在区间⎣⎢⎡⎦⎥⎤12,2上是减函数,又h ′(1)=0,所以当1<x <2时,h ′(x )<0; 当12<x <1时,h ′(x )>0.即函数h (x )=x -x 2ln x 在区间⎝ ⎛⎭⎪⎫12,1上单调递增,在区间(1,2)上单调递减, 所以h (x )max =h (1)=1,所以a ≥1,即实数a 的取值范围是[1,+∞).5.已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a <1.(1)解 由f (x )=e x -ax 2-bx -1,有g (x )=f ′(x )=e x -2ax -b ,所以g ′(x )=e x -2a . 当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ],当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增, 因此g (x )在[0,1]上的最小值是g (0)=1-b ; 当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减. 因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0,得x =ln (2a )∈(0,1),所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b . 综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ;当a≥e2时,g(x)在[0,1]上的最小值是g(1)=e-2a-b.(2)证明设x0为f(x)在区间(0,1)内的一个零点,则由f(0)=f(x0)=0可知f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减.则g(x)不可能恒为正,也不可能恒为负.故g(x)在区间(0,x0)内存在零点x1,同理,g(x)在区间(x0,1)内存在零点x2,所以g(x)在区间(0,1)内至少有两个零点.由(1)知,当a≤12时,g(x)在[0,1]上单调递增,故g(x)在(0,1)内至多有一个零点,不合题意.当a≥e2时,g(x)在[0,1]上单调递减,故g(x)在(0,1)内至多有一个零点,不合题意.所以12<a<e2.此时g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增,因此x1∈(0,ln(2a)],x2∈(ln(2a),1),必有g(0)=1-b>0,g(1)=e-2a-b>0.由f(1)=0有a+b=e-1<2,有g(0)=a-e+2>0,g(1)=1-a>0,解得e-2<a<1.所以函数f(x)在区间(0,1)内有零点时,e-2<a<1.6.已知f(x)=a(x-ln x)+2x-1x2,a∈R.(1)讨论f(x)的单调性;(2)当a=1时,证明f(x)>f′(x)+32对任意的x∈[1,2]成立.(1)解f(x)的定义域为(0,+∞),f′(x)=a-ax-2x2+2x3=(ax2-2)(x-1)x3.当a≤0时,x∈(0,1)时,f′(x)>0,f(x)单调递增,x∈(1,+∞)时,f′(x)<0,f(x)单调递减.当a>0时,f′(x)=a(x-1)x3⎝⎛⎭⎪⎫x-2a⎝⎛⎭⎪⎫x+2a.①0<a <2时,2a >1,当x ∈(0,1)或x ∈⎝⎛⎭⎪⎫2a ,+∞时,f ′(x )>0,f (x )单调递增, 当x ∈⎝ ⎛⎭⎪⎫1,2a 时,f ′(x )<0,f (x )单调递减. ②a =2时,2a =1,在x ∈(0,+∞)上,f ′(x )≥0,f (x )单调递增, ③a >2时,0<2a <1,当x ∈⎝ ⎛⎭⎪⎫0,2a 或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增, 当x ∈⎝⎛⎭⎪⎫2a ,1时,f ′(x )<0,f (x )单调递减. 综上所述,当a ≤0时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当0<a <2时,f (x )在(0,1)上单调递增,在⎝ ⎛⎭⎪⎫1,2a 上单调递减,在⎝ ⎛⎭⎪⎫2a ,+∞上单调递增;当a =2时,f (x )在(0,+∞)上单调递增; 当a >2时,f (x )在⎝ ⎛⎭⎪⎫0,2a 上单调递增,在⎝ ⎛⎭⎪⎫2a ,1上单调递减,在(1,+∞)上单调递增.(2)证明 由(1)知,a =1时,f (x )-f ′(x )=x -ln x +2x -1x 2-⎝ ⎛⎭⎪⎫1-1x -2x 2+2x 3=x -ln x +3x +1x 2-2x 3-1,x ∈[1,2],设g (x )=x -ln x ,h (x )=3x +1x 2-2x 3-1,x ∈[1,2]. 则f (x )-f ′(x )=g (x )+h (x ).由g ′(x )=x -1x ≥0可得g (x )在[1,2]上递增,∴g (x )≥g (1)=1,当且仅当x =1时取得等号.h ′(x )=-3x 2-2x +6x4,设φ(x )=-3x 2-2x +6,则φ(x )在[1,2]上单调递减,因为φ(1)=1,φ(2)=-10,所以∃x0∈(1,2),使φ(x0)=0,所以当x∈(1,x0)时φ(x)>0,即h′(x)>0,当x∈(x0,2)时,φ(x)<0即h′(x)<0.所以h(x)在(1,x0)上单调递增,在(x0,2)上单调递减.又h(1)=1,h(2)=12,所以h(x)≥h(2)=12,当且仅当x=2时取得等号.所以f(x)-f′(x)>g(1)+h(2)=3 2,即f(x)>f′(x)+32对于任意的x∈[1,2]成立.。
