向量解三角形综合练习题(难)
- 格式:docx
- 大小:77.82 KB
- 文档页数:4
【百强校】好题精选之高三数学第一季的形状为( )A .直角三角形B .等边三角形C .等腰三角形或直角三角形D .等腰直角三角形好题2.【2015江西高安中学押题(二)】已知向量),1,2(--=a ),1,(λ=b ,若a 与b 的夹角为钝角,则λ的取值范围是( )好题4.【2015甘肃天水一中信息卷(一)】在ABC ∆中,三内角A ,B ,C 的对边分别为a ,b ,c好题5.【2015广西桂林十八中二模】在ABC 中,120BAC ∙∠=,2,1AB AC ==,D 是边BC 上的点(包括端点),则AD BC ⋅的取值范围是( ).[1,2]A .[0,1]B .[0,2]C .[5,2]D -好题6.【2015浙江宁波效实中学模拟】记O 为坐标原点,已知向量(3,2)OA =,(0,2)OB =-,点C 满足5AC =,则好题7.【2015天津武清区杨村一中阶段性检测】如图,在等腰直角ABO ∆错误!未找到引用源。
中,设1,,====OB OA b OB a OA 错误!未找到引用源。
C 为AB 上靠近点A 的四等分点,过C 错误!未找到引用源。
作AB 的垂线l 错误!未找到引用源。
,设P 为垂线上任一点,p OP = 错误!未找到引用源。
则=-⋅)(a b p 错误!未找到引用源。
( )好题9.【2015甘肃天水一中信息(二)】如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从M 点测得A 点的俯角30NMA ︒∠=,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得】已知向量1(8,)a x =,()1b x =, ,其中2//()(2)a b a b -+ ,则x 的值为________.好题11.【2015福建泉州五中模拟】设向量(12)a =-,,(34)b =,,则向量a 在向量b 方向上的投影好题12.【2015陕西西安高新一中5月模拟】如图,港口A 北偏东30°方向的C 处有一检查站,港口正东方向的B 处有一轮船,距离检查站31海里,该轮船从B 处沿正西方向航行20海里后到达D 处观测站,已知观测站与检查站距离21海里,问此时轮船离港口A 还有多远?【推荐理由】本题体现了应用所学的数学知识,解决实际问题,体现了解三角形的知识点,能够学以致用.好题13.【2015江西高安中学模拟押题(一)】已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,(Ⅰ)求B ∠的值;:。
【技巧总结】(1)在多三角形中,隐含条件是邻补角∠ADC 与∠ADB,邻补角的正弦值相等,余弦值互为相反数;(2)三角形外找关系,三角形内用定理。
【巩固练习】1、如图,在△ABC 中,D 是边AC上的点,且,2AB AD AB ==,2BC BD =,则sin C 的值为()A.33B.36C.63D.662、已知ABC ∆,4AB AC ==,2BC =.点D 为AB 延长线上一点,2BD =,连结CD ,则BDC ∆的面积是___________,cos BDC ∠=__________.由22sin cos 1ABC ABC ∠+∠=因为BD BC =,所以D BCD ∠=∠,所以2ABC D BCD D ∠=∠+∠=∠,3、如图ABC ∆中,已知点D 在BC 边上,AD ⊥AC,22sin 3BAC ∠=,AB =,3AD =,则BD 的长为_______________.4、在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则B D =____,cos ABD ∠=________.135CBD C ∠=- ,5、若锐角的面积为,,,则BC 边上的中线AD 的长是______.【答案】【解析】解:锐角的面积为,,,则:,解得:,所以:,所以:,解得:.在中,利用余弦定理:,在中,利用余弦定理:得:,解得:故答案为:6、在非直角ABC ∆中,a ,b ,c 分别是A ,B ,C 的对边.已知4a =,5AB AC ⋅=,求:(1)tan tan tan tan A AB C+的值;(2)BC 边上的中线AD 的长.(2)由余弦定理2222cos a b c bc A =+-,即:221610b c =+-,∴2226b c +=.得3x =,即:3AD =.7、在①34asinC ccosA =;②22B Cbsin +=这两个条件中任选-一个,补充在下面问题中,然后解答补充完整的题.在ABC 中,角,,A B C 的对边分别为,,a b c ,已知,a =.(1)求sinA ;(2)如图,M 为边AC 上一点,,2MC MB ABM π=∠=,求ABC 的面积【答案】(1)见解析(2)见解析【解析】解:若选择条件①,则答案为:(1)在ABC 中,由正弦定理得34sinAsinC sinCcosA =,因为sin 0C≠,所以2234,916sinA cosA sin A cos A ==,(2)同选择①8.在①ABC ∆面积2ABC S ∆=,②6ADC π∠=这两个条件中任选一个,补充在下面问题中,求AC .如图,在平面四边形ABCD 中,34ABC π∠=,BAC DAC ∠=∠,______,24CD AB ==,求AC .【答案】见解析【解析】选择①:由余弦定理可得2222cos AC AB BC AB BC ABC =+-⋅⋅∠选择②9、已知函数()()2cos sin 10f xx x x ωωωω=-+>图象的相邻两条对称轴之间的距离为2π.(1)求ω的值及函数()f x 的单调递减区间;(2)如图,在锐角三角形ABC 中有()1f B =,若在线段BC 上存在一点D 使得2AD =,且AC =,1CD =-,求三角形ABC的面积.【解析】10、在平面四边形ABCD 中,90ADC ∠= ,45A ∠= ,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =,求BC .在BCD △中,由余弦定理得2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠所以5BC=.11、∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍.(Ⅰ)求sin sin BC;(Ⅱ)若AD =1,DC =22,求BD 和AC 的长.由余弦定理得2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠.222222326AB AC AD BD DC +=++=.由(Ⅰ)知2AB AC =,所以1AC =.。
