关于高等数学复习资料归纳大全
- 格式:docx
- 大小:1.89 MB
- 文档页数:12
高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。
3、无穷小:高阶+低阶=低阶 例如:1lim lim020==+→→x xxx x x x 4、两个重要极限:()e x ex xxxx xx x =⎪⎭⎫⎝⎛+=+=∞→→→11lim 1lim )2(1sin lim )1(10 经验公式:当∞→→→)(,0)(,0x g x f x x ,[])()(lim )(0)(1lim x g x f x g x x x x ex f →=+→例如:()33lim 10031lim -⎪⎭⎫ ⎝⎛-→==-→e ex x x xx x5、可导必定连续,连续未必可导。
例如:||x y =连续但不可导。
6、导数的定义:()0000')()(lim)(')()(limx f x x x f x f x f xx f x x f x x x =--=∆-∆+→→∆7、复合函数求导:[][])(')(')(x g x g f dxx g df •= 例如:xx x x x x x y x x y ++=++=+=24122211', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx例如:yxdx dy ydy xdx y xy yy x y x -=⇒+-=⇒=+=+22,),2('0'22,),1(122左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若⎩⎨⎧==)()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[])(')('/)('/)/(/22t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f •∆=-∆+ 例如:计算 ︒31sin11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:xxy sin =(x=0是函数可去间断点),)sgn(x y =(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:⎪⎭⎫ ⎝⎛=x x f 1sin )((x=0是函数的振荡间断点),xy 1=(x=0是函数的无穷间断点) 12、渐近线:水平渐近线:c x f y x ==∞→)(lim铅直渐近线:.)(lim 是铅直渐近线,则若,a x x f ax =∞=→斜渐近线:[]ax x f b xx f a b ax y x x -==+=∞→∞→)(lim ,)(lim,即求设斜渐近线为例如:求函数11223-+++=x x x x y 的渐近线13、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
高等数学基础复习资料一、引言高等数学作为大学数学的重要组成部分,是理工科学生必修的一门课程。
作为一门基础性的学科,高等数学为学生奠定了后续学习的数学基础,并为他们建立了抽象思维和逻辑推理能力奠定了基础。
本文将为大家提供一份高等数学基础复习资料,帮助学生系统回顾相关知识点,提高自己的数学水平。
二、数列与极限1. 数列的概念及表示方法- 数列的定义与本质特征- 数列的表示方法:通项公式、递推公式2. 数列的极限- 数列极限的定义与判定方法- 数列收敛与发散的判断- 数列极限的性质与运算规则3. 无穷级数- 级数的概念与收敛性判断- 常见级数的收敛性判断方法- 级数收敛的性质与运算规则三、函数与极限1. 函数的概念与性质- 函数的定义与分类- 函数的图像与性质2. 函数的极限- 函数极限的定义与性质- 常见函数极限的计算方法- 无穷小量与无穷大量的定义与性质3. 一元函数的连续性与导数- 函数连续性的定义与判断- 函数导数的定义与计算方法- 函数导数的性质与应用四、微分学1. 一元函数的微分学- 函数微分的定义与计算方法- 微分的几何意义与应用- 高阶微分与泰勒公式2. 函数的极值与最值- 函数极值的判定与求解- 条件极值与拉格朗日乘数法3. 函数的凸性与曲线的形状- 函数凸性的定义与判定方法- 曲线的拐点与渐进线五、积分学1. 定积分与不定积分- 定积分的定义与性质- 定积分计算的方法与技巧- 不定积分的定义与计算方法2. 反常积分- 反常积分的概念与判定- 常见反常积分的计算方法3. 微积分基本定理与应用- 微积分基本定理的表述与应用- 曲线下面积的计算- 参数方程与极坐标下的积分六、常微分方程1. 常微分方程的基本概念- 常微分方程的定义与分类- 一阶常微分方程的常见形式2. 一阶常微分方程的解法- 可分离变量方程的求解- 线性方程的求解- 齐次与非齐次方程的解法3. 高阶常微分方程- 二阶常微分方程解的一般性质- 常系数二阶齐次线性微分方程的解法- 特征方程求解与常系数二阶非齐次线性微分方程的解法七、向量代数与空间解析几何1. 向量的概念与性质- 向量的基本运算与性质- 向量的数量积与向量积2. 空间直线与平面- 点、直线与平面的位置关系- 空间直线的方程与相交关系- 空间平面的方程与位置关系3. 空间几何体的体积与曲面积分- 空间几何体的体积计算- 曲面积分的概念与计算方法八、多元函数微分学1. 多元函数的偏导数- 偏导数的定义与计算方法- 偏导数的几何意义与性质2. 多元函数的方向导数与梯度- 方向导数的定义与计算方法- 梯度的定义与性质3. 多元函数的极值与最值- 多元函数的极值点与极值- 约束条件下的极值求解九、多元函数积分学1. 二重积分与三重积分- 二重积分的定义与计算方法- 三重积分的定义与计算方法2. 极坐标与球坐标下的积分计算- 极坐标下的二重积分与三重积分- 球坐标下的三重积分3. 变量替换与重积分- 变量替换的基本思想与方法- 重积分的计算方法与应用十、常微分方程与偏微分方程初步1. 常微分方程初值问题的求解- 常微分方程初值问题的基本概念- 高阶线性常微分方程初值问题的求解2. 偏微分方程的基本概念与分类- 偏微分方程的基本定义与分类- 一阶偏微分方程的求解方法初探3. 偏微分方程边值问题与特解- 偏微分方程边值问题的基本概念- 常见偏微分方程的特解求解方法结语通过对高等数学基础内容的系统复习,我们可以巩固数理基础,提高数学水平,为后续的学习和研究打下坚实的基础。
一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A 、B 、C 、……表示集合,用小写拉丁字母a 、b 、c ……表示集合中的元素。
如果a 是集合A 中的元素,就说a 属于A ,记作:a ∈A ,否则就说a 不属于A ,记作:a A 。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N ⑵、所有正整数组成的集合叫做正整数集。
记作N +或N +。
⑶、全体整数组成的集合叫做整数集。
记作Z 。
⑷、全体有理数组成的集合叫做有理数集。
记作Q 。
⑸、全体实数组成的集合叫做实数集。
记作R 。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A 、B ,如果集合A 中的任意一个元素都是集合B 的元素,我们就说A 、B 有包含关系,称集合A 为集合B 的子集,记作A B (或B A )。
⑵相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中的元素完全一样,因此集合A 与集合B 相等,记作A =B 。
⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A ,我们称集合A 是集合B 的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作 ,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。
即A A②、对于集合A 、B 、C ,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
高等数学复习第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-x x x x x x x x (等价小量与洛必达)2.已知2030)(6lim 0)(6sin limxx f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达)3.121)12(lim ->-+x xx x x (重要极限) 4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求 解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t 2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>- 解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 22=--->-⎰x xt x edte x (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导1.⎩⎨⎧=+-==52arctan )(2te ty y t x x y y 由决定,求dx dy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。
高等数学知识点高等数学知识点汇总通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。
下面小编给大家介绍高等数学知识点汇总,赶紧来看看吧!高等数学知识点汇总第一章函数与极限知识点1:函数的概念、函数定义域的求法知识点2:函数的分类、特殊类型的函数知识点3:函数的基本性质知识点4:数列极限的概念与性质知识点5:函数极限的概念与性质知识点6:证明极限式与证明极限不存在的方法知识点7:无穷小与无穷大的概念与关系知识点8:极限的四则运算法则知识点9:复合函数的极限运算法则知识点10:极限存在的两个准则知识点11:两个重要极限知识点12:无穷小的比较知识点13:函数连续性的概念及判断知识点14:函数间断点的求法及分类知识点15:闭区间上连续函数的性质第二章导数与微分知识点16:导数的概念知识点17:导数的几何意义、平面曲线的切线与法线方程的求法知识点18:复合函数的求导知识点19:反函数的求导知识点20:隐函数及参数方程的求导知识点21:微分的概念及运算知识点22:一元函数微分形式的不变性知识点23:导数的物理意义知识点24:按定义求导的题目类型知识点25:可导、可微与连续三个概念之间的关系知识点26:奇偶函数与周期函数的导数的性质知识点27:用求导公式与法则求导数知识点28:函数的高阶导数第三章微分中值定理与导数的应用知识点29:罗尔定理、拉格朗日中值定理的应用知识点30:柯西中值定理的应用知识点31:有关中值定理证明题的典型实例知识点32:洛必达法则求极限知识点33:求极限的方法总结知识点34:函数的零点(方程的根)存在性与唯一性的证明知识点35:函数的零点(方程的根)个数的讨论知识点36:不等式的证明方法总结知识点37:泰勒公式的求法知识点38:泰勒公式的应用知识点39:函数的单调性及判别知识点40:函数的极值及判别知识点41:函数的最值及判别知识点42:渐近线的分类与求法知识点43:曲线的凸凹性和拐点知识点44:曲率、曲率圆及曲率半径(数学一、二)知识点45:弧微分知识点46:导数在经济领域的应用(数学三)第四章不定积分知识点47:不定积分的概念与性质知识点48:不定积分的换元积分法知识点49:不定积分的分部积分法知识点50:有理函数与三角有理式的不定积分知识点51:不定积分计算技巧的典型实例第五章定积分知识点52:定积分的概念与基本性质知识点53:变上限的积分及其导数知识点54:奇偶函数与周期函数的积分性质知识点55:涉及定积分证明题型的典型实例知识点56:用牛顿-莱布尼兹定理计算定积分知识点57:定积分的换元积分法知识点58:定积分的分部积分法知识点59:定积分的特殊计算方法的典型实例知识点60:无穷限的.