(1)设1.80.6 f (0.6), 0.81.6 g(1.,6则). 函数f(x)在 R上是增函数, 函数g(x)在 R上是减函数, 1.80.6 f (0.6), 0.81.6 g(1.6). 由指数函数的性质可知 f(0.6)>f(0)=1,而 g(1.6)<g(0)=1,
所以 1.80.6>0.81.6
y
1 3
x
的图象
(如图3-4).
探究新知
从图象可以看出:
函数
y
ቤተ መጻሕፍቲ ባይዱ
1 3
x
的图象位于x轴的上方;从最
左侧无穷远处逐渐下降过点(0,1),继续下降,
越来越贴近x轴.
由此得到函数
函数
y
1 3
x
y
在
1 3
x
的性质:
R上是减函数,且值域是(0,+∞).
探究新知
yy的图1312在在象的xx的同y上轴性图一方左质象平;在侧的上面y,图函轴方直象数右.角(侧如y坐,图标 13函3系-6x数的中),可图画y以象出看在函13 出函数x的:数y.图y象12在12与x函x 数
(1)
1 5
1.8
, 15
2.8
;
(2)
1 3
0.3
, 13
1.3
.
解析
(1)因为函数
y
1 5
x
在R上是减函数,且-1.8>,所以
(2)因为函数
y
1 3
x
在R上是减函数,且一0.3<,所以
1 5
1.8
<
1 5
2.8
;
1 3
0.3
>
1 3
1.3