科氏质量流量计介绍
- 格式:ppt
- 大小:1.89 MB
- 文档页数:27
科氏质量流量计介绍科氏质量流量计是一种用于测量流体质量流量的仪器,它是基于科氏效应原理工作的。
科氏效应是指当流体通过特定的装置时,受到一个横向磁场的作用,会产生一个横向的电势差。
科氏质量流量计利用这个原理来测量流体的质量流量。
测量管是科氏质量流量计的核心部件,它是一个闭合的管道,内部安装有一对电极,用于测量流体通过时产生的电势差。
测量管通常是由不导电的材料制成,以防止电流的漏电。
磁场产生器用于在测量管周围产生一个横向磁场,一般使用永磁体或者电磁线圈来产生磁场。
磁场的强弱会对测量精度产生一定的影响,因此需要根据具体的应用需求选择合适的磁场强度。
电极是用于测量流体通过时产生的电势差的装置。
通常情况下,电极安装在测量管的两侧,并且与测量管内的流体不直接接触。
电极的材料需要具备良好的导电性和耐腐蚀性能,以确保测量的准确性和稳定性。
信号处理器用于接收和处理电极测量到的电势差信号,并将其转换为质量流量的数值。
信号处理器通常具备高精度的数据处理能力和数据显示功能,可以实时监测和记录质量流量的变化。
科氏质量流量计的工作原理是基于科氏效应的。
当流体通过测量管时,受到磁场的作用,会产生一个横向的电势差。
这个电势差与流体的质量流量成正比,通过测量电极可以测量到这个电势差的数值。
根据科氏效应的原理,可以通过测量电极的信号来计算流体的质量流量。
科氏质量流量计具有许多优点,使其成为一种广泛应用的流量测量仪器。
首先,科氏质量流量计可以直接测量流体的质量流量,而不受流体密度和温度的影响。
其次,科氏质量流量计具有高精度和稳定性,可以在各种工况下提供准确的测量结果。
此外,科氏质量流量计具有良好的可靠性和耐用性,可以在恶劣的工作环境下长时间使用。
科氏质量流量计广泛应用于化工、石油、能源、环保等行业中,用于测量各种液体和气体的质量流量。
例如,在石油工业中,科氏质量流量计可以用于测量原油、天然气等的质量流量,以提高生产过程的控制和优化。
科氏力质量流量计测量原理
科氏力质量流量计也叫弹性体科氏力质量流量计,是一种普通用于测量工业流体的流量仪表。
它可以测量几乎所有类型的流体,包括粘性流体和高温高压流体。
它的原理是利用流量分散在金属弹性体上,引起位移,转化为传感器反馈的电信号,然后通过计算机出来流量值。
测量原理是:利用一块科氏体通过流体流量在表面产生的剪切力,通过科氏体的抗剪力的变化引起的变形,以及位移传感器的变化,从而来测量流量大小。
流量的变化不会影响科氏体的变形量,只要输入压力变化,就能测量出流量的大小。
科氏力质量流量计的优点是精度高,受环境温度变化的影响小,实际应用中通常温度范围在-40到+200度之间。
另外,它不但可以测量粘性流体,而且具有良好的耐磨性能,不容易出现故障,使用周期长。
科氏质量流量计介绍科氏质量流量计是一种用于精确测量流体质量流量的仪器。
相比于传统的体积流量计,科氏质量流量计通过测量流体的质量变化来计算流体的质量流量,具有更高的准确性和稳定性。
科氏质量流量计广泛应用于工业生产过程中,特别是对流体质量流量进行控制和计量的场合。
科氏质量流量计的工作原理是基于科氏效应。
当流体通过科氏质量流量计的传感器装置时,会在装置中产生震荡。
这种震荡会改变装置上两个振动管的共振频率。
根据科氏质量流量计的设计和构造,探测系统可以观察到这种频率变化,并将其转化为流体的质量流量值。
科氏质量流量计的结构通常由两个装置组成:传感器装置和转换装置。
传感器装置由两个平行排列的U型震荡管组成。
流体通过这两个管道之间的空间,使得震荡管在频率上产生变化。
传感器装置可以灵活地安装在各种类型的管道上,便于测量不同流体的质量流量。
转换装置通常由放大器、滤波器和计算器等元件组成。
它主要负责将传感器装置的输出信号进行处理,并将其转换为质量流量值显示或输出给控制系统。
科氏质量流量计的优点之一是其高度准确的测量性能。
传统的体积流量计通常受到温度、压力和流体变化等因素的影响,从而导致测量结果的不准确。
