2电路的基本分析方法4-8共27页
- 格式:ppt
- 大小:480.50 KB
- 文档页数:27
电工技术基础课程标准(共27页) -本页仅作为预览文档封面,使用时请删除本页-《电工技术基础》课程标准编制单位:1、课程性质课程的定位《电工技术》是高职机电一体化专业的一门基础技能课程.衔接前导基础课及后续专业课的桥梁,对培养职业能力起主要支持作用。
又是一门实践性较强的电类应用学科。
它不仅是学科教育,更是素质教育通过本课程的学习,可使学生获得常用电路分析、设计、安装、维护、测量以及故障诊断等基本知识与实践技能。
为学习电子技术、机床电气控制、机电设备维修等后续课程及从事工程技术工作打下一定的基础。
达到维修电工(中级)职业技能资格考证培训要求。
课程的设计理念和思路课程的设计理念从生产实际出发所学为所用够用为度根据职业能力确定教学目标根据工作任务整合教学内容根据工作岗位设计教学情境根据工作流程设计教学过程根据职业标准设计评价标准课程的设计思路以项目式教学模式开展课程教学,提升学生职业能力。
以具体的电路检测与连接为载体。
融合认知、安装、调试和检测等内容,实现教、学、做一体化教学。
突出课程的职业性、实践性和开放性。
以学生为主体,践行“教、学、做”一体的教学原则。
参考行业、企业实践经验进行开发知识、技能、素质三目标的实现贯穿于整个教学过程中。
采取多样化教学方法。
职业面向机电设备维修岗位、机床操作岗位职业拓展产品设计与工艺设计岗位、机电产品营销岗位、生产管理岗位2、工作任务和课程目标工作任务典型工作任务根据《机电一体化专业人才培养方案》和职业岗位典型工作任务分析,确定《电工技术基础》典型工作任务如表1所示。
2.1.2专业能力和知识目标根据表1的典型工作任务,确定本课程专业能力与知识目标如表2所示。
课程目标专业能力目标1.具有分析解决中等复杂程度典型、常用电路问题的能力和基本操作技能。
2具有识读电路图,计算电路基本物理量的能力。
3会应用电路理论解决生产、生活中的实际问题的能力。
4能进行电路分析和计算5用低压电气控制系统线路连接,元器件识别、使用的能力6能熟练使用常见的工具和电子仪器。
如何看懂电路图2--电源电路单元前面介绍了电路图中的元器件的作用和符号。
一张电路图通常有几十乃至几百个元器件,它们的连线纵横交叉,形式变化多端,初学者往往不知道该从什么地方开始,怎样才能读懂它。
其实电子电路本身有很强的规律性,不管多复杂的电路,经过分析可以发现,它是由少数几个单元电路组成的。
好象孩子们玩的积木,虽然只有十来种或二三十种块块,可是在孩子们手中却可以搭成几十乃至几百种平面图形或立体模型。
同样道理,再复杂的电路,经过分析就可发现,它也是由少数几个单元电路组成的。
因此初学者只要先熟悉常用的基本单元电路,再学会分析和分解电路的本领,看懂一般的电路图应该是不难的。
按单元电路的功能可以把它们分成若干类,每一类又有好多种,全部单元电路大概总有几百种。
下面我们选最常用的基本单元电路来介绍。
让我们从电源电路开始。
一、电源电路的功能和组成每个电子设备都有一个供给能量的电源电路。
电源电路有整流电源、逆变电源和变频器三种。
常见的家用电器中多数要用到直流电源。
直流电源的最简单的供电方法是用电池。
但电池有成本高、体积大、需要不时更换(蓄电池则要经常充电)的缺点,因此最经济可靠而又方便的是使用整流电源。
电子电路中的电源一般是低压直流电,所以要想从 220 伏市电变换成直流电,应该先把220 伏交流变成低压交流电,再用整流电路变成脉动的直流电,最后用滤波电路滤除脉动直流电中的交流成分后才能得到直流电。
有的电子设备对电源的质量要求很高,所以有时还需要再增加一个稳压电路。
因此整流电源的组成一般有四大部分,见图 1 。
其中变压电路其实就是一个铁芯变压器,需要介绍的只是后面三种单元电路。
二、整流电路整流电路是利用半导体二极管的单向导电性能把交流电变成单向脉动直流电的电路。
( 1 )半波整流半波整流电路只需一个二极管,见图 2 ( a )。
在交流电正半周时 VD 导通,负半周时 VD 截止,负载 R 上得到的是脉动的直流电( 2 )全波整流全波整流要用两个二极管,而且要求变压器有带中心抽头的两个圈数相同的次级线圈,见图2 ( b )。
电路分析方法电路分析是电子工程中的重要基础课程,它是研究电路中电压、电流和功率等物理量之间的相互关系,通过分析电路的工作原理和特性,为电子设备的设计和应用提供理论支持。
在电路分析中,我们常常会用到各种方法和技巧来解决问题,下面将介绍一些常用的电路分析方法。
首先,我们来介绍一种常用的电路分析方法——基尔霍夫定律。
基尔霍夫定律是电路分析的基础,它包括基尔霍夫电流定律和基尔霍夫电压定律。
基尔霍夫电流定律指出,在电路中,流入任意节点的电流之和等于流出该节点的电流之和。
而基尔霍夫电压定律则指出,在闭合回路中,电压源的代数和等于电阻元件两端的电压之和。
通过应用基尔霍夫定律,我们可以方便地分析复杂的电路,解决电路中的各种问题。
其次,另一种常用的电路分析方法是戴维南定理。
戴维南定理是一种基于等效电路的分析方法,它可以将复杂的电路简化为等效电路,从而更容易地进行分析。
通过戴维南定理,我们可以将电路中的电压源和电流源转化为等效电阻,从而简化电路结构,减少计算难度,提高分析效率。
除了基尔霍夫定律和戴维南定理,还有一种重要的电路分析方法——追踪法。
追踪法是一种通过追踪电流或电压的变化来分析电路的方法,它特别适用于复杂的多级放大电路和反馈电路的分析。
通过追踪法,我们可以清晰地了解电路中各个元件的工作状态,找出电路中的故障和问题,并进行相应的修复和优化。
此外,还有一些其他的电路分析方法,如频域分析、时域分析、瞬态分析等,它们分别适用于不同类型的电路和问题,可以帮助我们更全面地了解电路的特性和行为。
总之,电路分析是电子工程中不可或缺的重要环节,通过掌握各种电路分析方法,我们可以更好地理解电路的工作原理,解决电路中的各种问题,为电子设备的设计和应用提供有力支持。
希望本文介绍的电路分析方法能够对你有所帮助,欢迎大家多多交流,共同进步。