反常积分的概念与计算知识点61:无界函数的反常积分的概念与计算第六章定积分的应用知识点62:用定积分求平面图形的面积知识点63:用定积分求特殊立体的体积知识点64:用定积分求弧长知识点65:定积分的物理应用(数一、二)知识点66:连续函数的平均值(数一、二)第七章空间解析几何与向量代数知识点67:空间直角坐标系及相关概念(数一)知识点68:向量的属性、向量的长度与夹角(数一)知识点69:向量的各类运算及其运算法则(数一)知识点70:用向量解决的几何问题(数一)知识点71:平面的法向量与平面方程(数一)知识点72:直线的方向向量与直线方程(数一)知识点73:两个平面间的关系(数一)知识点74:两条直线间的关系(数一)知识点75:直线与平面的关系(数一)知识点76:点到平面的距离的计算(数一)知识点77:点到直线的距离的计算(数一)知识点78:旋转曲面(数一)知识点79:柱面(数一)知识点80:二次曲面(数一)知识点81:空间曲线的方程及其在坐标面上的投影(数一)第八章多元函数微分法及其应用知识点82:多元函数的概念和几何意义知识点83:二元函数的极限知识点84:二元函数的连续性知识点85:偏导数的概念与常规计算知识点86:高阶偏导数知识点87:多元函数可微与全微分知识点88:连续,可偏导,可微的关系知识点89:多元复合函数的求导法则知识点90:多元函数的微分形式不变性知识点91:多元隐函数的求导知识点92:多元函数的极值问题知识点93:条件极值问题、拉格朗日乘数法知识点94:多元函数的最值问题知识点95:方向导数(数一、二)知识点96:数量场的梯度(数一、二)知识点97:空间曲线的切线与法平面(数一、二)知识点98:空间曲面的切平面与法线(数一、二)知识点99:二元函数的二阶泰勒公式(数一)第九章重积分知识点100:重积分的概念与性质知识点101:直角坐标下二重积分的定限与计算知识点102:极坐标下二重积分的定限与计算知识点103:直角坐标下三重积分的定限与计算知识点104:柱面坐标下三重积分的定限与计算知识点105:球面坐标下三重积分的定限与计算知识点106:重积分积分次序的交换知识点107:利用积分区域的对称性及被积函数的奇偶性求重积分的技巧第十章曲线积分与曲面积分知识点108:第一类曲线积分的概念与计算知识点109:第二类曲线积分的概念与计算知识点110:两类曲线积分之间的联系知识点111:二元函数全微分求积知识点112:格林公式及其应用知识点113:曲线积分与路径无关的条件知识点114:第一类曲面积分的概念与计算知识点115:第二类曲面积分的概念与计算知识点116:两类曲面积分之间的联系知识点117:高斯公式及其应用知识点118:通量与散度知识点119:斯托克斯公式及其应用知识点120:环流量与旋度知识点121:涉及重积分与曲线曲面积分的证明题总结第十一章无穷级数知识点122:级数的概念及性质(数一、三)知识点123:级数收敛的概念与判别法(数一、三)知识点124:正项级数的审敛法(数一、三)知识点125:交错级数、莱布尼兹判别法(数一、三)知识点126:函数项级数与幂级数的概念(数一、三)知识点127:函数的幂级数展开(数一、三)知识点128:阿贝尔判别法(数一、三)知识点129:幂级数的收敛域(数一、三)知识点130:幂级数的和函数(数一、三)知识点131:绝对收敛与条件收敛(数一、三)知识点132:傅里叶级数的展开式的求法(数一)知识点133:傅里叶级数的周期延拓(数一)知识点134:傅里叶级数的奇偶延拓(数一)第十二章微分方程知识点135:微分方程的基本概念知识点136:可分离变量的微分方程知识点137:齐次微分方程知识点138:一阶线性微分方程知识点139:全微分方程知识点140:伯努利方程知识点141:用变量替换解微分方程举例知识点142:含变限积分的方程知识点143:可降阶的高阶微分方程知识点144:线性微分方程解的性质和结构知识点145:二阶常系数齐次线性方程知识点146:n阶常系数齐次线性方程知识点147:二阶常系数非齐次线性方程知识点148:欧拉方程(数学一)知识点149:差分方程(数学三)知识点150:微分方程应用题的典型实例。
高等数学知识点汇总高等数学是大学理工科和部分文科专业必修的重要基础课程,它涵盖了广泛而深入的知识领域。
以下是对高等数学主要知识点的汇总。
一、函数与极限函数是高等数学的基础概念之一。
函数可以理解为一种对应关系,给定一个输入值(自变量),通过函数的规则得到一个输出值(因变量)。
常见的函数类型包括基本初等函数(如幂函数、指数函数、对数函数、三角函数和反三角函数)以及由它们经过有限次四则运算和复合运算得到的初等函数。
极限是高等数学中一个非常重要的概念。
它描述了函数在某个点或趋于无穷时的趋势。
极限的计算方法有很多,例如利用极限的四则运算法则、两个重要极限、等价无穷小替换、洛必达法则等。
二、导数与微分导数是函数的变化率,它反映了函数在某一点处的瞬时变化速度。
对于一元函数,导数的定义是函数的增量与自变量增量之比的极限。
导数的几何意义是函数曲线在某一点处的切线斜率。
常见的求导公式有基本初等函数的求导公式、导数的四则运算法则、复合函数求导法则(链式法则)等。
微分是函数增量的线性主部,它与导数密切相关。
函数在某一点的微分等于函数在该点的导数乘以自变量的增量。
三、中值定理与导数的应用中值定理是高等数学中的重要定理,包括罗尔中值定理、拉格朗日中值定理和柯西中值定理。
这些定理在证明等式和不等式、研究函数的性质等方面有着广泛的应用。
导数的应用非常广泛,例如可以通过导数判断函数的单调性和极值、求函数的凹凸性和拐点、描绘函数的图像、利用导数解决优化问题(如求最大最小值)等。
四、不定积分不定积分是求导的逆运算,它是一个函数族。
求不定积分的基本方法有换元积分法和分部积分法。
常见的积分公式需要牢记,如基本初等函数的积分公式。
五、定积分定积分表示的是一个数值,它是由函数曲线、坐标轴和积分区间所围成的面积。
定积分的计算可以通过牛顿莱布尼茨公式,将其转化为不定积分来计算。
定积分的应用包括计算平面图形的面积、旋转体的体积、曲线的弧长、物理中的功和压力等。
《高等数学复习》教程第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-xx x x x x x x (等价小量与洛必达) 2.已知2030)(6lim 0)(6sin limxx f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达)3.121)12(lim ->-+x xx x x (重要极限) 4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求 解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t 2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>- 解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 22=--->-⎰x xt x edte x (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导1.⎩⎨⎧=+-==52arctan )(2te ty y t x x y y 由决定,求dx dy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。
高等数学复习资料大全高等数学复习资料大全一、函数的极限1、函数极限的定义:当函数f(x)在x趋近于某一值时,函数值无限接近于某一确定的数值A,则称A为函数f(x)在x趋近于这一值时的极限。
2、函数极限的性质:(1)唯一性:若极限存在,则唯一。
(2)局部有界性:在极限附近的函数值有界。
(3)局部保号性:在极限附近,函数值的符号保持不变。
(4)归结原则:若在某一区间内,f(x)恒等于A,则A为f(x)在该区间内的极限。
3、极限的四则运算:设、存在,则、也存在,且、、、。
4、复合函数的极限:设、存在,且g(x)在u=a处连续,则、存在,且、。
5、无穷小与无穷大:(1)无穷小:若当x趋近于某一值时,函数f(x)的极限为0,则称f(x)为当x趋近于这一值时的无穷小。
(2)无穷大:若当x趋近于某一值时,函数f(x)的绝对值无限增大,则称f(x)为当x趋近于这一值时的无穷大。
6、两个重要极限:(1)sin x / x = 1 (x趋近于0);(2)(1+k)^ x / kx = e^k (k为常数且k趋近于0)。
二、导数与微分1、导数的定义:设y=f(x),若增量 / 趋于0时,之间的比值也趋于0,则称f(x)在处可导,称此比值为f(x)在处的导数。
2、导数的几何意义:函数在某一点处的导数就是曲线在该点处的切线的斜率。
3、微分的定义:设y=f(x),若函数的增量可以表示为,其中A不依赖于,则称在处可微分,为f(x)在处的微分。
4、导数与微分的关系:若函数在某一点处可导,则在该点处必可微分;反之,若函数在某一点处可微分,则在该点处不一定可导。
5、导数的计算方法:(1)四则运算导数公式;(2)复合函数的导数;(3)隐函数求导法;(4)对数求导法;(5)高阶导数。
三、不定积分1、不定积分的定义:设f(x)是一个函数,是一个常数,则对f(x)进行积分所得的结果称为f(x)的不定积分,记为或。
2、不定积分的性质:(1)线性性质:和都存在,且;(2)恒等性质:都存在,且。
《高等数学复习》教程第一讲 函数、连续与极限一、理论要求 1.函数概念与性质 函数的基本性质(单调、有界、奇偶、周期) 几类常见函数(复合、分段、反、隐、初等函数) 2.极限极限存在性与左右极限之间的关系 夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限 3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法 (1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子) (3)变量替换法 (4)两个重要极限法(5)用夹逼定理和单调有界定理求 (6)等价无穷小量替换法(7)洛必达法则与Taylor 级数法(8)其他(微积分性质,数列与级数的性质) 1.612arctan lim )21ln(arctan lim3030-=-=+->->-xx x x x x x x (等价小量与洛必达) 2.已知2030)(6lim0)(6sin limx x f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达) 3.121)12(lim ->-+x xx x x (重要极限)4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求 解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t 2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>-解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 22=--->-⎰x xt x edte x (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求1.导数与微分 导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题3.应用 会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导 1.⎩⎨⎧=+-==52arctan )(2te ty y t x x y y 由决定,求dx dy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题 4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。
高数复习重点梳理
第一章:导数与微分
在高数复习中,导数与微分是非常重要的概念,它们是微积分的基础。
导数表
示函数在某一点上的变化率,微分则表示函数在该点附近的近似线性变化。
在学习导数与微分时,需要掌握的重点包括:
1.导数的定义与性质
2.基本导数的求法
3.高阶导数
4.微分的定义与性质
5.隐函数与参数方程的导数与微分
6.微分中值定理
第二章:不定积分与定积分
不定积分与定积分是微积分的另一个重要内容,它们是对函数积分的不同形式。
在学习不定积分与定积分时,需要注意以下内容:
1.不定积分的基本性质
2.基本的不定积分表
3.定积分的定义与性质
4.定积分的应用:计算面积、求解定积分方程等
5.变限积分与定积分的运算法则
6.定积分的几何应用
第三章:微分方程
微分方程是数学中一个重要的研究对象,它描述了函数的导数与自身之间的关系。
在学习微分方程时,需要了解以下内容:
1.微分方程的分类与基本概念
2.一阶微分方程的求解方法
3.高阶微分方程的求解方法
4.微分方程的初值问题
5.线性微分方程
6.微分方程的物理应用
第四章:级数
级数是数学分析中的一个重要概念,它描述了无穷序列之和的性质。
在学习级数时,需要牢记以下要点:
1.级数收敛与发散的判别法
2.正项级数收敛的性质
3.常用级数的收敛性质
4.级数的运算:加法、乘法、除法
5.幂级数及其收敛半径
6.泰勒级数与麦克劳林级数的应用
以上是高等数学复习中的重点内容梳理,希望对你的复习有所帮助。
祝你取得优异的成绩!。
高数知识点整理高等数学是大学理工科和经济金融等专业的重要基础课程,其知识点繁多且复杂。
下面为大家整理了一些重要的高数知识点,希望能对大家的学习有所帮助。
一、函数与极限1、函数的概念函数是一种从一个集合(定义域)到另一个集合(值域)的对应关系。
简单来说,对于定义域中的每个输入值,都有唯一的输出值与之对应。
2、函数的性质包括单调性、奇偶性、周期性和有界性等。
单调性指函数在某个区间内是递增或递减的;奇偶性是指函数关于原点对称(奇函数)或关于 y 轴对称(偶函数);周期性是指函数在一定的区间内重复出现相同的取值规律;有界性则表示函数的值在一定范围内。
3、极限的概念极限是指当自变量趋近于某个值时,函数的趋近值。
4、极限的计算方法包括直接代入法、因式分解法、有理化法、洛必达法则等。