专题集训·作业(九)一、选择题1.平行六面体的各棱长均为4,在其顶点P 所在的三条棱上分别取P A =1,PB =2,PC =3,则棱锥P -ABC 的体积是平行六面体的体积的( )A.164 B.364 C.132 D.332答案 A解析 由已知可将平行六面体模型化为正方体,则有V 正方体=64,V P -ABC =13×12×1×2×3=1,故选A.2.(2014·合肥一中模拟)e ,π分别是自然对数的底数和圆周率,则下列不等式不成立的是( )A .log πe +(log e π)2>2B .log πe +log e π>1C .e e -e>e π-πD .(e +π)3<4(e 3+π3)答案 C解析 设f (x )=e x -x (x >0),则f ′(x )=e x -1,当x >0时,f ′(x )>0,即f (x )在(0,+∞)上是增函数,所以f (π)>f (e),即e π-π>e e -e.3.(2014·鄂西示范性学校联考)命题“∀x ∈R ,x 2-3x +2≥0”的否定是( )A .∃x 0∈R ,x 20-3x 0+2<0B .∃x 0∈R ,x 20-3x 0+2>0C .∃x 0∈R ,x 20-3x 0+2≤0D .∃x 0∈R ,x 20-3x 0+2≥0 答案 A解析 求全称命题的否定时,需要先把全称量词改写为存在量词,再对结论进行否定,所以原命题的否定为“∃x 0∈R ,x 20-3x 0+2<0”.4.(2014·襄阳五校联考)已知双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),离心率为2,F 1,F 2分别是它的左、右焦点,A 是它的右顶点,过F 1作一条斜率为k (k ≠0)的直线与双曲线交于两个点M ,N ,则∠MAN =( )A .30°B .45°C .60°D .90°答案 D解析 由离心率为2,可得c =2a ,b 2=3a 2,则双曲线方程为3x 2-y 2=3a 2.设M (x 1,y 1),N (x 2,y 2),因直线MN 的斜率不为零,则可设其方程为x =my -2a ,与双曲线方程联立得(3m 2-1)y 2-12amy +9a 2=0,从而有3m 2-1≠0,y 1+y 2=12am 3m 2-1,且y 1y 2=9a 23m 2-1.则AM →·AN→=(x 1-a )(x 2-a )+y 1y 2=(my 1-3a )(my 2-3a )+y 1y 2=(m 2+1)y 1y 2-3am (y 1+y 2)+9a 2=9a 2(m 2+1)3m -1-36a 2m23m -1+9a 2=0,故选D. 5.某几何体的三视图如图所示,其中正视图和侧视图均是腰长为1的等腰直角三角形,则该几何体的外接球体积为( )A.32π B.3π C .23π D .33π答案 A解析 由正视图和侧视图均是腰长为1的等腰直角三角形,可得该几体体是一个四棱锥(如图所示),底面BCDE 是边长为1的正方形,侧棱AE ⊥底面BCDE ,所以根据球与四棱锥的对称性知,外接球的直径是AC .根据勾股定理知AC=1+1+1=3,所以外接球半径为32,于是该几何体的外接球体积V =43π×(32)3=32π.故选A.6.已知对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于0,则x 的取值范围是( )A .1<x <3B .x <1或x >3C .1<x <2D .x <2或x >2答案 B解析 将f (x )=x 2+(a -4)x +4-2a 看作是a 的一次函数,记为g (a )=(x -2)a +x 2-4x +4.当a ∈[-1,1]时恒有g (a )>0,只需满足条件⎩⎪⎨⎪⎧ g (1)>0,g (-1)>0,即⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0,解之得x <1或x >3. 7.已知在正三棱锥S -ABC 中,E 是侧棱SC 的中点,且SA ⊥BE ,则SB 与底面ABC 所成角的余弦值为( )A.12B.23C.23D.63答案 D解析 如图所示,在正三棱锥S -ABC 中,作SO ⊥平面ABC ,连接AO ,则O 是△ABC 的中心,所以SO ⊥BC ,AO ⊥BC .由此可得BC ⊥平面SAO ,所以SA ⊥BC .又SA ⊥BE ,所以SA ⊥平面SBC ,故正三棱锥S -ABC 的各侧面全等且均是等腰直角三角形.连接OB ,则∠SBO 为SB 与底面ABC 所成的角.设SA =a ,则AB =2a ,BO =63a ,所以cos ∠SBO =63.8.定义在R 上的可导函数f (x ),当x ∈(1,+∞)时,f (x )+f ′(x )<xf ′(x )恒成立,若a =f (2),b =12f (3),c =(2+1)f (2),则a ,b ,c 的大小关系为( )A .c <a <bB .b <c <aC .a <c <bD .c <b <a答案 A解析 设g (x )=f (x )x -1,则g ′(x )=f ′(x )(x -1)-f (x )(x -1)2.由于f (x )+f ′(x )<xf ′(x ),即f ′(x )(x -1)-f (x )>0,因此g (x )=f (x )x -1在(1,+∞)上为增函数,故c <a <b .9.过正方体ABCD -A 1B 1C 1D 1的顶点A 作直线l ,使l 与直线AB ,AD ,AA 1所成的角都相等,这样的直线l 可以作( )A .1条B .2条C .3条D .4条答案 D解析 本题考查了空间直线与直线所成角问题,考查空间想象能力.显然正方体的对角线AC 1与棱AB ,AD ,AA 1所成的角都相等,将该正方体以A 为坐标原点,AB ,AD ,AA 1分别为坐标轴建立空间直角坐标系,则可以得到8个象限,其中在平面ABCD 上方的四个象限内的每一个象限内均有一条与AC 1相似的对角线与此三条棱成等角,即这样的直线l 有4条,故应选D.10.(2014·芜湖三校一模)已知f (x )是定义在R 上的不恒为零的函数,且对于任意的a ,b ∈R ,满足f (ab )=af (b )+bf (a ),f (2)=2.若b n =f (2n )2n (n ∈N *),则数列{b n }的通项公式为( )A .nB .n -1C .2nD .2n -1答案 A解析 ∵f (ab )=af (b )+bf (a ),f (2)=2,∴f (2n +1)=2f (2n )+2n f (2)=2f (2n )+2n +1.∵b n =f (2n )2n (n ∈N *),又f (2n +1)2n +1=f (2n)2n +1,即b n +1-b n =1,∴{b n }成等差数列,且b 1=f (2)2=1,∴b n =b 1+(n -1)×1=1+n -1=n ,n ∈N *.11.(2014·孝感市质检)若函数f (x )=x -1+1e x (a ∈R ,e 为自然对数的底数)的图像与直线l :y =kx -1没有公共点,则实数k 的最大值为( )A .0B .1C .-1 D.1e答案 B解析 令g (x )=f (x )-(kx -1)=(1-k )x +1e x ,则直线l :y =kx -1与曲线y =f (x )没有公共点,等价于方程g (x )=0在R 上没有实数解.假设k >1,此时g (0)=1>0.g (1k -1)=-1+1e 1k -1<0.又函数g (x )的图像是连续的,由零点存在性定理,可知g (x )=0在R 上至少有一个解,与方程g (x )=0在R 上没有实数解矛盾,故k ≤1.又k =1时,g (x )=1e x >0,易知方程g (x )=0在R 上没有实数解.所以实数k 的最大值为1.12.