5高中数学导数的应用之极值和最值利用导数求函数的极值与最值 内容再现1、函数的单调性与其导数正负的关系:在某个区间(),a b 内,如果 ,那么函数()y f x =在这个区间内单调递增;在某个区间(),a b 内,如果 ,那么函数()y f x =在这个区间内单调递减;若恒有 ,则函数()y f x =在这个区间内是常函数。
2、利用函数判断函数值的增减快慢: 如果一个函数在某一范围内导数的绝对值 ,那么函数在这个范围内变化的快,这时函数的图像比较“陡峭”(向上或向下):反之,若函数在这个范围内导数的绝对值 ,那么函数在这个范围内变化的比较慢,这时函数的图像比较“平缓”。
3、判断函数极大、极小值的方法: 解方程()'00f x =,当()'00f x =时: (1)如果在0x 附近的左侧 ,右侧 ,那么()0f x 是极大值,0x 是极大值点。
(2)如果在0x 附近的左侧 ,右侧 ,那么()0f x 是极小值点。
4、(1)函数()f x 的闭区间[],a b 上的最值: 如果在闭区间[],a b 上函数()y f x =的图像是一条 曲线,则该函数在[],a b 上一定能取得 和 ,并且函数的最值必在 或 取得。
(2)求函数()y f x =在区间[],a b 上的最值的步骤:求函数()y f x =在(),a b 的 ;将函数()y f x =的 与 比较,其中最大的一个是最大值,最小的一个是最小值。
三、巩固练习1、 已知函数)(x f y =在区间),(b a 内可导,且),(0b a x ∈,则=--+→hh x f h x f h )()(lim 000 ( ) (A))('0x f (B))('20x f (C))('20x f - (D)0 2、函数x x y ln =在区间 ( )(A) )1,0(e 上单调递减 (B) ),1(+∞e上单调递减(C) ),0(+∞上单调递减 (D) ),0(+∞上单调递增3、已知a x x x f ++=233)()(R a ∈在]33[,-上有最小值3,则在]33[,-上, )(x f 的最大值是4、已知1x =是函数32()3(1)1f x mx m x nx =-+++的一个极值点,其中,,0m n R m ∈<,(I )求m 与n 的关系式;(II )求()f x 的单调区间;(III )当[]1,1x ∈-时,函数()y f x =的图象上任意一点的切线斜率恒大于3m ,求m 的取值五、典型例题1、一个物体的运动方程为21stt 其中S 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( )A 、 7米/秒B 、6米/秒C 、 5米/秒D 、 8米/秒DCxOA By 2、用边长为48cm 的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊接成铁盒,所做铁盒容积最大时,在四角截去的正方形的边长为( ) A .6cm B .8cm C .10cm D .12cm3、如图,某农场要修建3个养鱼塘,每个面积为10 000米2,鱼塘前面要留4米的运料通道,其余各边为2米宽的堤埂,则占地面积最少时,每个鱼塘的长宽分别为 ( ) A .长102米,宽515000米 B .长150米,宽66米 C .长宽均为100米D .长100米,宽3200米4、过抛物线y=x 2-3x 上一点P 的切线的倾斜角为45°,它与两坐标轴交于A ,B 两点,则△AOB 的面积是5、如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为_______时,其容积最大.6、6、某旅行社在暑假期间推出如下旅游团组团办法:达到100人的团体,每人收费1000元。
如果团体的人数超过100人,那么每超过1人,每人平均收费降低5元,但团体人数不能超过180人,如何组团可使旅行社的收费最多? (不到100人不组团)7、某机车拖运货物时对货物所做的功W (单位:J )是时间t (单位:s )的函数,设这个函数可以表示为:753-+=t t t w )(。
(1) 求t 从1s 变到3s 时,功W 关于时间t 的平均变化率,并解释它的实际意义;(2) 求在t=1s 和t=3s 时,该机车每秒做的功。
8、用长为90cm ,宽为48cm 的长方形做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边形转090角,再焊接而成(如图所示),问该容器的高为多少时,容器的容积最大?最大容积是多少?9、某轮船公司争取一个相距1 000公里的甲、乙两地的客运航线权,已知轮船平均载客人数为400人,轮船每小时使用的燃料费用和轮船的航行速度的立方成正比,轮船的最大速度为25公里/小时.当轮船的速度为10公里/小时,它的燃料费用是每小时30元,轮船的其余费用(与速度无关)都是每小时480元.若公司打算从每个乘客身上获利10元,试为该公司设计一种较为合理的船票价格.10、一根水平放置的长方形枕木的安全负荷与它的宽度a 成正比,与它的厚度d 的平方成正比,与它的长度l 的平方成反比.(1)将此枕木翻转90°(即宽度变为了厚度)后,枕木的安全负荷会变大吗?