直接代入法适用于简单的函数;因式分解法常用于分式函数;有理化法可用于消除根号;洛必达法则则用于求解 0/0 或∞/∞ 型的极限。
5、无穷小与无穷大无穷小是以 0 为极限的变量;无穷大是绝对值无限增大的变量。
无穷小的性质在极限计算中经常用到。
二、导数与微分1、导数的定义函数在某一点的导数表示函数在该点的变化率。
2、导数的几何意义导数就是函数图像在某一点的切线斜率。
3、基本导数公式如常数的导数为 0,幂函数的导数,指数函数的导数,对数函数的导数等。
4、导数的四则运算包括加法、减法、乘法和除法的求导法则。
5、复合函数求导设 y = f(u),u = g(x),则复合函数 y = fg(x) 的导数为 f'(u) g'(x)。
6、隐函数求导对于方程 F(x, y) = 0 确定的隐函数 y = y(x),通过对方程两边同时求导来求解 y'。
7、微分的定义函数的微分是函数增量的线性主部。
8、微分的运算法则与导数的运算法则类似。
三、中值定理与导数的应用1、罗尔定理如果函数 f(x) 满足在闭区间 a, b 上连续,在开区间(a, b) 内可导,且 f(a) = f(b),那么在(a, b) 内至少存在一点ξ,使得 f'(ξ) = 0。
高数总结知识点一、函数与极限函数的概念、性质及其图像。
函数的极限定义、性质及其运算。
无穷小与无穷大的概念及关系。
极限存在准则(夹逼准则、单调有界准则等)。
二、导数与微分导数的定义、性质及几何意义。
导数的计算(包括基本初等函数的导数、复合函数求导法则、隐函数求导、参数方程求导等)。
高阶导数的概念及计算。
微分的定义、性质及运算。
三、微分中值定理与导数的应用微分中值定理(罗尔定理、拉格朗日中值定理、泰勒定理等)。
洛必达法则及其应用。
函数的单调性、极值、最值及凹凸性的判定。
曲线的渐近线、拐点及图形的描绘。
四、不定积分与定积分不定积分的概念、性质及基本积分公式。
不定积分的计算(包括凑微分法、换元积分法、分部积分法等)。
定积分的概念、性质及计算。
定积分的应用(如面积、体积、弧长、功、平均值等的计算)。
五、向量代数与空间解析几何向量的概念、性质及运算。
空间直角坐标系及点的坐标表示。
向量的坐标表示及运算。
平面与直线的方程及其位置关系。
六、多元函数微分学多元函数的概念、性质及极限与连续。
偏导数的定义、计算及几何意义。
全微分的概念及计算。
多元函数的极值与最值问题。
七、多元函数积分学二重积分的概念、性质及计算。
三重积分的概念及计算。
曲线积分与曲面积分的概念及计算。
八、无穷级数常数项级数的概念、性质及收敛判别法。
函数项级数的概念及一致收敛性。
幂级数的概念、性质及运算。
傅里叶级数及其应用。
九、微分方程微分方程的概念及分类。
一阶微分方程的解法(分离变量法、凑微分法等)。
高阶微分方程的解法(降阶法、幂级数解法等)。
微分方程的应用(如物理、化学、生物等领域中的实际问题)。
以上只是高等数学的一些主要知识点,实际上高等数学的内容非常丰富且深入,需要学习者不断地探索和实践。
《高等数学》复习要点资料整理总结及练习题二、主要知识点第一章函数、极限、连续考试内容:函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数的概念。
数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较,极限的四则运算,极限存在的两个准则(单调有界准则和两边夹定理),两个重要极限。
函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质。
考试要求:1.理解函数的概念,掌握函数的有界性、单调性、周期性和奇偶性。
2.掌握数列极限和函数极限(包括左极限与右极限)的概念。
3.掌握极限存在的两边夹定理,极限的四则运算法则,利用两个重要极限求极限的方法。
4.理解无穷小量的概念和基本性质,无穷小量的比较方法,无穷大量的概念及其与无穷小量的关系。
5.掌握函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
6.理解初等函数的连续性,掌握闭区间上连续函数的性质(有界性、最大值和最小值定理、零点定理,介值定理),并会应用这些性质。
第二章导数与微分考试内容:导数和微分的概念,导数的几何意义,函数的可导性与连续性之间的关系,平面曲线的切线与法线,导数和微分的四则运算,基本初等函数的导数,复合函数、隐函数和参数方程确定的函数的导数,高阶导数,一阶微分形式的不变性。
考试要求:1.掌握导数的概念,理解可导性与连续性之间的关系,了解导数的几何意义会求平面曲线的切线方程和法线方程。
2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求参数方程确定的函数与隐函数的导数。
3.了解高阶导数的概念,会求简单函数的高阶导数。
4.了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分。
第三章微分中值定理与导数应用考试内容:微分中值定理,洛必达法则,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点,渐近线,函数图形的描绘,函数的最大值与最小值。
高等数学第一章 函数与极限第一节 函数○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★)(){},|U a x x a δδ=-<(){},|0U a x x a δδ=<-<第二节 数列的极限○数列极限的证明(★)【题型示例】已知数列{}n x ,证明{}lim n x x a →∞= 【证明示例】N -ε语言1.由n x a ε-<化简得()εg n >, ∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞→lim第三节 函数的极限○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0lim【证明示例】δε-语言1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0lim○∞→x 时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x =∞→lim【证明示例】X -ε语言1.由()f x A ε-<化简得()x g ε>, ∴()εg X =2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞→lim第四节 无穷小与无穷大○无穷小与无穷大的本质(★) 函数()x f 无穷小⇔()0lim =x f 函数()x f 无穷大⇔()∞=x f lim○无穷小与无穷大的相关定理与推论(★★)(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f1-为无穷大【题型示例】计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U内是有界的;(∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)第五节 极限运算法则○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则关于多项式()p x 、()x q 商式的极限运算设:()()⎪⎩⎪⎨⎧+⋯++=+⋯++=--nn n mm m b x b x b x q a x a x a x p 110110则有()()⎪⎪⎩⎪⎪⎨⎧∞=∞→0lim 0b a x q x p x m n m n m n >=<()()()()000lim 00x x f x g x f x g x →⎧⎪⎪⎪=∞⎨⎪⎪⎪⎩()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00lim 0x x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9x x x →--【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()23333311limlim lim 93336x x x x x x x x x →→→--====-+-+ 其中3x =为函数()239x f x x -=-的可去间断点倘若运用罗比达法则求解(详见第三章第二节):解:()()0233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'- ○连续函数穿越定理(复合函数的极限求解)(★★) (定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦ 【题型示例】求值:93lim 23--→x x x【求解示例】36x →===第六节 极限存在准则及两个重要极限○夹迫准则(P53)(★★★) 第一个重要极限:1sin lim 0=→xxx∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim0=→x x x 0000lim11lim lim 1sin sin sin lim x x x x x x x x x x →→→→===⎛⎫⎪⎝⎭(特别地,000sin()lim1x x x x x x →-=-)○单调有界收敛准则(P57)(★★★)第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim(一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f )【题型示例】求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x【求解示例】()()211121212122121122122121lim21221232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞+→∞⋅++++⋅⋅+++→∞+→∞++→∞+++⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥=+=+ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎢⎥=+⎪⎢⎥+⎝⎭⎣⎦解:()()12lim 1212121212122lim 121x x x x x x x x x ee e e+→∞⎡⎤⋅+⎢⎥+⎣⎦+→∞+→∞⎡⎤⋅+⎢⎥+⎣⎦+⎛⎫⎪+⎝⎭====第七节 无穷小量的阶(无穷小的比较) ○等价无穷小(★★)1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1UU U U U U U e +- 2.U U cos 1~212-(乘除可替,加减不行)【题型示例】求值:()()xx x x x x 31ln 1ln lim 20++++→ 【求解示例】()()()()()()()3131lim 31lim 31ln 1lim 31ln 1ln lim,0,000020=++=+⋅+=++⋅+=++++=≠→→→→→x x x x x x x x x x x x x x x x x x x x x 所以原式即解:因为第八节 函数的连续性○函数连续的定义(★)()()()000lim lim x x x x f x f x f x -+→→==○间断点的分类(P67)(★)⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数()⎩⎨⎧+=x a e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R 上的连续函数?【求解示例】1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0∴e a =第九节 闭区间上连续函数的性质 ○零点定理(★)【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 【证明示例】1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续;2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0fg C ξξ--=(10<<ξ) 4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分第一节 导数概念○高等数学中导数的定义及几何意义(P83)(★★)【题型示例】已知函数()⎩⎨⎧++=b ax e x f x1 ,00>≤x x 在0=x 处可导,求a ,b【求解示例】1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩ ∴1,2a b ==【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程) 【求解示例】1.()x f y '=',()a f y a x '='=| 2.