(2014·武汉部分学校调研)椭圆C :x 24+y 23=1的左、右顶点分别为A 1,A 2,若点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],则直线P A 1斜率的取值范围是( )A .[12,34] B .[38,34] C .[12,1] D .[34,1]答案 B解析 椭圆的左顶点为A 1(-2,0),右顶点为A 2(2,0),设点P (x 0,y 0),则x 204+y 203=1,得y 20x 20-4=-34.而kP A 2=y 0x 0-2,kP A 1=y 0x 0+2,所以kP A 2·kP A 1=y 20x 20-4=-34.又kP A 2∈[-2,-1],所以kP A 1∈[38,34].二、填空题13.已知函数f (x )=3x +sin x +1,若f (t )=2,则f (-t )=________. 答案 0解析 由于g (x )=3x +sin x 为奇函数,且f (t )=3t +sin t +1=2,所以3t +sin t =1,则f (-t )=g (-t )+1=-1+1=0.14.(2014·皖西四校联考)若正数x ,y 满足2x +3y -3=0,则x +2yxy 的最小值为________.答案 7+433解析 由2x +3y -3=0,得1=2x +3y 3.于是x +2y xy =1y +2x =(1y +2x )·2x +3y 3=13(7+2x y +6y x )≥13×(7+43)=7+433,当且仅当⎩⎨⎧2x y =6y x,2x +3y -3=0,即x =6-33,y =23-3时,等号成立.故最小值为7+433.15.已知函数g (x )是R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,g (x ),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是________.答案 (-2,1)解析 方法一 由题意可知,当x ≥0时,g (x )=-g (-x )=-[-ln(1+x )]=ln(1+x ),所以f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (1+x ),x >0.当x ≤-2时,由f (2-x 2)>f (x ),得(2-x 2)3>x 3,因为f (x )=x 3在R 上为增函数,所以有2-x 2>x ,解得-2<x <1,即-2<x ≤- 2.当-2<x ≤0时,由f (2-x 2)>f (x ),得ln(1+2-x 2)>x 3,即-2<x ≤0.当0<x <2时,由f (2-x 2)>f (x ),得ln(1+2-x 2)>ln(1+x ),所以有2-x 2>x ,解得-2<x <1,即0<x <1.当x ≥2时,由f (2-x 2)>f (x ),得(2-x 2)3>ln(1+x ),无解.综上得-2<x <1.方法二 同上得f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (1+x ),x >0.易知f (x )在R 上是增函数,由f (2-x 2)>f (x ),得2-x 2>x ,即x 2+x -2<0,∴-2<x <1.16.已知F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >b >0)的左、右焦点,P 为双曲线左支上一点,若|PF 2|2|PF 1|的最小值为8a ,则该双曲线的离心率e 的取值范围是________.答案 (1,3]解析 ∵P 为双曲线左支上一点,∴|PF 2|-|PF 1|=2a .∴|PF 2|=|PF 1|+2a .∴|PF 2|2|PF 1|=(|PF 1|+2a )2|PF 1|=|PF 1|+4a 2|PF 1|+4a ≥8a ,当且仅当4a 2|PF 1|=|PF 1|,即|PF 1|=2a 时取等号,故|PF 2|=4a .当点P 在x 轴上时,|PF 1|+|PF 2|=|F 1F 2|,即2a +4a =2c ,此时e =3;当点P 不在x 轴上时,在△PF 1F 2中,|PF 1|+|PF 2|>|F 1F 2|,即2a +4a >2c ,此时e <3,∴e ≤3.又e >1,于是1<e ≤3.。
课前测试1. 若等边△ABC边长为23,平面内一点M满足CM→=12CB→+23OA→,则MA→·MB→=( )A.-1 B.2C.-2 D.232. 已知△ABC中,AB=AC=4,BC=43,点P为BC边所在直线上的一个动点,则AP→·(AB→+AC→)满足( )A.最大值为16 B.最小值为4C.为定值8 D.与P的位置有关3. 如图,△ABC中,sin 12∠ABC=33,AB=2,点D在线段AC上,且AD=2DC,BD=43 3.(1)求BC的长;(2)求△DBC的面积.备用例题1. 已知A、B是单位圆上的两点,O为圆心,且∠AOB=120°,MN是圆O的一条直径,点C 在圆内,且满足OC →=λOA →+(1-λ)OB →(0<λ<1),则CM →·CN →的取值范围是( )A .[-12,1) B .[-1,1)C .[-34,0)D .[-1,0)2. 设点P (x ,y )为平面上以A (4,0),B (0,4),C (1,2)为顶点的三角形区域(包括边界)内一动点,O 为原点,且OP →=λOA →+μOB →,则λ+μ的取值范围为________.3. 已知点G 是△ABC 的重心,AG →=λAB →+μAC →(λ、μ∈R ),若∠A =120°,AB→·AC →=-2,则|AG →|的最小值是( ) A.33B.22C.23D.344. 已知四边形ABCD 中,AD ∥BC ,∠BAC =45°,AD =2,AB =2,BC=1,P 是边AB 所在直线上的动点,则|PC→+2PD →|的最小值为( ) A .2 B .4 C.522D.2525. 如图,OA→,OB →分别为x 轴,y 轴非负半轴上的单位向量,点C 在x 轴上且在点A 的右侧,D 、E 分别为△ABC 的边AB 、BC 上的点.若OE →与OA →+OB →共线.DE→与OA →共线,则OD →·BC →的值为( )A .-1B .0C .1D .26. 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,b =c ,且满足sin B sin A=1-cos B cos A ,若点O 是△ABC 外一点,∠AOB =θ(0<θ<π),OA =2OB =2,则平面四边形OACB 面积的最大值是( )A.8+534B.4+534C .3 D.4+527. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若∠B =∠C 且7a 2+b 2+c 2=43,则△ABC 面积的最大值为________.8. 如图,在△ABC 中,已知AB =4,AC =3,∠BAC =60°,点D ,E 分别是边AB ,AC 上的点,且DE =2,则S 四边形BCED S △ABC的最小值等于________.9. 已知O(0,0),A(cosα,sinα),B(cosβ,sinβ),C(cosγ,sinγ),若kOA→+(2-k)OB→+OC→=0(0<k<2),则cos(α-β)的最大值是________.10. 在△ABC中,内角A,B,C的对边分别为a,b,c.已知cos A-3cos Ccos B=3c-a b.(1)求sin Csin A的值;(2)若B为钝角,b=10,求a的取值范围.11. 在△ABC中,角A,B,C所对的边分别为a,b,c,若b2+c2-a2=3 bc且b=3a,则△ABC不可能是( )A.等腰三角形B.钝角三角形C.直角三角形D.锐角三角形12. 在△ABC 中,AC →·AB →=|AC →-AB →|=3,则△ABC 面积的最大值为( ) A.21 B.3214C.212 D .32113. 已知在△ABC 中,C =2A ,cos A =34,且2BA →·CB →=-27.(1)求cos B 的值; (2)求AC 的长度.。