为什么? (2)现有一根横断面为半圆(半圆的半径为R)的柱形木材,用它来截取成长方形的枕木,其长度即为枕木规定的长度,问如何截取,可使安全负荷最大?11、用半径为R 的圆形铁皮剪出一个圆心角为α的扇形,制成一个圆锥形容器,扇形的圆心角α多大时,容器的容积最大?六、课堂练习1、一质点做直线运动,由始点起经过ts 后的距离为s=41t 4-4t 3+16t 2,则速度为零的时刻是 ( )A 4s 末B 8s 末C 0s 与8s 末D 0s,4s,8s 末2、要做一个圆锥形漏斗,其母线长为20cm ,要使其体积最大,则其高应为( )B 100cmC 20cmD 203cm 3、做一个圆柱形锅炉,容积为V ,两个底面的材料每单位面积的价格为a 元,侧面的材料每单位面积价格为b 元,当造价最低时,锅炉的直每径与高的比为( )A .a/bB .a 2/bC .b/aD .b 2/a4、某天中午12时整甲船自A 处以每小时16公里的速度向正东行驶,乙船自A 的正北18公里处以每小时24公里的速度向正南行驶,则当日12时30分时两船间的距离对时间的变化率是 。
5、函数2cos y x x =+在0,2π⎡⎤⎢⎥⎣⎦上取最大值时,x 的值为__ _.6、一容积为256升的方底无盖水箱,则它的高为 时,材料最省。
7、如图,一矩形铁皮的长为8cm ,宽为5cm ,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长为多少时,盒子容积最大?8、某工厂生产某种产品,已知该产品的月生产量x(t)与每吨产品的价格p(元/t)之间的关系式为:p=24200-51x 2,且生产x t 的成本为:R=50000+200x(元).问该产品每月生产多少吨才能使利润达到最大?最大利润是多少?(利润=收入-成本)9、在甲、乙两个工厂,甲厂位于一直线河岸的岸边A 处,乙厂与甲厂在河的同侧,乙厂位于离河岸40 km 的B 处,乙厂到河岸的垂足D 与A 相距50 km ,两厂要在此岸边合建一个供水站C ,从供水站到甲厂和乙厂的水管费用分别为每千米3a 元和5a 元,问供水站C 建在岸边何处才能使水管费用最省?10、已知f(x)=ax 3+bx 2+cx(a ≠0)在x=±1时取得极值,且f(1)=-1.(1)试求常数a 、b 、c 的值;(2)试判断x=±1是函数的极小值还是极大值,并说明理由.11、统计表明:某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米每小时)的函数解析式为:)1200(,880312800013≤≤+-=x x x y ,已知甲乙两地相距100千米。
(1)当汽车以每小时40千米的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?七、家庭作业1、某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元,已知总收益R 与年产量x 的关系是R =R(x)=⎩⎪⎨⎪⎧400x -12x 2 (0≤x ≤400)80 000 (x>400),则总利润最大时,每年生产的产品是________.2、在半径为R 的圆内,作内接等腰三角形,当底边上高为_________时它的面积最大.3、如果物体做直线运动的方程为s(t)=2(1-t)2,则其在t =4 s 时的瞬时速度为( ) A .12 B .-12 C .4D .-44、从时间t =0开始的t s 内,通过某导体的电量(单位:C)可由公式q =2t 2+3t 表示,则第5 s 时的电流强度为( )A .27 C/sB .20 C/sC .25 C/sD .23 C/s5、球的半径从1增加到2时,球的体积的平均膨胀率为______.6、如果一质点从固定点A 开始运动,位移s(单位:m)关于时间t(单位:s)的函数为y =s(t)=t 3+3.求:(1)t =4时,物体的位移s(4); (2)t =4时,物体的速度v(4); (3)t =4时,物体的加速度a(4).7、、如图所示:一吊灯的下圆环直径为4 m ,圆心为O ,通过细绳悬挂在天花板上,圆环呈水平状态,并且与天花板的距离(即OB)为2 m ,在圆环上设置三个等分点A 1,A 2,A 3.点C 为OB 上一点(不包含端点O 、B),同时点C 与点A 1,A 2,A 3,B 均用细绳相连接,且细绳CA 1,CA 2,CA 3的长度相等.设细绳的总长为y m. (1)设∠CA 1O=θ(rad),将y 表示成θ的函数关系式;(2)请你设计θ,当角θ正弦值是多少时,细绳总长y 最小,并指明此时BC 应为多长.8、已知a 、b 为实数,且b >a >e,其中e 为自然对数的底,求证:a b >b a .9、设关于x 的方程2x 2-ax -2=0的两根为α、β(α<β),函数f(x)=142+-x ax . (1)求f(α)·f(β)的值;(2)证明f(x)是[α,β]上的增函数;(3)当a 为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小?10、某地建一座桥,两端的桥墩已经建好,两桥墩相距m 米,余下的工程只需建两端桥墩之间的桥面和桥墩,经测算:一个桥墩的工程费用是256万元,距离为x 米的相邻两桥墩之间的桥面工程费用为x x )2( 万元,假设桥墩等距离分布,所有桥墩都视为点,且不考虑其它因素,记余下的工程费用是y 万元,(1)试写出y 关于x 的函数关系式。