切线方程:()()()y f a f a x a '-=- 法线方程:()()()1y f a x a f a -=--' 第二节 函数的和(差)、积与商的求导法则○函数和(差)、积与商的求导法则(★★★) 1.线性组合(定理一):()u v u v αβαβ'''±=+ 特别地,当1==βα时,有()u v u v '''±=± 2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭第三节 反函数和复合函数的求导法则○反函数的求导法则(★)【题型示例】求函数()x f1-的导数【求解示例】由题可得()x f 为直接函数,其在定于域D上单调、可导,且()0≠'x f ;∴()()11fx f x -'⎡⎤=⎣⎦' ○复合函数的求导法则(★★★)【题型示例】设(ln y e =,求y '【求解示例】(22arcsi y ex a e e e ''='⎛⎫' ⎪+=⎝⎛⎫⎪ =⎝⎭=解:⎛ ⎝第四节 高阶导数 ○()()()()1n n fx fx -'⎡⎤=⎣⎦(或()()11n n n n d y d y dx dx --'⎡⎤=⎢⎥⎣⎦)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数 【求解示例】()1111y x x-'==++, ()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦, ()()()()()2311121y x x --'⎡⎤'''=-⋅+=-⋅-⋅+⎣⎦……()1(1)(1)(1)nn n y n x --=-⋅-⋅+!第五节 隐函数及参数方程型函数的导数 ○隐函数的求导(等式两边对x 求导)(★★★) 【题型示例】试求:方程ye x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程【求解示例】由ye x y +=两边对x 求导即()y y x e '''=+化简得1yy e y ''=+⋅∴ee y -=-='11111 ∴切线方程:()e x ey +--=-1111法线方程:()()e x e y +---=-111○参数方程型函数的求导【题型示例】设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd【求解示例】1.()()t t dx dy ϕγ''= 2.()22dy d y dx dxt ϕ'⎛⎫⎪⎝⎭=' 第六节 变化率问题举例及相关变化率(不作要求)第七节 函数的微分○基本初等函数微分公式与微分运算法则(★★★) ()dx x f dy ⋅'=第三章 中值定理与导数的应用第一节 中值定理 ○引理(费马引理)(★) ○罗尔定理(★★★) 【题型示例】现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ∃∈, 使得()()cos sin 0ff ξξξξ'+=成立【证明示例】1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导;2.又∵()()00sin00f ϕ==()()sin 0f ϕπππ== 即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x >时,xe e x >⋅ 【证明示例】1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x e ξ-=-成立,又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-,化简得x e e x >⋅,即证得:当1x >时,xe e x >⋅ 【题型示例】证明不等式:当0x >时,()ln 1x x +< 【证明示例】1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x'=+;2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立,化简得()1ln 11x x ξ+=+,又∵[]0,x ξ∈, ∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=, 即证得:当1x >时,xe e x >⋅第二节 罗比达法则○运用罗比达法则进行极限运算的基本步骤(★★) 1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件 A .属于两大基本不定型(0,0∞∞)且满足条件,则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)B .☆不属于两大基本不定型(转化为基本不定型) ⑴0⋅∞型(转乘为除,构造分式) 【题型示例】求值:0lim ln x x x α→⋅【求解示例】()10000201ln ln lim ln lim lim lim 111lim 0x x L x x x x x x x x x x x x x a ααααααα∞∞-'→→→→→'⋅===⋅'⎛⎫- ⎪⎝⎭=-=解: (一般地,()0lim ln 0x x x βα→⋅=,其中,R αβ∈)⑵∞-∞型(通分构造分式,观察分母) 【题型示例】求值:011lim sin x x x →⎛⎫-⎪⎝⎭【求解示例】200011sin sin lim lim lim sin sin x x x x x x x x x x x x →→→--⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⋅⎝⎭⎝⎭⎝⎭解:()()()()000002sin 1cos 1cos sin limlim lim lim 0222L x x L x x x x x x xx x x ''→→→→''---====='' ⑶00型(对数求极限法)【题型示例】求值:0lim xx x →【求解示例】()()0000lim ln ln 000002ln ,ln ln ln 1ln ln 0lim ln lim lim111lim lim 0lim lim 11x x x x x L x yy x x x x x y x y x x x xx xx y xx x x y e e e x→∞∞'→→→→→→→===='→=='⎛⎫ ⎪⎝⎭==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)【题型示例】求值:()10lim cos sin xx x x →+【求解示例】()()()()()1000000lim ln ln 10ln cos sin cos sin ,ln ,ln cos sin ln 0limln limln cos sin cos sin 10lim lim 1,cos sin 10lim =lim x xx x L x x yy x x x x y x x y xx x y x y xx x x x x x x y e e e e→→→'→→→→+=+=+→='+⎡⎤--⎣⎦====++'===解:令两边取对数得对求时的极限,从而可得⑸0∞型(对数求极限法) 【题型示例】求值:tan 01lim xx x →⎛⎫⎪⎝⎭【求解示例】()()tan 00200020*******,ln tan ln ,1ln 0lim ln lim tan ln 1ln ln lim limlim 1sec 1tan tan tan sin sin lim lim li xx x x L x x x L x y y x x x y x y x x x xx x x xx x x x x →→∞∞'→→→'→→⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭⎡⎤⎛⎫→=⋅ ⎪⎢⎥⎝⎭⎣⎦'=-=-=-⎛⎫'⎛⎫-⎪ ⎪⎝⎭⎝⎭'==='解:令两边取对数得对求时的极限,00lim ln ln 002sin cos m 0,1lim =lim 1x x yy x x x xy e e e →→→→⋅====从而可得○运用罗比达法则进行极限运算的基本思路(★★)00001∞⎧⎪∞-∞−−→←−−⋅∞←−−⎨∞⎪∞⎩∞(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分式形式) ⑶取对数获得乘积式(通过对数运算将指数提前)第三节 泰勒中值定理(不作要求) 第四节 函数的单调性和曲线的凹凸性 ○连续函数单调性(单调区间)(★★★) 【题型示例】试确定函数()3229123f x x x x =-+-的单调区间 【求解示例】1.∵函数()f x 在其定义域R 上连续,且可导∴()261812f x x x '=-+2.令()()()6120f x x x '=--=,解得:121,2x x ==4.∴函数f x 的单调递增区间为,1,2,-∞+∞; 单调递减区间为()1,2【题型示例】证明:当0x >时,1xe x >+ 【证明示例】1.(构建辅助函数)设()1x x e x ϕ=--,(0x >)2.()10xx e ϕ'=->,(0x >)∴()()00x ϕϕ>=3.既证:当0x >时,1xe x >+【题型示例】证明:当0x >时,()ln 1x x +<【证明示例】1.(构建辅助函数)设()()ln 1x x x ϕ=+-,(0x >)2.()1101x xϕ'=-<+,(0x >) ∴()()00x ϕϕ<=3.既证:当0x >时,()ln 1x x +<○连续函数凹凸性(★★★)【题型示例】试讨论函数2313y x x =+-的单调性、极值、凹凸性及拐点【证明示例】1.()()236326661y x x x x y x x '⎧=-+=--⎪⎨''=-+=--⎪⎩ 2.令()()320610y x x y x '=--=⎧⎪⎨''=--=⎪⎩解得:120,21x x x ==⎧⎨=⎩3.(四行表)x(,0)-∞ 0(0,1) 1(1,2) 2(2,)+∞y '-++- y '' ++--y1 (1,3) 5 4.⑴函数13y x x =+-单调递增区间为(0,1),(1,2)单调递增区间为(,0)-∞,(2,)+∞;⑵函数2313y x x =+-的极小值在0x =时取到,为()01f =,极大值在2x =时取到,为()25f =;⑶函数2313y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸;⑷函数2313y x x =+-的拐点坐标为()1,3第五节 函数的极值和最大、最小值○函数的极值与最值的关系(★★★)⑴设函数()f x 的定义域为D ,如果M x ∃的某个邻域()M U x D ⊂,使得对()M x U x ∀∈,都适合不等式()()M f x f x <,我们则称函数()f x 在点(),M M x f x ⎡⎤⎣⎦处有极大值()M f x ;令{}123,,,...,M M M M Mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最大值M 满足:()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;⑵设函数()f x 的定义域为D ,如果m x ∃的某个邻域()m U x D ⊂,使得对()m x U x ∀∈,都适合不等式()()m f x f x >,我们则称函数()f x 在点(),m m x f x ⎡⎤⎣⎦处有极小值()m f x ;令{}123,,,...,m m m m mn x x x x x ∈则函数()f x 在闭区间[],ab 上的最小值m 满足:()(){}123min ,,,,...,,m m m mn m f a x x x x f b =;【题型示例】求函数()33f x x x =-在[]1,3-上的最值 【求解示例】1.∵函数()f x 在其定义域[]1,3-上连续,且可导 ∴()233f x x '=-+2.令()()()3110f x x x '=--+=, 解得:121,1x x =-= .(三行表)x1- ()1,1-1 (]1,3()f x ' 0+-()f x极小值极大值4.