一、选择题1、在△ABC中,角A、B、C的对边分别为、、,若=,则△ABC的形状为()A、正三角形B、直角三角形C、等腰三角形或直角三角形D、等腰直角三角形2、已知中,,,则角等于A .B . C. D .3、在△ABC中,a=x,b=2,B=45°,若这样的△ABC有两个,则实数x的取值范围是()A.(2,+∞) B.(0,2)C.(2,) D.()4、,则△ABC的面积等于A . B. C .或 D .或5、在中,,则角C的大小为A.300B.450C.600D.12006、的三个内角、、所对边长分别为、、,设向量,,若,则角的大小为()A. B . C. D.7、若ΔABC的内角A、B、C所对的边a、b、c满足,则ab的值为()A. B. C.1 D.8、在中,若,且,则是( )A.等边三角形B.等腰三角形,但不是等边三角形C.等腰直角三角形D.直角三角形,但不是等腰三角形9、在中,所对的边分别是且满足,则=A .B . C. D .10、若α是三角形的内角,且sin α+cos α=,则这个三角形是( ).A.等边三角形 B.直角三角形C.锐角三角形 D.钝角三角形11、在△中,,,,则此三角形的最大边长为()A. B. C. D.12、在△ABC中, 角A、B、C的对边分别为a、b、c,若(a2+c2b2)tanB=ac,则角B=()A .B .C .或D .或13、(2012年高考(天津理))在中,内角,,所对的边分别是,已知,,则()A .B .C . D.14、已知△ABC中,=,=,B=60°,那么满足条件的三角形的个数为()A、1B、2C、3D、015、在钝角中,a,b,c分别是角A,B,C的对边,若,则最大边c的取值范围是( ) (A .B .C . D.16、(2012年高考(上海理))在中,若,则的形状是()A.锐角三角形. B.直角三角形. C.钝角三角形. D.不能确定.17、在△ABC中,a=15,b=10, ∠A=,则()A. B . C. D .18、在△ABC中,内角A,B,C的对边分别是a,b,c,若,,则角A= ()A. B . C . D .19、()A. B.C.D.20、给出以下四个命题:(1)在中,若,则;(2)将函数的图象向右平移个单位,得到函数的图象;(3)在中,若,,,则为锐角三角形;(4)在同一坐标系中,函数与函数的图象有三个交点;其中正确命题的个数是() A.1 B.2 C.3 D.421、若△ABC的对边分别为、、C且,,,则b=()A、5B、25C 、D 、22、设A、B、C是△ABC三个内角,且tanA,tanB是方程3x2-5x+1=0的两个实根,那么△ABC是()A.钝角三角形 B.锐角三角形 C.等腰直角三角形 D.以上均有可能23、设△ABC的内角A, B, C所对的边分别为a, b, c, 若, 则△ABC的形状为(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定24、在中,若,则此三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.任意三角形25、在△ABC中,已知A=,BC=8,AC=,则△ABC的面积为▲A.B.16 C.或16 D .或26、在△ABC中,角A,B,C所对的边长分别为a,b,c,且满足c sin A =a cos C,则sin A+sin B的最大值是( )A.1B. C. D.3二、填空题27、在△ABC中,角A、B、C的对边分别为a、b、c, 已知A=, a=, b=1,则c= .28、已知△ABC的面积 .29、在△ABC中,角A、B、C所对的对边分别为a、b、c ,若,则A= 。
三角函数、向量、解三角形、数列综合测试含答案大冶一中 孙雷一、选择题每题只有一个正确选项,共60分1.若向量===BAC CB AB ∠),0,1-(),23,21(则 A.30° B.60° C. 120° D. 150°2.已知34,4,8===AC BC AB ABC Rt 中,△,则对于ABC △所在平面内的一点P ,)(PC PB PA +•的最小值是A.-8B. -14C.-26D.-303.已知在正方形ABCD 中,点E 为CD 的中点,点F 为CB 上靠近点B 的三等分点,O 为AC 与BD 的交点,则=DB A.OF AE 51858-+ B.OF AE 74718-+ C.OF AE 58518-+ D. OF AE 71874-+ 4.已知)2π-απ-(523-αsin -αcos <<=,则=+αααtan -1)tan 1(2sin A.7528- B.7528 C.7556- D. 7556 5.若函数m x x x f -2cos 2-sin 4)(=在R 上的最小值是3,则实数=mA.6-B.5-C.3-D.2-6.已知α为锐角,且2)8π-α(tan =,则=α2sin A.102 B.1023 C.1027 D. 4237.已知向量)sin 41-(α,=a ,)4πα0)(1-α(cos <<=,b ,且b a //,则=)4π-αcos( A.21- B.21 C.23- D.23 8.在ABC △中,3:2:1::=A B C ,则=a b c ::A.1:2:3B.3:2:1C.1:3:2D. 2: 3:19.在ABC △中,c b a ,,分别为内角C B A ,,的对边,若B A C sin sin sin 3+=,53cos =C ,且4=ABC S △,则=c A.364 B.4 C.362 D.5 10.在ABC △中,°=60C ,322==AC BC ,点D 在边BC 上,且772sin =∠BAD ,则CD =A. 334B.43 C.33 D.332 11.我国古代数学巨著九章算术中,有如下问题:“今有女善织,日自倍,五日织五尺,问日织几何”这个问题用今天的白话叙述为:“有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少”根据上述问题的已知条件,若该女子共织布3135尺,则这位女子织布的天数是 A.2 B.3 C.4 D.112.数列}{n a 中,01=a ,且)2(2-1-1-≥+=+n a a n a a n n n n ,则数列})1-(1{2n a 前2019项和为A.20194036B.10102019C.20194037D.20204039 二、填空题共20分13.