遥感影像解译样本
- 格式:ppt
- 大小:10.25 MB
- 文档页数:47
遥感影像解译手册河南省环境监测中心2012.121 生态遥感监测与评价工作流程 (1)1.1 生态遥感监测与评价的主要目标包括: (1)1.2 工作流程 (1)1.3 提交成果 (2)2 遥感影像处理 (2)2.1 遥感影像简介 (2)2.2 遥感影像准备 (2)2.3 原始影像导出 (4)2.4 波段合成与分离 (6)2.5 影像校色处理 (8)2.6 地图投影 (10)3 几何纠正 (20)3.1 几何纠正简介 (20)3.2 几何纠正基本步骤 (21)3.3 质量检查 (25)3.4图像拼接 (26)4 遥感解译 (27)4.1 土地利用/覆盖数据的解译 (27)4.2 具体操作 (29)5 检查 (31)1 生态遥感监测与评价工作流程1.1 生态遥感监测与评价的主要目标包括:(1)利用前年Landsat TM数据监测全国土地利用/覆盖分布;(2)对全国生态环境质量进行评价,并分析前年间全国生态环境质量空间分布及变化趋势;(3)结合近几年间我国社会、经济、环境、人类活动因子,分析生态环境重大变化区域的脆弱机制,为制定生态保护和恢复的对策提供依据。
1.2 工作流程生态遥感监测与评价的具体流程如图1。
图11.3 提交成果主要有四部分:(1)影像,以县和整景为单位,两类;(2)解译数据,以省为单元的当年现状图层及动态图层;(3)生态报告;(4)地面核查数据,照片、数据库、报告。
2 遥感影像处理2.1 遥感影像简介遥感是通过遥感器这类对电磁波敏感的仪器,在远离目标和非接触目标物体条件下探测目标地物,获取其反射、辐射或散射的电磁波信息(如电场、磁场、电磁波、地震波等信息),并进行提取、判定、加工处理、分析与应用的一门科学和技术。
遥感,从字面上来看,可以简单理解为遥远的感知,泛指一切无接触的远距离的探测;从现代技术层面来看,“遥感”是一种应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
卫星遥感影像解译样本生产技术规程英文回答:## Satellite Remote Sensing Image Interpretation Sample Production Technology Specification.1. Overview.Satellite remote sensing image interpretation is a process of extracting information from satellite images. This information can be used for various purposes, such as land use mapping, agricultural monitoring, and disaster assessment.The accuracy of satellite remote sensing image interpretation depends on the quality of the samples used for training the image classification algorithm. Therefore, it is important to develop a standardized procedure for the production of high-quality samples.2. Sample Collection.The first step in sample production is to collect a set of representative samples. These samples should cover the entire range of variability in the image data.The samples can be collected manually or automatically. Manual sample collection is time-consuming, but it allows for a more precise selection of samples. Automatic sample collection is less time-consuming, but it may result in a less representative sample set.3. Sample Labeling.Once the samples have been collected, they must be labeled with the correct land cover class. This labeling can be done manually or automatically.Manual labeling is time-consuming, but it allows for a more precise labeling of samples. Automatic labeling is less time-consuming, but it may result in a less accurate labeling.4. Sample Validation.After the samples have been labeled, they must be validated to ensure that they are accurate. This can be done by comparing the labels to ground truth data.The ground truth data can be collected through field surveys or by using other sources of information, such as aerial photographs or lidar data.5. Sample Selection.The final step in sample production is to select a subset of samples to use for training the image classification algorithm. This subset should be representative of the entire range of variability in the image data.The samples can be selected randomly or by using a stratified sampling approach. Stratified sampling ensures that all land cover classes are adequately represented inthe training set.6. Conclusion.The production of high-quality samples is essential for the accuracy of satellite remote sensing image interpretation. By following the steps outlined in this specification, users can produce samples that are representative, accurate, and suitable for training image classification algorithms.中文回答:## 卫星遥感影像解译样本生产技术规程。