又∵12,12,318f f f -=-==- ∴()()()()max min 12,318f x f f x f ====- 第六节 函数图形的描绘(不作要求) 第七节 曲率(不作要求)第八节 方程的近似解(不作要求) 第四章 不定积分第一节 不定积分的概念与性质 ○原函数与不定积分的概念(★★) ⑴原函数的概念:假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I ∈时,有()()F x f x '=或()()dF x f x dx =⋅成立,则称()F x 为()f x 的一个原函数⑵原函数存在定理:(★★)如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续) ⑶不定积分的概念(★★)在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量)○基本积分表(★★★)○不定积分的线性性质(分项积分公式)(★★★)()()()()1212k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ 第二节 换元积分法○第一类换元法(凑微分)(★★★) (()dx x f dy ⋅'=的逆向应用)()()()()f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰【题型示例】求221dx a x +⎰【求解示例】222211111arctan 11x x dx dx d Ca x a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:【题型示例】求【求解示例】()()121212x x C=+=+=○第二类换元法(去根式)(★★)(()dx x f dy ⋅'=的正向应用)⑴对于一次根式(0,a b R ≠∈):t =,于是2t b x a-=,则原式可化为t⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<),于是arctan xt a=,则原式可化为sec a t ;⑶对于根号下平方差的形式(0a >):asin x a t =(22t ππ-<<),于是arcsin xt a=,则原式可化为cos a t ;bsec x a t =(02t π<<),于是arccos at x =,则原式可化为tan a t ;【题型示例】求(一次根式) 【求解示例】2221t x t dx tdttdt dt t C Ct =-=⋅==+=⎰⎰【题型示例】求(三角换元)【求解示例】()()2sin ()2222arcsincos 22cos 1cos 221sin 2sin cos 222x a t t xt adx a ta a tdt t dta a t t C t t t C ππ=-<<==−−−−−−→=+⎛⎫=++=++ ⎪⎝⎭⎰⎰第三节 分部积分法 ○分部积分法(★★)⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指” ○运用分部积分法计算不定积分的基本步骤: ⑴遵照分部积分法函数排序次序对被积函数排序; ⑵就近凑微分:(v dx dv '⋅=) ⑶使用分部积分公式:udv uv vdu =-⎰⎰⑷展开尾项vdu v u dx '=⋅⎰⎰,判断a .若v u dx '⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果); b .若v u dx '⋅⎰依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2x e x dx ⋅⎰【求解示例】()()222222222222222x x x x x x x x x x x x x x x e x dx x e dx x de x e e d x x e x e dx x e x d e x e xe e dx x e xe e C⋅===-=-⋅=-⋅=-+=-++⎰⎰⎰⎰⎰⎰⎰解:【题型示例】求sin x e xdx ⋅⎰【求解示例】()()()()sin cos cos cos cos cos cos sin cos sin sin cos sin sin x x x xx x x x x x x x x x e xdx e d x e x xd ee x e xdx e x e d x e x e x xd e e x e x e xdx⋅=-=-+=-+=-+=-+-=-+-⎰⎰⎰⎰⎰⎰⎰解:()sin cos sin sin x x x x e xdx e x e x xd e ⋅=-+-⎰⎰即:∴()1sin sin cos 2xxe xdx e x x C ⋅=-+⎰第四节 有理函数的不定积分 ○有理函数(★)设:()()()()101101m m mn n nP x p x a x a x a Q x q x b x b x b --=++⋯+==++⋯+ 对于有理函数()()P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数()()P x Q x 是真分式;当()P x 的次数大于()Q x 的次数时,有理函数()()P x Q x 是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数()()P x Q x 的分母()Q x 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式()kx a -;而另一个多项式可以表示为二次质因式()2lx px q ++,(240p q -<);即:()()()12Q x Q x Q x =⋅一般地:n mx n m x m ⎛⎫+=+ ⎪⎝⎭,则参数n a m =-22b c ax bx c a x x a a ⎛⎫++=++ ⎪⎝⎭则参数,b cp q a a ==⑵则设有理函数()()P x Q x 的分拆和式为:()()()()()()122k lP x P x P x Q x x a x px q =+-++其中()()()()1122...k kkP x A A A x a x a x a x a =+++----()()()()2112222222...ll llP x M x N M x N x px q x px q x px q M x N x px q ++=++++++++++++参数121212,,...,,,,...,l k lM M M A A A N N N ⎧⎧⎧⎨⎨⎨⎩⎩⎩由待定系数法(比较法)求出⑶得到分拆式后分项积分即可求解【题型示例】求21x dx x +⎰(构造法) 【求解示例】()()()221111111111ln 112x x x x dx dx x dx x x x xdx dx dx x x x Cx +-++⎛⎫==-+ ⎪+++⎝⎭=-+=-++++⎰⎰⎰⎰⎰⎰第五节 积分表的使用(不作要求)第五章 定积分极其应用第一节 定积分的概念与性质 ○定积分的定义(★)()()01lim nbiiai f x dx f x I λξ→==∆=∑⎰(()f x 称为被积函数,()f x dx 称为被积表达式,x则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间)○定积分的性质(★★★)⑴()()b baaf x dx f u du =⎰⎰ ⑵()0a af x dx =⎰ ⑶()()b ba akf x dx k f x dx =⎡⎤⎣⎦⎰⎰⑷(线性性质)()()()()1212b b ba a a k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ ⑸(积分区间的可加性)()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0baf x dx >⎰;(推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()b baaf x dxg x dx ≤⎰⎰;(推论二)()()b baaf x dx f x dx ≤⎰⎰○积分中值定理(不作要求) 第二节 微积分基本公式○牛顿-莱布尼兹公式(★★★)(定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则()()()baf x dx F b F a =-⎰○变限积分的导数公式(★★★)(上上导―下下导)()()()()()()()x x d f t dt f x x f x x dxϕψϕϕψψ''=-⎡⎤⎡⎤⎣⎦⎣⎦⎰ 【题型示例】求21cos 2limt xx e dt x -→⎰【求解示例】()2211cos cos 2002lim lim 解:t t x x x L x d e dt e dt dx x x--'→→='⎰⎰()()()()2222221cos cos000cos 0cos cos 0cos 010sin sin limlim 22sin lim 2cos sin 2sin cos lim21lim sin cos 2sin cos 21122xxx x xL x xxx x x e ex x e xxdx e dx x x ex ex xe x x x x e e---→→-'→--→-→-⋅-⋅-⋅==⋅='⋅+⋅⋅=⎡⎤=+⋅⎣⎦=⋅=第三节 定积分的换元法及分部积分法 ○定积分的换元法(★★★) ⑴(第一换元法)()()()()b ba a f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰ 【题型示例】求20121dx x +⎰【求解示例】()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法)设函数()[],f x C a b ∈,函数()x t ϕ=满足: a .,αβ∃,使得()(),a b ϕαϕβ==;b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续 则:()()()baf x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰。
高等数学期末复习资料第 1 页(共9 页)高等数学第一章函数与极限函数与极限函数与极限函数与极限第一节函数○函数基础(高中部分相关知识)(★)○邻域(去心邻域)(★)....,|Uaxxa.........,|0Uaxxa......第二节数列的极限数列的极限数列的极限数列的极限○数列极限的证明(★)【题型示例】已知数列..nx,证明..limnxxa...【证明示例】N..语言1.由nxa...化简得...gn.,∴..Ng......2.即对0...,..Ng.......,当Nn.时,始终有不等式nxa...成立,∴..axnx (i)第三节函数的极限函数的极限函数的极限函数的极限○0xx.时函数极限的证明(★)【题型示例】已知函数..xf,证明..Axfxx..0lim【证明示例】...语言1.由..fxA...化简得..00xxg....,∴....g.2.即对.. . 0 ,....g..,当00xx....时,始终有不等式..fxA...成立,∴ f .x. Ax x.. 0lim○..x时函数极限的证明(★)【题型示例】已知函数 f .x. ,证明..Axfx (i)【证明示例】X..语言1.由..fxA...化简得..xg..,∴ (X)2.即对.. . 0 ,...gX..,当Xx.时,始终有不等式..fxA...成立,∴..Axfx (i)第四节无穷小与大无穷小与大无穷小与大无穷小与大无穷小与大○无穷小与大的本质(★)函数..xf无穷小...0lim.xf函数..xf无穷大.....xflim○无穷小与大的相关定理推论(★)(定理三)假设 f .x. 为有界函数,..xg为无穷小,则....lim0fxgx......(定理四)在自变量的某个化过程中,若在自变量的某个化过程中,若..xf为无穷大,则无穷大,则无穷大,则..1fx.为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若..xf为无穷小,且..0fx.,则..xf1.为无穷大【题型示例】计算:....0limxxfxgx......(或..x)1.∵..fx≤M∴函数..fx在0xx.的任一去心邻域...,0xU.内是有界的;(∵..fx≤M ,∴函数..fx在Dx.上有界;)2...0lim0..xgxx即函数..xg是0xx.时的无穷小;(..0lim...xgx即函数g.x. 是x . . 时的无穷小;)3.由定理可知....0lim0xxfxgx.......(....lim0xfxgx........)第五节极限运算法则极限运算法则极限运算法则极限运算法则极限运算法则○极限的四则运算法(★)(定理一)加减法则(定理二)乘除法则关于多项式..px、..xq商式的极限运算设:.....................nnnmmmbxbxbxqaxaxaxp110110则有...............0lim00baxqxpxmnmnmn...........000lim00xxfxgxfxgx......................0000000,00gxgxfxgxfx.....(特别地,当....00lim0xxfxgx..(不定型)时,通常分子分母约去公因式约去公因式约去公因式即约去可间断点便即约去可间断点便即约去可间断点便即约去可间断点便即约去可间断点便即约去可间断点便可求解出极可求解出极可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9xxx...高等数学期末复习资料第 2 页(共9 页)【求解示例】解:因为3.x,从而可得3.x,所以原式....23333311limlimlim93336xxxxxxxxx.............其中3x.为函数..239xfxx...的可去间断点倘若运用罗比达法则求解(详见第三章二节):解:....00233323311limlimlim9269xLxxxxxxx.............○连续函数穿越定理(复合函数的极限求解)(★)(定理五)若函数..xf是定义域上的连续函数,那么,....00limlimxxxxfxfx...............