已知等差数列}{n a 的前n 项和n S 有最大值,且1-20192020<a a ,则当0<n S 时n 的最小值为_____________. 14.已知数列}{n a 满足2321)2(+=n a a a a n ,则该数列的通项公式为______________.15.已知数列}{n a 满足),2(1)13()1-(*1-1N n n a a n n n ∈≥++=+,且121==a a ,则数列}{n a 的前2020项的和为_______________.16.ABC △中,Ab B a B Ac C B A cos cos sin sin sin -sin sin 222+=+,若1=+b a ,则c 的取值范围是___________.三、解答题共70分17.已知n S 为等差数列}{n a 的前n 项和,81=a ,10-10=S1求n a ,n S ;2设||||||21n n a a a T +++= ,求n T .18.在ABC △中,c b a ,,分别为内角C B A ,,的对边,且552sin =B ,6=•BC BA 1求ABC △的面积;2若8=+c a ,求b 的值.19.已知函数)(|2||-|)(R a x a x x f ∈++=1当1=a 时,求不等式5≥)(x f 的解集;2当]1,0[∈x 时,不等式|4|≤)(+x x f 恒成立,求实数a 的取值范围.20.已知函数)0(23-sin 3cos sin )(2>+=ωωωωx x x x f 的最小正周期为π,将函数)(x f 的图象向左平移6π个单位长度,再向下平移21个单位长度,得到函数=y )(x g 的图象 1求函数)(x f 的单调递减区间;2在锐角ABC △中,角C B A ,,的对边为c b a ,,,若2,0)2(==a A g ,求ABC △面积的最大值.21.已知关于x 的函数1-2-2π3cos(cos 2)(2)x x x f += 1求不等式0)(>x f 的解集;2若关于x 的不等式x a x x f sin ≥|2sin )(|+在区间]4π3,3π[上有解,求实数a 的取值范围.22.已知数列}{n a 的前n 项和为n S ,且31-34n n a S =,等差数列}{n b 各项均为正数,223b a =,4246b b a += 1求数列}{n a ,}{n b 的通项公式;2设数列}{n c 的前n 项和为n T ,对一切*N n ∈有n n n b na c a c a c =++ 22112成立,求n T .。
一、不等式的解法:1.一元一次不等式:Ⅰ、(0)ax b a >≠:⑴若0a >,则 ;⑵若0a <,则 ;Ⅱ、(0)ax b a <≠:⑴若0a >,则 ;⑵若0a <,则 ;2.一元二次不等式:0a >时的解集与∆有关 (数形结合:二次函数、方程、不等式联系)3. 高次不等式:数轴标根 步骤:正化,求根,标轴,穿线(奇穿偶不穿),定解.4.分式不等式的解法:通解变形为整式不等式; ⑴()0()f x g x >⇔;⑵()0()f x g x <⇔; ⑶()0()f xg x ≥⇔ ;⑷()0()f xg x ≤⇔;5.解含有参数的不等式:解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论: ①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为12,x x (或更多)但含参数,要分12x x >、12x x =、12x x <讨论。
例:解关于x 的不等式: 2(1)10ax a x -++< ()R a ∈)例:实系数方程2()20f x x ax b =++=的一个根在(0,1)内,另一个根在(1,2)内,则21b a --∈;22(1)(2)a b -+- ∈ ;3a b +- ∈二、不等式的性质 (几个重要不等式) (1)0,0||,2≥≥∈a a R a 则若 (2))2||2(2,2222ab ab baab ba Rb a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号)(3)如果a ,b 都是正数,那么.2a b +(当仅当a=b 时取等号)极值定理:若,,,,x y R x y S xy P +∈+==则:○1如果P 是定值, 那么当x=y 时,S 的值最小; ②如果S 是定值, 那么当x =y 时,P 的值最大.利用极值定理求最值的必要条件: 一正、二定、三相等.常用的方法为:拆、凑、平方;例1:设12,,,x a a y 成等差数列,12,,,x b b y 成等比数列,则21212()a a b b +的取值范围是___ 。
解三角形平面向量综合练习解三角形,平面向量与三角形的综合练习一、填空题,?2),则tan2?的值为______________.1.若角?的终边经过点P(12.已知向量a与b的夹角为120,且a?b?4,那么a?b的值为________.3.已知向量a?(1,3),b?(?2,0),则a?b=_____________________. ?)最小正周期为,其中??0,则?? 65???????5.a,b的夹角为120,a?1,b?3,则5a?b?4.f(x)?cos(?x?6.若AB?2,AC???2BC,则S?ABC的最大值2sin2x?1???7.设x??0,?,则函数y?的最小值为.sin2x?2?,,2)b?(2,3),若向量?a?b与向量c?(?4,?7)共线,则??.8.设向量a?(1?????????b?2且a与b的夹角为,则a?b?.9.若向量a,b满足a?1,3?310.若sin(??)?,则cos2??_________。
2511.在△ABC中,角A、B、C所对的边分别为a、b、 c ,若则cosA? ?3b?c?cosA?acosC,??????12已知a是平面内的单位向量,若向量b 满足b?(a?b)?0,则|b|的取值范围是。
13..在△ABC中,a,b,c分别是角A,B,C所对的边,已知a?3,b?3,c?30?, 则A=. 14.关于平面向量a,b,c.有下列三个命题:。
b=a?c,则b?c.②若a?(1,k),b?(?2,6),a∥b,则k??3.①若a?③非零向量a和b满足|a|?|b|?|a?b|,则a与a?b的夹角为60.其中真命题的序号为.三、解答题1.已知函数f(x)?cos(2x???)?2sin(x?)sin(x?) 344??求函数f(x)的最小正周期和图象的对称轴方程 1 求函数f(x)在区间[?2.已知函数f(x)?sin求?的值;2,]上的值域122???x?3sin?xsin??x??的最小正周期为π.2???π?求函数f(x)在区间?0,?上的取值范围.3 3.已知向量m?(sinA,cosA),n?(1,?2),且m?n?0. (Ⅰ)求tanA的值;(Ⅱ)求函数f(x)?cos2x?tanAsinx(x?R)的值域. 4.已知函数f(x)=Asin(x+?)(A>0,0 2 ?2π?????????1?,?. ?32? (1) 求f(x)的解析式;(2) 已知α,β??0,?,且f(α)=????2?312,f(β)=,求f(α-β)的值. 513 5.如图,△ACD是等边三角形,△ABC是等腰直角三角形,∠ACB?90,BD交AC于E,AB?2.求cos∠CAE的值;求AE. D ?C E B A 6.如图,在平面直角坐标系xoy中,以ox轴为始边做两个锐角?,?,它们的终边分别与单位圆相交于A、B两点,已知A、B的横坐标分别为225, 105???)的值;求??2?的值。
