(2)不同地物信息的相互影响和干扰。 (3)遥感图像的地域性、季节性和成像方式增加了计算机
解译的难度。
1.数字图像计算机分类原理
计算机分类主要依据为地物的光谱特征,也即地物电磁波辐射 的多波段测量值(灰度值)的相似程度。
同一类地物具有相似的光谱特性(灰度值),不同的地物具有不同 的光谱特性(灰度值)。
监督分类常用的分类方法
①最小距离分类法
计算待分像元与已知类别(均值)间的距离,然后将其归属到距离 最小的一类。
②最近邻域分类法
计算待分像元到每一类中每一个统计特征量间的距离,取最小 距离作为到该类别的距离,最后比较各距离,归属为距离最小的 一类。
原理简单,但分类精度不高。
最小距离分类法
③多级切割分类法
常用的方法主要有迭代自组织数据分析技术方法(ISODATA)
ISODATA方法
。 ①确定初始类聚类中心
应将初始聚类数设得大一些,并计算初始聚类中心。
xk
M
2(k 1) m 1
1,
k 1,2..., n
M为整幅图像的均值,σ为方差
②计算像素与各类别中心的距离,把该像素分配到最近的类别 中。
第n次迭代后的类别分布
非监督分类实例
4-3-2波段假彩色合成图像
聚类结果(10类)
5.遥感图像的计算机分类方法
(1)监督分类
选择各类地物的样本——测定特征值——建立判别函数——分类
(2)非监督分类
在不知道类别特征的情况下,根据像元间相似度的大小进行归类合并 的方法。
(1)监督分类
监督分类要求训练场地所包含的样本类别与待分区域的类别一致 包括两个过程:
(1)利用训练区样本建立各类别特征值属性 (2)把待分像元代入判别函数进行分类