【题型示例】求值:93lim23 (xxx)【求解示例】22333316limlim9966xxxxxx.........第六节极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要○夹迫准则(P53P53)(★)第一个重要极限:1sinlim0..xxx∵........2,0.x,xxxtansin..∴ 1sinlim.. xxx0000lim11limlim1sinsinsinlimxxxxxxxxxx.............(特别地,000sin()lim1xxxxxx....)○单调有界收敛准则(P57P57)(★)第二个重要极限:exxx..........11lim(一般地,(一般地,(一般地,(一般地,........limlimlimgxgxfxfx.........,其中..0lim.xf)【题型示例】求值:11232lim (xxxx)【求解示例】....211121212122121122122121lim21221232122limlimlim121212122lim1lim121212lim121xxxx xxxxxxxxxxxxxxxxxxxx...................................................................................................解:....12lim1212121212122lim121xxxxxxxxxeeee.......................................第七节无穷小量的阶(无穷小量的阶(无穷小量的阶(无穷小量的阶(无穷小量的阶(无穷小的比较无穷小的比较无穷小的比较)○等价无穷小(★)1...~sin~tan~arcsin~arctan~ln(1)~1UUUUUUUe..2.UUcos1~212.(乘除可替,加减不行)【题型示例】求值:....xxxxxx31ln1lnlim20.....【求解示例】..............3131lim31lim31ln1lim31ln1lnlim,0,000020........................xxxxxxxxxxxxxxxxxxxxx所以原式即解:因为第八节函数的连续性函数的连续性函数的连续性函数的连续性函数的连续性○函数连续的定义(★)......000limlimxxxxfxfxfx......○间断点的分类(P67P67)(★).........)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数.......xaexfx2,00..xx应该怎样选择数a,使得..xf成为在R上的连续函数?【求解示例】1.∵......2010000feeefaafa...................2.由连续函数定义......efxfxfxx.......0limlim00∴ea.高等数学期末复习资料第 3 页(共9 页)第九节闭区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质○零点定理(★)【题型示例】证明:方程】证明:方程】证明:方程】证明:方程....fxgxC..至少有一个根介于a与b之间【证明示例】1.(建立辅助函数)(建立辅助函数)(建立辅助函数)(建立辅助函数)(建立辅助函数)(建立辅助函数)......xfxgxC....在闭区间..,ab上连续;2.∵....0ab....(端点异号)3.∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间..ba,内至少有一点.,使得..0...,即....0fgC.....(10...)4.这等式说明方程这等式说明方程这等式说明方程这等式说明方程....fxgxC..在开区间在开区间.a,b.内至少有一个根.第二章导数与微分导数与微分导数与微分导数与微分第一节导数概念○高等数学中导的定义及几何意(P83P83)(★)【题型示例】已知函数】已知函数】已知函数........baxexfx1,00..xx在0.x处可导,求a,b【求解示例】1.∵....0010fefa............,......00001120012feefbfe...................2.由函数可导定义..........0010002ffafffb..................∴1,2ab..【题型示例】求..xfy.在ax.处的切线与法方程(或:过(或:过(或:过..xfy.图像上点..,afa....处的切线与法处的切线与法处的切线与法处的切线与法方程)【求解示例】1...xfy...,..afyax....|2.切线方程:......yfafaxa....法线方程:......1yfaxafa.....第二节函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则○函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则★)1.线性组合(定理一):线性组合(定理一):()uvuv..........特别地,当1....时,有()uvuv......2.函数积的求导法则(定理二):函数积的求导法则(定理二):()uvuvuv.....3.函数商的求导法则(定理三):函数商的求导法则(定理三):2uuvuvvv...........第三节反函数和复合函数的求导法则复合函数的求导法则复合函数的求导法则复合函数的求导法则复合函数的求导法则○反函数的求导法则(★)【题型示例】求函数..xf1.的导数【求解示例】由题可得【求解示例】由题可得【求解示例】由题可得【求解示例】由题可得【求解示例】由题可得..xf为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域D上单调、可导,且..0..xf;∴....11fxfx........○复合函数的求导法则(★)【题型示例】设..2arcsin122lnxyexa....,求y.【求解示例】................2222222arcsin122arcsin122222arcsin1222arcsin1222arcsin1222arcsin122arcsiarcsin12 211121*********xxxxxxxyexaexaxxaexaxexaxxxexxaeaeexa.......................................................... .......解:2n1222212xxxxxxa.............第四节高阶导数○........1nnfxfx.......(或....11nnnndydydxdx..........)(★)【题型示例】求函数..xy..1ln的n阶导数【求解示例】..1111yxx......,......12111yxx...............,..........2311121yxx....................……..1(1)(1)(1)nnnynx........!第五节隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导○隐函数的求导(等式两边对x求导)(★)【题型示例】试求:方程】试求:方程】试求:方程】试求:方程yexy..所给定的曲线所给定的曲线所给定的曲线所给定的曲线C:..xyy.在点..1,1e.的切线方程与法【求解示例】由y y . x . e 两边对x 求导即..yyxe.....化简得1yyey.....∴eey (11111)高等数学期末复习资料第 4 页(共9 页)∴切线方程:..exey (1111)法线方程:....exey (111)○参数方程型函数的求导【题型示例】设参数方程.........tytx..,求22dxyd【求解示例】1.....ttdxdy.....2...22dydydxdxt..........第六节变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变(不作要求)第七节函数的微分函数的微分函数的微分函数的微分○基本初等函数微分公式与运算法则(★★★)..dxxfdy...第三章中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用第一节中值定理○引理(费马)(○引理(费马)(★)○罗尔定理(★)【题型示例】现假设函数..fx在..0,.上连续,在上连续,在上连续,在..0,.上可导,试证明:..0,....,使得....cossin0ff.......成立【证明示例】1.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令....sinxfxx..显然函数..x.在闭区间.0,. .上连续,在开区间开区间.0,. . 上可导;2.又∵....00sin00f.......sin0f......即....00.....3.∴由罗尔定理知....0,..,使得,使得. .c . . ossin0 f. f ... . . . 成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x.时,xeex..【证明示例】1.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令函数..xfxe.,则对1x..,显然函数..fx在闭区间..1,x上连续,在开区间..1,x上可导,并且..xfxe..;2.由拉格朗日中值定理可得,..1,x...使得等式..11xeexe....成立,又∵1ee..,∴..111xeexeexe......,化简得xeex..,即证得:当x .1时,x e ex . .【题型示例】证明不等式:当0x.时,..ln1xx..【证明示例】1.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令....ln1fxx..,则对0x..,函数,函数 f .x. 在闭区间..0,x上连续,在开区上连续,在开区上连续,在开区上连续,在开区间.0,. . 上可导,并且..11fxx...;2.由拉格朗日中值定理可得,由拉格朗日中值定理可得,..0,x...使得等式......1ln1ln1001xx.......成立,化简得..1ln11xx....,又∵..0,x..,∴..111f......,∴..ln11xxx....,即证得:当x .1时,x e ex . .第二节罗比达法则罗比达法则罗比达法则罗比达法则○运用罗比达法则进行极限算的基本步骤(★)1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类及是否满足运用罗比及是否满足运用罗比及是否满足运用罗比及是否满足运用罗比及是否满足运用罗比达法则的三个前提条件A.属于两大基本不定型(0,0..)且满足条件,则进行运算:........limlimxaxafxfxgxgx.....(再进行1、2步骤,反复直到结果得出)B.☆不属于两大基本定型(转化为基本不定型)⑴0..型(转乘为除,构造分式)【题型示例】求值:0limlnxxx...【求解示例】..10000201lnlnlimlnlimlimlim111lim0xxLxxxxxxxxxxxxxa.................................解:(一般地,..0limln0xxx.....,其中,R...)⑵...型(通分构造式,观察母)【题型示例】求值:011limsinxxx........【求解示例】200011sinsinlimlimlimsinsinxxxxxxxxxxxx...........................解:........000000002sin1cos1cossinlimlimlimlim0222LxxLxxxxxxxxxx..................高等数学期末复习资料第 5 页(共9 页)⑶00型(对数求极限法)【题型示例】求值:0limxxx.【求解示例】....0000limlnln000002ln,lnlnln1lnln0limlnlimlim111limlim0limlim11xxxxxLxyyxxxxxyxyxxxxxx xyxxxxyeeex...................................解:设两边取对数得:对对数取时的极限:,从而有⑷1.型(对数求极限法)【题型示例】求值:..10limcossinxxxx..【求解示例】..........01000000limlnln100lncossincossin,ln,lncossinln0limlnlimlncossincossin10limlim1,cossin1 0lim=limxxxxLxxyyxxxxyxxyxxxyxyxxxxxxxxyeeee.................................解:令两边取对数得对求时的极限,从而可得⑸0.型(对数求极限法)【题型示例】求值:tan01limxxx.......