三角函数、平面向量、解三角形一、选择题(每小题5分,共50分)1.化简cos15cos45cos75sin45︒︒-︒︒的值为( ) A. 12-C.12D. -2.设向量,a b 满足:1||=a , 2||=b , ()0a a b ⋅+=, 则a 与b 的夹角是( )A . 30B . 60C . 90D . 120 3.已知角α的终边经过点)60cos 6,8(0--m P ,且54cos -=α,则m 的值为( ) A 21 B 21- C 23- D 23 4.设函数22()cos ()sin (),44f x x x x R ππ=+-+∈,则函数()f x 是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数 5.已知平面向量(1,2)a =,(2,)b m =-,且a //b ,则23a b +=( )A .(5,10)--B .(4,8)--C .(3,6)--D .(2,4)-- 6.已知4cos 5α=-,且(,)2παπ∈,则tan()4πα-等于( ) A.17- B.7- C.71 D.7 7.函数2tan2tan 12xy x =-的最小正周期为( ) A .π B .2π C .4π D .2π 8.在ABC ∆中,M 是BC 的中点,1AM =,点P 在AM 上且满足2A P P M =,则()PA PB PC ⋅+等于 (A )49- (B )43- (C )43 (D) 49( ) 9.要得到函数sin2cos2y x x =-的图象,只要将函数sin2cos2y x x =+的图象沿x 轴( )A.向右平移4π个单位B.向左平移4π个单位C.向右平移2π个单位D.向左平移2π个单位 10.已知α为锐角,且4cos(),65πα+=则cos α的值为. ( )A.410-B.410+C.310D.310二、填空题(每小题5分,共25分)11.在平行四边形ABCD 中,AC 为一条对角线,(2,4),(1,3),AB AC BD ===则12.设(2,4),(1,1)a b ==,若()b a m b ⊥+⋅,则实数m =13.已知点1),(cos ,sin )A B θθ-,其中[]0,θπ∈,则AB 的最大值为________.14.若函数())cos()(0)f x x x φφφπ=+-+<<为奇函数,则φ=________15.在斜三角形ABC 中,角C B A ,,所对的边分别为c b a ,,,若1tan tan tan tan =+BC A C , 则=+222c b a . 三、解答题(共75分)16.53()42ππθ<<17. 已知函数22()cos cos sin 2222x x x x f x ⎛⎫=-- ⎪⎝⎭.18. 如图2,渔船甲位于岛屿A 的南偏西60方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.19.已知向量1(sin ,1),(3cos ,)2=-=-a x b x ,函数()()2f x a b a =+⋅-.(Ⅰ)求函数()f x 的最小正周期T ;(Ⅱ)已知a 、b 、c 分别为ABC ∆内角A 、B 、C 的对边, 其中A 为锐角,4a c ==,且()1f A =,求,A b 和ABC ∆的面积S20.已知函数3cos 22sin 3)(2++=x x x f (1)当)2,0(π∈x 时,求函数)(x f 的值域; (2)若528)(=x f ,且)125,6(ππ∈x ,求sin(4)3x π+的值.21. 在ABC ∆中,sin sin sin sin()sin sin A B A C A B A B --=++. (Ⅰ)求角B ;(Ⅱ)若3sin 5A =,求cos C 的值.。
向量和三角函数的结合训练一.解答题(共40小题)1.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.2.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且=2csinA(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值.3.△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a.(Ⅰ)求;(Ⅱ)若c2=b2+a2,求B.4.在△ABC中,角A,B,C的对边分别为a,b,c,C=,b=5,△ABC的面积为10.(1)求a,c的值;(2)求sin(A+)的值.5.在△ABC中,a,b,c分别是内角A,B,C所对的边,,若向量=(1,sinA),=(2,sinB),且∥.(Ⅰ)求b,c的值;(Ⅱ)求角A的大小及△ABC的面积.6.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且(Ⅰ)确定角C的大小;(Ⅱ)若c=,且△ABC的面积为,求a2+b2的值.7.在锐角△ABC中,cosA=,sinB=.(1)求角C;(2)设AB=,求△ABC的面积.8.已知a、b、c是△ABC中∠A、∠B、∠C的对边,S是△ABC的面积,若a=4,b=5,S=5,求c的长度.9.在△ABC中,BC=,AC=3,sinC=2sinA.(1)求AB的值;(2)求sinA的值.10.在△ABC中,a,b,c分别是角A、B、C的对边,且a2+b2=c2+ab.(1)求C;(2)若=,求A.11.已知a,b,c分别为△ABC的三个内角A,B,C的对边,,且.(Ⅰ)求角A的大小;(Ⅱ)若a=2,△ABC的面积为,求b,c.12.△ABC的面积是4,角A,B,C的对边分别是a,b,c,(1)求的值;(2)分别求c,a的值.13.在△ABC中,内角A,B,C的对边分别是a,b,c.(1)A=60°,a=4,b=4,求B;(2)已知a=3,c=2,B=150°,求边b的长.14.在△ABC中,已知A=30°,B=120°,b=5,解三角形.15.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=3,.(1)求b的值;(2)求sinA的值.16.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(I)求角B的大小;(II)若b是a和c的等比中项,求△ABC的面积.17.在△ABC中,已知A=45°,.(Ⅰ)求sinC的值;(Ⅱ)若BC=10,求△ABC的面积.18.已知△ABC中,AB=6,∠A=30°,∠B=120°,解此三角形.19.在△ABC中,角A,B,C所对的边分别为a,b,c,满足,且△ABC的面积为2.(Ⅰ)求bc的值;(Ⅱ)若b+c=6,求a的值.20.在△ABC中,角A,B,C的对边分别为a,b,c.(1)若b=3,c=1,A=60°,求a;(2)若a=30,b=10,A=60°,求B,C,c.21.已知函数.(I)求f(x)的最小正周期及单调递减区间;(II)在△ABC中,a,b,c分别是角A,B,C的对边,若f(A)=2,b=1,△ABC 的面积为,求a的值.22.