科氏质量流量计则通过直接测量流体的质量变化,可以准确地测量流体的质量流量,无论流体的密度和粘度如何改变。
此外,科氏质量流量计还具有快速响应的特点。
由于其结构简单、体积小,它可以迅速适应流体流量的变化,实现实时的质量流量测量和控制。
此外,科氏质量流量计还具有良好的可靠性和耐久性。
传感器装置采用高强度的材料制造,可以耐受高流速和高压力的环境。
其内部没有移动部件,因此不易磨损或损坏。
这使得科氏质量流量计具有长寿命和高可靠性的特点,可以在恶劣的工作条件下稳定运行。
总的来说,科氏质量流量计是一种可以准确、快速地测量流体质量流量的仪器。
它具有高度准确的测量性能、快速响应、广泛的适用性和良好的可靠性等特点。
随着工业自动化水平的提高,科氏质量流量计在工业生产流程中的应用也越来越广泛。
科氏力质量流量计的原理及应用科氏力质量流量计简介科氏力质量流量计是一款高精度、高稳定性的流量计,它采用科氏效应,通过测量流体的动能和热能来计算流体质量流量,因此不需要校正密度等参数,适用于各种流体介质的计量。
科氏力质量流量计目前被广泛应用于石油、化工、电力、冶金、轻工、制药、食品、航空航天等行业。
科氏力质量流量计的原理科氏力质量流量计的核心原理是科氏效应,也称为焦耳-汤姆孙效应,它是一种在流体中产生的涡旋运动,将流体的动能和热能转换成压力。
科氏力质量流量计通过在流体管道内安装一个成对的科氏螺旋体,当流体通过时,科氏螺旋体会将流体分割成成对的螺旋流,由于科氏效应的作用,螺旋流会在周向生成压力差。
与此同时,流体的动能和热能被转换成压力,同时在叶轮上形成了一个旋转力矩。
流体质量流量可以通过爆炸式减压阀展开的压力波信号预测,在管道上安装的传感器可以测量叶轮的旋转速度,由此可以计算出流体的质量流量。
科氏力质量流量计的优点1.高精度性。
科氏力质量流量计可以高精度地测量流体的质量流量,其在低流速和高流速时都具有高稳定性和精度。
2.使用广泛。
科氏力质量流量计可以用于各种流体介质的计量,无需校正密度等参数,适用于各种流场形式。
3.自清洁性能。
科氏力质量流量计采用特殊的设计,使其具有自清洁性能,能够避免积存。
4.处理能力强。
科氏力质量流量计能够检测多种流体介质、高温、高压、酸性和碱性等环境下的流量,具有很好的适应性和处理能力。
5.维护简单。
科氏力质量流量计无动态零部件,无需要维护的对象,这减少了维护成本和时间。
科氏力质量流量计的应用1.石油和化工工业。
科氏力质量流量计对于石油和化工工业中的油、气等介质流量的测量非常有优势,能够大幅提高生产效率和产品质量。
2.电力、冶金、轻工、制药、食品行业。
科氏力质量流量计也适用于电力、冶金、轻工、制药、食品等行业应用,能够适应流量测量的多种应用场景。
3.研究领域。
科氏力质量流量计也被广泛应用于研究领域,例如地质固体流、气动力学、空气动力学等等。
DCWTechnology Study技术研究17数字通信世界2024.02科氏质量流量计是一种利用科里奥利效应原理直接测量管道流体质量流量的仪器,由传感器与变送器两部分组成。
其中,传感器通过法兰连接到管道,用于检测流体介质信号;变送器主要用于驱动传感器振动,对传感器输出的信号进行转换和处理,并将检测出的质量流量信号传到上位机控制系统中。
目前,科氏质量流量计被广泛应用于石油化工生产装置中,可以满足对流体质量流量的测量要求。
随着社会发展和人们对流量测量精度需求的提高,对科氏质量流量计数字信号处理方法也提出了更高的要求。
对于科氏质量流量计,相位差与质量流量存在比例关系。
通过测量相位差的大小,可以计算出流体的质量流量。
当前科氏质量流量计的信号处理方法主要针对相位差的估计方法,常用频谱分析法[1]、相关法[2]和时域法[3]对相位差进行分析。
采用合适的方法可以减小对质量流量的测量误差。
本文将对DFT 估计法、相关法和希尔伯特变换法的原理及发展过程进行介绍。
1 DFT相位差估计法DFT 相位差估计法是一种传统且高效的数字信号处理方法,能满足对相位差计算的基本要求。
该方法首先对两路信号进行离散傅里叶变换,得到在频域上的幅度和相位信息,然后利用频谱特性计算相位差。