【求解示例】....tan002000202200011,lntanln,1ln0limlnlimtanln1lnlnlimlimlim1sec1tantantansinsinlimlimlixxx xLxxxLxyyxxxyxyxxxxxxxxxxxxx...................................................................解:令两边取对数得对求时的极限,00limlnln0002sincosm0,1lim=lim1xxyyxxxxyeee.........从而可得○运用罗比达法则进行极限算的基本思路(★)0000001.......................(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分)⑶取对数获得乘积式(通过对数运算将指提前)第三节泰勒中值定理泰勒中值定理泰勒中值定理泰勒中值定理泰勒中值定理(不作要求)(不作要求)(不作要求)(不作要求)第四节函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸○连续函数单调性(单调区间)(★)【题型示例】试确定函数】试确定函数】试确定函数】试确定函数..3229123fxxxx....的单调区间【求解示例】1.∵函数..fx在其定义域R上连续,且可导∴..261812fxxx....2.令......6120fxxx.....,解得:,解得:,解得:121,2xx..3.(三行表).(三行表).(三行表).(三行表)x..,1..1..1,22..2,....fx......fx极大值极小值4.∴函数 f .x. 的单调递增区间为....,1,2,....;单调递减区间为..1,2【题型示例】证明:当0x.时,1xex..【证明示例】1.(构建辅助函数).(构建辅助函数).(构建辅助函数).(构建辅助函数).(构建辅助函数)设..1xxex....,(0x.)2...10xxe.....,(x . 0 )∴....00x....3.既证:当x . 0 时,1 x e .x.【题型示例】证明:当x . 0 时,..ln1xx..【证明示例】1.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设....ln1xxx....,(x . 0 )2...1101xx......,(x . 0 )∴....00x....3.既证:当x . 0 时,l . . n1 .x .x○连续函数凹凸性(★)【题型示例】试讨论函数2313yxx...的单调性、极值的单调性、极值的单调性、极值的单调性、极值的单调性、极值凹凸性及拐点【证明示例】高等数学期末复习资料第 6 页(共9 页)1.....236326661yxxxxyxx........................320610yxxyx................120,21xxx......3.(四行表)x(,0)..(0,1)1(1,2)2(2,)..y.....y......y1(1,3)4.⑴函数 2 3 y 1 3xx . ..单调递增区间为(0,1), (1,2) 单调递增区间为( ,0) .. , (2,) .. ;⑵函数 2 3 y 1 3xx . ..的极小值在0x.时取到,为..01f.,极大值在2x.时取到,为..25f.;⑶函数 2 3 y 1 3xx . ..在区间( ,0) .. , (0,1)上凹,在区间(1,2), (2,) .. 上凸;⑷函数 2 3 y 1 3xx . ..的拐点坐标为..1,3第五节函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小○函数的极值与最关系(★)⑴设函数..fx的定义域为的定义域为的定义域为D,如果Mx.的某个邻域..MUxD.,使得对..MxUx..,都适合不等式....Mfxfx.,我们则称函数 f .x. 在点..,MMxfx....处有极大值..Mfx;令..123,,,...,MMMMMnxxxxx.则函数 f .x. 在闭区间..,ab上的最大值M满足:......123max,,,,...,,MMMMnMfaxxxxfb.⑵设函数 f .x. 的定义域为D,如果,如果mx.的某个邻域..mUxD.,使得对,使得对,使得对..mxUx..,都适合不等,都适合不等,都适合不等,都适合不等,都适合不等式....mfxfx.,我们则称函数我们则称函数我们则称函数我们则称函数 f .x. 在点..,mmxfx....处有极小值..mfx;令..123,,,...,mmmmmnxxxxx.则函数 f .x. 在闭区间.a,b. 上的最小值m满足:......123min,,,,...,,mmmmnmfaxxxxfb.;【题型示例】求函数..33fxxx..在..1,3.上的最值【求解示例】1.∵函数 f .x. 在其定义域. 1 . ,3 . 上连续,且可导∴..233fxx....2.令......3110fxxx......,解得:121,1xx...3.(三行表).(三行表).(三行表).(三行表)x1...1,1.1..1,3f. .x...f .x.极小值极大值4.又∵......12,12,318fff......∴........maxmin12,318fxffxf.....第六节函数图形的描绘函数图形的描绘函数图形的描绘函数图形的描绘函数图形的描绘(不作要求)(不作要求)(不作要求)第七节曲率(不作要求)(不作要求)(不作要求)(不作要求)第八节方程的近似解方程的近似解方程的近似解方程的近似解方程的近似解(不作要求)(不作要求)(不作要求)(不作要求)第四章不定积分第一节不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质○原函数与不定积分的概念(★)⑴原函数的概念:假设在定义区间I上,可导函数上,可导函数上,可导函数..Fx的导函数为..Fx.,即当自变量,即当自变量,即当自变量,即当自变量xI.时,有时,有....Fxfx..或....dFxfxdx..成立,则称成立,则称成立,则称成立,则称F.x. 为..fx的一个原函数⑵原函数存在定理:(★)如果函数..fx在定义区间I 上连续,则在I 上必存在可导函数..Fx使得 F . . . . xfx . . ,也就是说:连续函数一定存在原(可导必)⑶不定积分的概念(★)在定义区间I 上,函数上,函数f .x. 的带有任意常数项C的原函数称为 f .x. 在定义区间I 上的不定积分,即表示为:....fxdxFxC...(.称为积分号, f .x. 称为被积函数,..fxdx称为积分表达式,x则称为积分变量)○基本积分表(★)○不定积分的线性性质(分项积公式)(★)........1212kfxkgxdxkfxdxkgxdx..........第二节换元积分法换元积分法换元积分法换元积分法○第一类换元法(凑微分)((凑微分)((凑微分)((凑微分)(★)(dy . f ..x.. dx 的逆向应用)........fxxdxfxdx......................高等数学期末复习资料第7 页(共9 页)【题型示例】求221dxax..【求解示例】222211111arctan11xxdxdxdCaxaaaaxxaa............................解:【题型示例】求121dxx..【求解示例】....111121************dxdxdxxxxxC.............解:○第二类换元法(去根式)(★)(dy . f ..x.. dx的正向应用)⑴对于一次根式(0,abR..):axb.:令taxb..,于是2tbxa..,则原式可化为t⑵对于根号下平方和的形式(0a.):22ax.:令tanxat.(22t.....),于是arctanxta.,则原式可化为secat;⑶对于根号下平方差的形式( a . 0 ):a.22ax.:令sinxat.(2 2t. .. ..),于是arcsinxta.,则原式可化为cosat;b.22xa.:令secxat.(02t...),于是arccosatx.,则原式可化为tanat;【题型示例】求12 1dxx . . (一次根式)【求解示例】2211122112121txxtdxtdtdxtdtdttCxCtx.....................解:【题型示例】求22axdx..(三角换元)【求解示例】....2sin()222222arcsincos22cos1cos221sin2sincos222xattxtadxataaxdxatdttdtaattCtttC.................... .............解:第三节分部积法分部积法分部积法分部积法○分部积法(★)⑴设函数..ufx.,..vgx.具有连续导数,则其具有连续导数,则其具有连续导数,则其具有连续导数,则其具有连续导数,则其分部积公式可表示为:udvuvvdu....⑵分部积法函数排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”○运用分部积法计算不定积分的基本步骤:⑴遵照分部积法函数排序次对被;⑵就近凑微分:(⑵就近凑微分:(⑵就近凑微分:(⑵就近凑微分:(⑵就近凑微分:(vdxdv...)⑶使用分部积公式:udvuvvdu . . ..⑷展开尾项vduvudx.....,判断a.若vudx...是容易求解的不定积分,则直接计,则直接计,则直接计算出答案(容易表示使用基本积分、换元法算出答案(容易表示使用基本积分、换元法与有理函数积分可以轻易求解出结果);与有理函数积分可以轻易求解出结果);b.若v udx . . . 依旧是相当复杂,无法通过a中方法求解的不定积分,则重复⑵、⑶,直至⑵、⑶,直至⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2xexdx..【求解示例】....222222222222222xxxxxxxxxxxxxxxexdxxedxxdexeedxxexedxxexdexexeedxxexeeC................ .........解:【题型示例】求sinxexdx..【求解示例】........sincoscoscoscoscoscossincossinsincossinsinxxxxxxxxxxxxxxexdxedxexxdeexexdxexedxexe xxdeexexexdx...........................解:..sincossinsinxxxxexdxexexxde.......即:∴..1sinsincos2xxexdxexxC.....第四节有理函数的不定积分有理函数的不定积分有理函数的不定积分有理函数的不定积分有理函数的不定积分有理函数的不定积分○有理函数(★)设:........101101mmmnnnPxpxaxaxaQxqxbxbxb.............对于有理函数....PxQx,当..Px的次数小于..Qx的次数时,有理函次数时,有理函次数时,有理函次数时,有理函. .. .P xQ x是真分式;当是真分式;当是真分式;当是真分式;当P.x. 的次数高等数学期末复习资料第8 页(共9 页)大于. . Q x 的次数时,有理函. .. .P xQ x是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数将有理函数将有理函数将有理函数. .. .P xQ x的分母Q.x. 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示为一次因式..kxa.;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为二次质因式..2lxpxq..,(240pq..);即:......12QxQxQx..一般地:nmxnmxm.........,则参数nam..22bcaxbxcaxxaa...........则参数,bcpqaa..⑵则设有理函数. .. .P xQ x的分拆和式为:............122klPxPxPxQxxaxpxq.....其中........1122...kkkPxAAAxaxaxaxa................2112222222...llllPxMxNMxNxpxqxpxqxpxqMxNxpxq...............参数121212,,...,,,,...,lklMMMAAANNN.........由待定系数法(比较)求出⑶得到分拆式后项积即可求解【题型示例】求21xdxx..(构造法)【求解示例】......221111111111ln112xxxxdxdxxdxxxxxdxdxdxxxxCx................................第五节积分表的使用积分表的使用积分表的使用积分表的使用积分表的使用(不作要求)(不作要求)(不作要求)(不作要求)第五章定积分极其应用定积分极其应用定积分极其应用定积分极其应用定积分极其应用第一节定积分的概念与性质定积分的概念与性质定积分的概念与性质定积分的概念与性质定积分的概念与性质定积分的概念与性质○定积分的义(★)....01limnbiiaifxdxfxI.........( f .x. 