在△ABC中,A=30°,C=105°,a=10,求b,c.23.在△ABC中,已知,b=2,C为锐角,△ABC的面积S=,求第三边c.24.已知△ABC的面积为,且,向量和向量是共线向量.(1)求角C;(2)求△ABC的边长c.25.在△ABC中内角A,B,C的对边分别为a,b,c,已知(1)求sinC的值(2)求b边的长.26.已知△ABC的面积其中a,b,c分别为角A,B,C所对的边(1)求角A的大小.(2)若a=2,求的最大值.27.在△ABC中,角A,B,C的对边分别为a bc且.求:(Ⅰ)的值;(Ⅱ)b的值.28.已知:△ABC中角A、B、C所对的边分别为a、b、c且.(1)求角C的大小;(2)若sinA,sinC,sinB成等差数列,且,求c边的长.29.根据下列条件,解三角形.(Ⅰ)已知b=4,c=8,B=30°,求C,A,a;(Ⅱ)在△ABC中,B=45°,C=75°,b=2,求a,c,A.30.已知△ABC中,A=45°,C=30°,c=10cm,解三角形.31.在△ABC中,已知a=,b=1,∠B=45°,解此三角形.32.在△ABC中,a、b、c分别是角A、B、C的对边,已知,sinB=cosAsinC,(I)求边AC的长度;(II)若BC=4,求角B的大小.33.在△ABC中,角A、B、C的对边分别为a、b、c,若sin22C+sin2C•sinC+cos2C=1,且a+b=5,c=.(1)求角C的大小;(2)求△ABC的面积.34.(1)在△ABC中,a=3,c=2,B=60°求b(2)在△ABC中,A=60°,B=45°,a=2 求c.35.已知△ABC的周长为4(),且sinB+sinC=sinA.求边长a的值.36.在△ABC中,a=1,,B=45°,求角A、C及边c.37.在锐角△ABC中,已知,,BC=3.求△ABC的面积.38.在△ABC中,∠C=90°,CD是斜边AB上的高,已知CD=12,AD=5,求BD,AB,AC,BC的长.39.在△ABC中,a=5,B=45°,C=105°,解三角形.40.在△ABC中,A,B,C所对的边分别为a,b,c已知,c=1,B=45°,求a,A,C.参考答案与试题解析一.解答题(共40小题)1.(2016•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.【分析】(1)利用正弦定理将边化角即可得出cosB;(2)求出sinA,利用两角和的正弦函数公式计算.【解答】解:(1)∵asin2B=bsinA,∴2sinAsinBcosB=sinBsinA,∴cosB=,∴B=.(2)∵cosA=,∴sinA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB==.【点评】本题考查了正弦定理解三角形,两角和的正弦函数,属于基础题.2.(2015•郑州三模)在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且=2csinA(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值.【分析】(1)利用正弦定理把已知条件转化成角的正弦,整理可求得sinC,进而求得C.(2)利用三角形面积求得ab的值,利用余弦定理求得a2+b2的值,最后求得a+b 的值.【解答】解:(1)∵=2csinA∴正弦定理得,∵A锐角,∴sinA>0,∴,又∵C锐角,∴(2)三角形ABC中,由余弦定理得c2=a2+b2﹣2abcosC即7=a2+b2﹣ab,又由△ABC的面积得.即ab=6,∴(a+b)2=a2+b2+2ab=25由于a+b为正,所以a+b=5.【点评】本题主要考查了正弦定理和余弦定理的运用.考查了学生对三角函数基础知识的综合运用.3.(2011•辽宁)△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a.(Ⅰ)求;(Ⅱ)若c2=b2+a2,求B.【分析】(Ⅰ)先由正弦定理把题设等式中边转化成角的正弦,化简整理求得sinB 和sinA的关系式,进而求得a和b的关系.(Ⅱ)把题设等式代入余弦定理中求得cosB的表达式,把(Ⅰ)中a和b的关系代入求得cosB的值,进而求得B.【解答】解:(Ⅰ)由正弦定理得,sin2AsinB+sinBcos2A=sinA,即sinB(sin2A+cos2A)=sinA∴sinB=sinA,=(Ⅱ)由余弦定理和C2=b2+a2,得cosB=由(Ⅰ)知b2=2a2,故c2=(2+)a2,可得cos2B=,又cosB>0,故cosB=所以B=45°【点评】本题主要考查了正弦定理和余弦定理的应用.解题的过程主要是利用了正弦定理和余弦定理对边角问题进行了互化.4.(2015•苍梧县校级一模)在△ABC中,角A,B,C的对边分别为a,b,c,C=,b=5,△ABC的面积为10.(1)求a,c的值;(2)求sin(A+)的值.【分析】(Ⅰ)利用已知条件及三角形的面积公式求得a,进而利用余弦定理求得c.(Ⅱ)利用(Ⅰ)中求得的三边及余弦定理求得cosA的值,然后通过同角三角函数的基本关系求得sinA的值,最后利用正弦的两角和公式求得答案.【解答】解:(Ⅰ)由已知,,b=5,因为,即,解得a=8.由余弦定理可得:,所以c=7.(Ⅱ)由(Ⅰ)及余弦定理有,由于A是三角形的内角,易知,所以==.【点评】本题主要考查了解三角形及正弦定理和余弦定理的应用.考查了学生利用三角函数的基本性质处理边角问题的能力.5.(2014•漳州三模)在△ABC中,a,b,c分别是内角A,B,C所对的边,,若向量=(1,sinA),=(2,sinB),且∥.(Ⅰ)求b,c的值;(Ⅱ)求角A的大小及△ABC的面积.【分析】(Ⅰ)通过向量平行,求出A,B的关系式,利用正弦定理求出b的值,通过余弦定理求出c的值;(Ⅱ)直接利用正弦定理求出A的正弦函数值,然后求角A的大小,结合C的值确定A的值,利用三角形的面积公式直接求解△ABC的面积.【解答】解:(Ⅰ)∵=(1,sinA),=(2,sinB),,∴sinB﹣2sinA=0,由正弦定理可知b=2a=2,又∵c2=a2+b2﹣2abcosC,,所以c2=()2+(2)2﹣2cos=9,∴c=3;(Ⅱ)由,得,∴sinA=,A=或,又C=,∴A=,所以△ABC的面积S===.【点评】本题是中档题,考查正弦定理与余弦定理的应用,注意向量的平行条件的应用,考查计算能力.6.(2014•蚌埠一模)在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且(Ⅰ)确定角C的大小;(Ⅱ)若c=,且△ABC的面积为,求a2+b2的值.【分析】(Ⅰ)根据,利用正弦定理得,从而可求C 的大小;(Ⅱ)由面积公式得=,从而可得ab=6,由余弦定理,可得结论.【解答】解:(Ⅰ)∵,∴由正弦定理得…(2分)∴sinC=…(4分)∵△ABC是锐角三角形,∴C=…(6分)(Ⅱ)∵c=,C=,△ABC的面积为,∴由面积公式得=…(8分)∴ab=6 …(9分)由余弦定理得a2+b2﹣2abcos=7 …(11分)∴a2+b2=13 …(12分)【点评】本题考查正弦、余弦定理,考查学生的计算能力,属于基础题.7.(2016•广东模拟)在锐角△ABC中,cosA=,sinB=.