DFT 算法能较好地消除谐波、噪音等对系统性能的干扰,能在较低的信噪比情况下对系统进行频率、相位的检测。
DFT 相位差估计法在对非整周期信号进行计算时会产生频谱泄漏现象,导致相位差估计结果的准确性受到影响。
另外,如果信号存在噪声或者频率偏移较大,会在频域上出现额外的能量分布,使信号频率和相位计算结果包含较大误差。
鉴于DFT 在计算非整周期信号时会产生频谱泄露现象,并在相位计算中引起严重误差的问题,美国和国内的一些研究人员建议使用频率扫描[4]的方法来实现DFT 的整周期截断。
但由于该算法对硬件资源的要求科氏质量流量计信号处理方法探究徐 媛,代显智(西华师范大学电子信息工程学院,四川 南充 637009)摘要:科氏质量流量计因能实现高精度的直接质量流量测量,成为目前国内外发展最为迅速的流量计之一。
科氏力质量流量计测量管形状
科氏力质量流量计是一种常用的流量测量仪表,它利用科氏力原理来测量流体的质量流量。
在科氏力质量流量计中,测量管的形状对于测量精度和稳定性起着至关重要的作用。
测量管的形状对流体的流动特性有着直接的影响。
一般来说,科氏力质量流量计的测量管是呈现一定的弯曲形状,这种形状有助于使流体在管内形成旋涡,从而增加科氏力的作用范围,提高测量的精度和稳定性。
此外,测量管的形状还需考虑流体的物理性质和流动状态。
例如,对于高粘度的流体,测量管的形状需要设计成能够减小阻力、降低流体流动的能量损失,从而提高测量的准确性。
另外,测量管的形状还需考虑流体的流速范围。
不同的流速范围需要不同的测量管形状来适应,以确保在不同流速下都能够保持测量的准确性和稳定性。
总之,科氏力质量流量计的测量管形状对于测量精度和稳定性
有着重要的影响。
合理的测量管形状设计能够有效地提高测量的准确性和稳定性,从而更好地满足工业生产对流量测量的需求。
科里奥利质量流量计科里奥利质量流量计(Coriolis Mass Flowmeter)简称科氏力流量计,是利用流体在振动管中流动时,将产生与质量流量成正比的科里奥利力的原理测量的。
由于它实现了真正意义上的高精度的直接流量测量,具有抗磨损、抗腐蚀、可测量多种介质及多个参数等诸多优点,现已在石油化工、制药、食品及其他工业过程中广泛应用。
科氏力质量流量计计量准确、稳定、可靠,在需要对流体进行精确计量或控制的场合选用较多,但其售价较高,在不需要精确计量及控制的场合一般选用其他质量流量计代替。
科氏力质量流量计对于液体和气体都可选用,但是在现场应用中,氢气流量的精确测量一般都选用热式质量流量计。
在我国,艾默生高准公司的科里奥利质量流量计已在兰州石化、安庆石化、新疆塔河油田、中国海洋石油等中低压天然气中的流量计量得到良好的应用。
2007年末,高准公司的科里奥利质量流量计,顺利通过了中国最权威的原油大流量计量站成都天然气流量分站(CVB)的天然气实流测试,测量精度达到0.5%,并具有良好的重复性。
1 科里奥利质量流量计的工作原理科氏力流量计由传感器和变送器两大部分组成。
其中传感器用于流量信号的检测,主要由分流器、测量管、驱动、检测线圈和驱动、检测磁钢构成,如图1所示。
变送器用于传感器的驱动和流量检测信号的转换、运算及流量显示、信号输出,变送器主要有电源、驱动、检测、显示等部分电路组成。
所有流量计都必须人为地建立一个旋转体系,以双“U”型测量管传感器为例,用电磁驱动的方法使“U”型测量管的回弯部分作周期性的微小振动。
这相当于使“U”型管绕一个固定轴(OO 轴)作周期性时上时下的旋转,其旋转方向周期性的变化,像钟摆一样运动。
“U”型管的出入口段被固定,这样就建立一个以“U”形管出入口段为固定轴的旋转体系。
传感器力学分析如图2所示。
当测量管向上振动但无流体流过时,运用右手螺旋法则,四指指向旋转方向,则大拇指指向的方向为外加驱动的圆频率ω。