称为被积函数,f . . xdx称为被积表达式,x则称为积分变量,a称为积分下限,b称为积分上限,..,ab称为积分区间)○定积分的性质(★)⑴....bbaafxdxfudu...⑵..0aafxdx..⑶....bbaakfxdxkfxdx.......⑷(线性质)........1212bbbaaakfxkgxdxkfxdxkgxdx..........⑸(积分区间的可加性)......bcbaacfxdxfxdxfxdx.....⑹若函数..fx在积分区间.a,b. 上满足..0fx.,则..0bafxdx..;(推论一)若函数 f .x. 、函数、函数..gx在积分区间在积分区间在积分区间.a,b. 上满足....fxgx.,则....bbaafxdxgxdx...;(推论二)....bbaafxdxfxdx...○积分中值定理(不作要求)第二节微积分基本公式微积分基本公式微积分基本公式微积分基本公式微积分基本公式○牛顿-莱布尼兹公式(★)(定理三)若果函数..Fx是连续函数..fx在区间..,ab上的一个原函数,则......bafxdxFbFa...○变限积分的导数公式(★)(上导―下)..............xxdftdtfxxfxxdx...................【题型示例】求21cos20limtxxedtx...【求解示例】..221100coscos2002limlim解:ttxxxLxdedtedtdxxx.........高等数学期末复习资料第9 页(共9 页)........2222221coscos000cos00coscos0cos010sinsinlimlim22sinlim2cossin2sincoslim21limsincos2 sincos21122xxxxxLxxxxxxeexxexxdxedxxxexexxexxxee.......................................第三节定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部○定积分的换元法(★)⑴(第一换元法)........bbaafxxdxfxdx......................【题型示例】求20121dxx..【求解示例】....222000111121ln212122121ln5ln5ln122解:dxdxxxx...............⑵(第二换元法)设函数....,fxCab.,函数..xt..满足:a.,...,使得....,ab......;b.在区间.在区间.在区间..,..或..,..上,....,ftt.......连续则:......bafxdxfttdt............【题型示例】求40221xdxx...【求解示例】..221210,43220,1014,332332311132222113111332223522933解:ttxxxtxttxdxdxtxttdttdttxt........................................⑶(分部积法)........................bbaabbbaaauxvxdxuxvxvxuxdxuxdvxuxvxvxdux..............○偶倍奇零(★)设....,fxCaa..,则有以下结论成立:⑴若....fxfx..,则....02aaafxdxfxdx....⑵若....fxfx...,则..0aafxdx...第四节定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用(不作要求)第五节定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用(不作要求)第六节反常积分(不作要求)(不作要求)(不作要求)(不作要求)如:不定积分公式如:不定积分公式如:不定积分公式如:不定积分公式如:不定积分公式21arctan1dxxCx....的证明。
关于高等数学复习资料归纳大全Last revised by LE LE in 2021《高等数学复习》教程第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-xx x x x x x x (等价小量与洛必达) 2.已知2030)(6lim 0)(6sin lim xx f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim)(6sin lim x xy x f x x x xf x x x ++=+>->- 362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达) 3.121)12(lim ->-+x xx x x (重要极限) 4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求 解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a x t b a t 2/300)()ln(23)ln ln (3lim ln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>-解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan lim ln lim ->->-=∴-=-=e t x x t x x (变量替换) 6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 20-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim22=--->-⎰x xt x edtex (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导)会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理会用定理证明相关问题3.应用 会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导1.⎩⎨⎧=+-==52arctan )(2t e ty y tx x y y 由决定,求dx dy 2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy +==2)(由决定,则dx dy x )12(ln |0-== B.曲线切法线问题 4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。
解:1|'),,0(|),(,sin cos 2/2/2/-==⎪⎩⎪⎨⎧====πθππθθθθθy e y x e y e x (x)为周期为5的连续函数,它在x=1可导,在x=0的某邻域内满足f(1+sinx)-3f(1-sinx)=8x+o(x)。
求f(x)在(6,f(6))处的切线方程。
解:需求)1('),1()6('),6(f f f f 或,等式取x->0的极限有:f(1)=0C.导数应用问题 6.已知x e x f x x xf x x f y --=+=1)]('[2)('')(2满足对一切,)0(0)('00≠=x x f 若,求),(00y x 点的性质。
解:令⎩⎨⎧<>>>===-0,00,0)(''00010000x x x e e x f x x x x 代入,,故为极小值点。
7.23)1(-=x x y ,求单调区间与极值、凹凸区间与拐点、渐进线。
解:定义域),1()1,(+∞-∞∈ x8.求函数x e x y arctan 2/)1(+-=π的单调性与极值、渐进线。
解:101'arctan 2/22-==⇒++=+x x e x x x y x与驻点π,2)2(-=-=x y x e y 与渐:π D.幂级数展开问题 9.⎰=-x x dt t x dx d 022sin )sin(或:20202sin sin )(sin x du u dx d du u dx d u t x x x ==-⇒=-⎰⎰ 10.求)0(0)1ln()()(2n f n x x x x f 阶导数处的在=+=解:)(2)1(32()1ln(2213222---+--+⋅⋅⋅-+-=+n n n x o n x x x x x x x =)(2)1(321543n nn x o n x x x x +--+⋅⋅⋅-+--2!)1()0(1)(--=∴-n n f n n E.不等式的证明 11.设)1,0(∈x ,211)1ln(112ln 1)1(ln )122<-+<-<++x x x x x ,求证(证:1)令0)0(,)1(ln )1()(22=-++=g x x x x g 2)令单调下降,得证。
,0)('),1,0(,1)1ln(1)(<∈-+=x h x xx x hF.中值定理问题 12.设函数]11[)(,在-x f 具有三阶连续导数,且1)1(,0)1(==-f f ,0)0('=f ,求证:在(-1,1)上存在一点3)('''=ξξf ,使证:32)('''!31)0(''!21)0(')0()(x f x f x f f x f η+++=其中]1,1[),,0(-∈∈x x η将x=1,x=-1代入有)('''61)0(''21)0()1(1)('''61)0(''21)0()1(021ηηf f f f f f f f ++==-+=-=两式相减:6)(''')('''21=+ηηf f13.2e b a e <<<,求证:)(4ln ln 222a b ea b ->-证:)(')()(:ξf ab a f b f Lagrange =--令ξξln 2ln ln ,ln )(222=--=a b a b x x f 令2222ln )()(0ln 1)(',ln )(ee t t t t t t >∴>∴<-==ξξϕξϕϕϕ )(4ln ln 222a b ea b ->- (关键:构造函数)三、补充习题(作业)1.23)0('',11ln)(2-=+-=y xx x f 求 2.曲线012)1,0(2cos 2sin =-+⎪⎩⎪⎨⎧==x y te y te x tt处切线为在 3.ex y x x e x y 1)0)(1ln(+=>+=的渐进线方程为4.证明x>0时22)1(ln )1(-≥-x x x证:令3222)1(2)('''),(''),(',)1(ln )1()(x x x g x g x g x x x x g -=---=第三讲 不定积分与定积分一、理论要求1.不定积分 掌握不定积分的概念、性质(线性、与微分的关系)会求不定积分(基本公式、线性、凑微分、换元技巧、分部) 2.定积分理解定积分的概念与性质理解变上限定积分是其上限的函数及其导数求法 会求定积分、广义积分会用定积分求几何问题(长、面、体)会用定积分求物理问题(功、引力、压力)及函数平均值 二、题型与解法 A.积分计算1.⎰⎰+-=--=-C x x dx x x dx 22arcsin)2(4)4(22.⎰⎰⎰+=+=+C x e xdx e xdx e dx x e x x x x tan tan 2sec )1(tan 2222223.设xx x f )1ln()(ln +=,求⎰dx x f )( 解:⎰⎰+=dx e e dx x f xx )1ln()( 4.⎰⎰∞∞>-∞+=+-+-=112122ln 214)11(lim |arctan 1arctan b b dx x x x x x dx xx π B.积分性质5.)(x f 连续,⎰=10)()(dt xt f x ϕ,且A xx f x =>-)(lim 0,求)(x ϕ并讨论)('x ϕ在0=x 的连续性。
解:xdy y f x xt y f x⎰=⇒===0)()(,0)0()0(ϕϕ6.⎰⎰---=-x x x t d t x fd dt t x tf d 02222022)()()( C.积分的应用1.⎰+---=C x x x x dx x xcot 2sin ln cot sin sin ln 2 2.⎰+-+dx x x x 136523.⎰dx xxarcsin第四讲 向量代数、多元函数微分与空间解析几何一、理论要求 1.向量代数理解向量的概念(单位向量、方向余弦、模) 了解两个向量平行、垂直的条件 向量计算的几何意义与坐标表示2.多元函数微分 理解二元函数的几何意义、连续、极限概念,闭域性质理解偏导数、全微分概念 能熟练求偏导数、全微分熟练掌握复合函数与隐函数求导法3.多元微分应用 理解多元函数极值的求法,会用Lagrange 乘数法求极值4.空间解析几何 掌握曲线的切线与法平面、曲面的切平面与法线的求法会求平面、直线方程与点线距离、点面距离二、题型与解法A.求偏导、全微分 1.)(x f 有二阶连续偏导,)sin (y e f z x =满足z e z z x yy xx 2''''=+,求)(x f解:u u e c e c u f f f -+=⇒=-21)(0''2.yx zy x y xy f x z ∂∂∂++=2)()(1,求ϕ3.决定由0),,(),()(),(=+===z y x F y x xf z x z z x y y ,求dx dz /B.空间几何问题 4.求a z y x =++上任意点的切平面与三个坐标轴的截距之和。