遥感影像解译样本数据一体化整理方法发布时间:2022-09-25T05:07:16.464Z 来源:《建筑创作》2022年第4期(2月)作者:王刚[导读] 遥感影像解译样本数据收集的时候,要求对地面照片、影像案例、样本数据库做到结构化整合,构成数据格式统一、保存结构比较规范、逻辑关系比较严谨。
王刚江苏省地质测绘院江苏南京 211100摘要:遥感影像解译样本数据收集的时候,要求对地面照片、影像案例、样本数据库做到结构化整合,构成数据格式统一、保存结构比较规范、逻辑关系比较严谨。
在建立策略模型中,提供一系列整理策略,运用Bresenham图形制定算法,和栅格、矢量、数据库数据编程接口,处理了每个部分自动化解决问题,完成影像案例收集、地面照片视野范畴图形栅格化、数据库信息收集和记录、结构组织和结构化输出等自主控制,进而完成一体化自动处理。
关键词:遥感影像;解译样本数据;一体化整理方法遥感影像解译样本数据收集就是为了运用典型光谱、纹理、形状、空间部位等特点,建立地面覆盖分类样本库,为解释人员准确认识每种元素提供关键参照,同时在解释结果质量控制层面展现重要的作用。
在首次我国地理国情调查中,遥感影像解译样本数据收集属于一种关键内容,收集的流程就是在外收集完成地面照以后,让有关人员通过正射处理影像数据源中裁切和地面照片拍摄范畴与内容相同的航空航天遥感影像;同时通过结构调整,构成十分完善的成果内容。
一、遥感影像解译样本数据的种类遥感影像解译样本数据包括不同种类、不同格式、满足不同准确的数据,这之中,地面照片运用JPG格式,满足EXIF准则;遥感影像案例运用非压缩的TIFF格式;影像数据源运用的是非压缩的TIFF、ERDAS或者IMG格式;影像坐标信息运用TIFF WORLD文档格式;影像投影信息运用XML格式,满足OGC规格;影像要素数据运用XML格式;遥感影像解译样本数据库。
当前不存在任何一种合适的策略可以一体化做好遥感影像解译样本数据整合这种工作。
2023/ 10 27基于深度学习的遥感解译地物样本库建设研究李莹 化涛(河南丰图测绘服务有限公司,河南 郑州 45000)摘 要:针对遥感解译样本库存在分类体系混乱、共享共用难等问题,结合自然资源调查监测工作的业务需求,探讨自然资源遥感智能解译样本库的建设研究。
主要研究内容包括样本分类体系构建、采集与清洗、建库,形成分布均匀、种类齐全、涵盖不同地物类型及观测尺度的遥感解译样本库,提升了国产高分辨率卫星遥感信息提取与变化检测自动化、智能化业务能力,服务自然资源监测监管及相关行业应用。
关键词:样本库;自然资源;深度学习;服务应用1 背景近年来,随着对地观测技术的发展,遥感影像数据以几何级数的速度快速增长。
这些时效性强、覆盖范围广、多类型、多分辨率的海量遥感数据在地表信息提取、资源与生态环境变化监测等诸多领域发挥了巨大作用[1-3]。
遥感影像数据量的快速增长和数据类型的不断丰富,对数据快速精准解译方法与技术提出了更高要求。
随着大数据、云计算、人工智能等技术的不断进步,深度学习技术在图像识别方面取得重大进展。
深度学习技术也支持场景理解、地物目标检测与土地覆盖分类等任务。
人们通过构建大量样本数据训练深度学习网络,提高遥感影像特征提取成效[4]。
遥感影像解译包括场景识别、目标检测、地物分类、变化检测等不同层次的任务,每种任务都可基于多种影像资源来实现,面向智能解译的样本库必须充分体现这种多源特性,才能保证解译精度。
当前已有不少遥感解译样本数据集,总体来看,这些样本集存在分类体系不统一、解译样本量小、多样性不足、样本影像来源单一、样本尺寸固定等问题,已经严重影响大范围多源异构遥感影像解译效率与质量[5]。
现有遥感影像智能解译样本集大多针对具体应用场景和解译对象来建设,不同样本集采用了不同的分类体系,开放性与可扩展性不足,难以支持样本集的共享与综合利用。
现有样本采集工具标注内容不全面,样本标签格式不统一,样本标注效率和质量存在缺陷,样本空间分布不均匀、数量少、类型简单,亟须研究顾及地貌景观类别的样本分布策略,并研发专用遥感影像样本采集工具,以提升采集质量与效率[6,7]。
遥感图像解译实验报告1. 实验目的本实验旨在通过遥感图像解译技术,对不同区域的地物进行分类和识别,实现对遥感图像的解读和分析。
2. 实验原理遥感图像解译是利用遥感图像获取的信息,通过对图像进行分析和解读,对图像中的地物进行分类和识别的过程。
其主要依靠计算机图像处理技术、模式识别和人工智能等方法。
本实验采用的遥感图像为航拍图像,航拍图像分辨率高,能够提供更为详细的地物信息。
在图像预处理阶段,首先对图像进行镶边去除、几何校正和辐射校正等预处理工作,以消除图像中的各种干扰因素。
在图像解译阶段,首先进行目标选择,选取感兴趣的区域进行进一步分析。
然后进行目标分类,将不同的地物进行分类和识别,可以根据地物的不同光谱特征和纹理信息进行分类。
本实验使用的图像解译方法主要包括:- 监督分类方法:通过对已知类别地物进行样本点选择,从而建立分类器进行分类。
- 非监督分类方法:根据像元的统计学特征,将图像中的地物进行聚类,从而实现地物分类。
- 物体识别方法:基于物体的形态、纹理等特征,通过模式识别方法进行识别。
3. 实验步骤3.1 数据准备本实验使用的航拍图像是一幅城市区域的遥感图像,分辨率为1米。
图像中包含了建筑物、道路、植被等多种地物。
3.2 图像预处理首先对图像进行镶边去除,去除图像四周的无效边缘信息。
然后进行图像的几何校正和辐射校正,以消除图像中的几何畸变和辐射差异。
3.3 目标选择选取感兴趣的区域进行进一步的分析。
根据图像中的特定区域选择建筑物、道路、植被等不同类别的地物。
3.4 目标分类对选取的目标进行分类和识别。
首先使用监督分类方法,选择已知类别地物进行样本点选择,并建立分类器。
然后使用非监督分类方法,对图像中的地物进行聚类分类。
最后使用物体识别方法,对地物进行形状和纹理等特征的识别。
3.5 结果分析分析实验得到的分类结果,评估分类的准确性和可靠性。
通过对分类结果的比较和分析,得出对地物的解释和发现。
4. 实验结果经过实验的数据处理和图像解译,得到了图像中各个地物类别的分类结果。