使用说明书DMF-LK系列科氏力质量流量计龙口中隆计控设备有限公司目录第一章概述 (3)1.1工作原理: (4)1.2流量计的技术参数 (6)1.3流量计结构与外形尺寸 (9)1.3.1 变送器外形及机柜开孔尺寸图: (9)1.3.2传感器的外形尺寸图 (10)1.3.3技术性能指标 (13)1.3.4质量流量计的型号与选型 (15)第二章质量流量计的安装与调试 (15)2.1质量流量传感器的安装 (15)2.2传感器与变送器的接线 (18)2.3变送器的接线 (19)2.4仪表的通电和检查 (20)2.5 常见故障的维护 (20)第三章变送器的设置 (21)3.1功能设置 (21)3.1.1用户菜单密码 (21)3.1.2系统菜单密码 (21)3.1.3测量单位的选择 (21)3.1.4小数点位数的选择 (21)3.1.5电流输出的设置 (22)3.1.6频率输出的设置22 3.2仪表面板 (22)3.3 操作界面 (23)3.4 零点校准 (28)第四章防爆 (29)4.1防爆系统的原理 (29)4.2 防爆性能 (29)4.3 防爆性能试验 (29)附录:RS485通讯协议 (30)第一章概述DMF-LK系列质量流量计是根据科里奥利(Coriolis Force)原理,实现流体质量流量的直接精密测量,而无需任何压力、温度、粘度、密度等换算或修正。
其结构是由传感器单元和变送器单元两部分组成。
仪表按本质安全防爆型的国家标准设计与制造,防爆标志为Exdib[ib]IIBT5科里奥利质量流量计能够直接测量流体的质量,具有高精度(0.1%~0.2%),应用范围广(可测量各种非牛顿流体、各种浆液、悬浮液、高粘度流体等),安装要求低(对仪表的前后直管段要求不高),运行可靠、稳定,维修率低等特点。
本公司保留对该说明书内容修改的权利。
用户使用时以随机发货的说明书为准。
[键入文字]1.1工作原理 :当一个位于以P 点为旋转中心做旋转运动的管子内的质点做朝向或远离旋转中心的运动时,将产生一贯性力,原理如图1:图1图中质量为δm 的质点以匀速v 围绕一个固定点P 并以角速度ω旋转的管道内移动时,这个质点将获得两个加速度分量:1. 法向加速度αr (向心加速度),其量值值等于ω2r ,方向朝向P 点; 2. 切向加速度αt (科里奥利加速度),其量值等于2ωv ,方向与αr 垂直。
科氏质量流量计基本原理科氏质量流量计(Coriolis mass flowmeter)是一种通过测量流体的质量流量来确定流体体积流量的仪器。
它利用了科氏力的作用原理,能够实时测量出流体的质量流量并提供高精度的测量结果。
科氏质量流量计基本原理如下:1. 流体介质进入流量计流体介质通过流量计的进口进入流量计,流体流经振动管。
2. 振动管振动流体进入振动管后,振动管开始振动。
振动管通常是由一对共面的弯曲弹性管组成的。
这两个弯曲弹性管通过支撑结构固定在流量计中,使得它们可以在一个特定的频率和相位差下振动。
振动过程中,二者之间形成了相位差,且相对位移存在差异。
3. 科氏力产生当流过振动管的流体被加速时,流体分子会受到作用力,这个作用力被称为科氏力(Coriolis force)。
科氏力是由于流体相对于振动管的加速度产生的,它的大小与流体质量、流速和振动频率有关。
而且科氏力的方向垂直于振动管的平面,且垂直于振动管的振动方向。
4. 作用于振动管上的科氏力科氏力被施加在振动管上,导致了振动管的形变。
其中,入口侧的弯曲弹性管受到的科氏力较大,而出口侧的弯曲弹性管受到的科氏力较小。
这种科氏力对振动管产生了弯曲位移,使得振动管的振动变得非对称。
5. 振动管的振动分析流动情况会导致振动管的各部分产生相位差,根据振动管的振动状态可测得流体的质量流量。
流体介质的质量流量与振动管的振动频率、振动振幅和相位差之间具有一定的关系。
6. 相位差检测流量计通过检测振动管的相位差变化来确定流体介质的质量流量。
常用的检测方法包括光电检测、电容检测和霍尔效应检测等。
这些方法可以实时地监测振动管的振动状态,并将相位差转化为流体的质量流量。
7. 信号处理和输出流量计将相位差信号进行处理,转化为质量流量的测量结果,并输出给用户。
通常情况下,科氏质量流量计还可以提供温度、压力等相关参数的测量结果。
科氏质量流量计的基本原理就是利用了科氏力对振动管产生的影响来实现质量流量的测量。