(1)求角C;(2)设AB=,求△ABC的面积.【分析】(1)根据同角的三角函数关系,利用内角和定理即可求出sinC以及角C 的值;(2)由正弦定理和三角形的面积公式,即可求出△ABC的面积.【解答】解:(1)锐角△ABC中,cosA=,∴sinA==;又sinB=,∴cosB==;∴sinC=sin[π﹣(A+B)]=sin(A+B)=sinAcosB+cosAsinB=×+×=;又C∈(0,),∴C=;(2)△ABC中,由正弦定理得=,又AB=,∴AC===;∴△ABC的面积为S△ABC=•AB•AC•sinA=×××=.【点评】本题考查了同角的三角函数关系以及正弦定理的应用问题,是基础题目.8.(2001•上海)已知a、b、c是△ABC中∠A、∠B、∠C的对边,S是△ABC的面积,若a=4,b=5,S=5,求c的长度.【分析】由已知a=4,b=5,S=5及S=absinC可得sinC=,于是∠C=60°,或∠C=120°,然后利用余弦定理可求c【解答】解:∵S=absinC,∴sinC=,(4分)于是∠C=60°,或∠C=120°,(6分)又c2=a2+b2﹣2abcosC(8分)当∠C=60°时,c2=a2+b2﹣ab,c=(10分)当∠C=120°时,c2=a2+b2+ab,c=.(12分)【点评】本题主要考查了三角形面积公式,余弦定理等知识解三角形,属于基础试题.9.(2011春•万州区校级期中)在△ABC中,BC=,AC=3,sinC=2sinA.(1)求AB的值;(2)求sinA的值.【分析】(1)△ABC中,由正弦定理可得,再利用SinC=2SinA,求得AB值.(2)△ABC中,由余弦定理可求得cosA 的值,利用同角三角函数的基本关系,求得SinA.【解答】解:(1)△ABC中,由正弦定理可得,=2,∴AB=2×BC=2.(2)△ABC中,由余弦定理可得BC2=AB2+AC2﹣2AB•AC•cosA,5=20+9﹣12cosA,∴cosA=,∴SinA==.【点评】本题考查正弦定理、余弦定理的应用,同角三角函数的基本关系,利用这两个定理是解题的关键.10.(2013春•西区校级期中)在△ABC中,a,b,c分别是角A、B、C的对边,且a2+b2=c2+ab.(1)求C;(2)若=,求A.【分析】(1)利用题设等式整理代入余弦定理中求得cosC的值,进而求得C.(2)利用正弦定理把题设等式中变转化为角的正弦,利用二倍角和公式和两角和公式求得cosB的值,进而求得B,最后利用三角形内角和求得A.【解答】解:(1)∵a2+b2=c2+ab,∴=,∴cosC=,∴C=45°.(2)由正弦定理可得==,∴=∴sinBcosC=2sinAcosB﹣sinCcosB,∴sinBcosC+sinCcosB=2sinAcosB,∴sin(B+C)=2sinAcosB,∴sinA=2sinAcosB.∵sinA≠0,∴cosB=,∴B=60°,A=180°﹣45°﹣60°=75°.【点评】本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的理解和应用.11.(2013秋•德州校级期中)已知a,b,c分别为△ABC的三个内角A,B,C 的对边,,且.(Ⅰ)求角A的大小;(Ⅱ)若a=2,△ABC的面积为,求b,c.【分析】(Ⅰ)通过向量的数量积直接得到A的正切值,即可求角A的大小;(II)通过△ABC的面积为,以及余弦定理推出b、c的关系,通过解方程即可求b,c【解答】解:(Ⅰ)因为,且,所以=cosA+sinA=0,所以tanA=,∵A∈(0,π),∴A=.=,且A=,(Ⅱ)∵S△ABC,故bc=4,…①又cosA=且a=2,∴,从而b2+c2=8…②,解①②得,b=c=2.【点评】本题考查向量的数量积以及三角形的面积公式,余弦定理的应用,考查计算能力.12.(2014秋•荔湾区校级期中)△ABC的面积是4,角A,B,C的对边分别是a,b,c,(1)求的值;(2)分别求c,a的值.【分析】(1)利用二倍角公式,化简代数式,代入计算即可求得结论;(2)利用面积公式求得c的值,再利用余弦定理,可求a的值.【解答】解:(1)==∵,∴=,∴=;(2)∵,∴∵△ABC的面积是4,b=2,∴,解得c=5由余弦定理可得a===.【点评】本题考查三角函数的化简,考查余弦定理的运用,考查学生的计算能力,属于基础题.13.(2016春•阿拉善左旗校级期末)在△ABC中,内角A,B,C的对边分别是a,b,c.(1)A=60°,a=4,b=4,求B;(2)已知a=3,c=2,B=150°,求边b的长.【分析】(1)由正弦定理可知=,求得sinB=,a>b,可知A>B,求得B=;(2)由余弦定理可知b2=a2+c2﹣2accosB,代入即可求得边b的长.【解答】解:(1)由正弦定理可知:=,∴=,解得:sinB=,由a>b,∴A>B,∴B=;(2)由余弦定理可知:b2=a2+c2﹣2accosB=27+4﹣2×3×2×(﹣)=49,∴b=7,边b的长7.【点评】本题考查解三角形的应用,考查正弦定理及余弦定理,考查计算能力,属于基础题.14.(2015秋•雷州市校级月考)在△ABC中,已知A=30°,B=120°,b=5,解三角形.【分析】由三角形的内角和可得C,可得等腰三角形,由正弦定理可得a和c.【解答】解:∵A=30°,B=120°,∴C=180°﹣(A+B)=30°.∴A=C,∴a=c.由正弦定理可得a===,综上可知,C=30°,a=c=【点评】本题考查解三角形,涉及正余弦定理的应用,属基础题.15.(2010•广州模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=3,.(1)求b的值;(2)求sinA的值.【分析】(1)利用余弦定理,根据题设中的a=2,c=3,求得b.(2)根据三边长利用余弦定理求得cosA的值,进而利用三角函数基本关系求得sinA.【解答】解:(1)由余弦定理,b2=a2+c2﹣2accosB,得,∴b=3.(2)由余弦定理,得=,∵A是△ABC的内角,∴=.【点评】本题主要考查了解三角形的实际应用.解题的关键是利用正弦定理和余弦定理完成了边角问题的互化.16.(2011•绍兴一模)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(I)求角B的大小;(II)若b是a和c的等比中项,求△ABC的面积.【分析】(I)题设利用两角和公式整理等式求得sin(B+)的值,进而求得B.(II)根据等比中项性质可求得b2=ac,代入余弦定理中求得a与c的值,进而可推断出三角形为正三角形,进而求得三角形的面积.【解答】解:(I)由,得,由B∈(0,π)得,故,得.(II)由b是a和c的等比中项得b2=ac又由余弦定理得b2=a2+c2﹣2ac•cosB=a2+c2﹣2ac•cos=a2+c2﹣ac,故ac=a2+c2﹣ac,得(a﹣c)2=0,得a=c=1,∴b==1故△ABC为正三角形故.【点评】本题主要考查了余弦定理的应用,两角和公式的化简求值.考查了学生对基础知识点综合运用.17.(2011•佛山一模)在△ABC中,已知A=45°,.(Ⅰ)求sinC的值;(Ⅱ)若BC=10,求△ABC的面积.【分析】(Ⅰ)由cosB的值和B的范围,利用同角三角函数间的基本关系求出sinB 的值,然后根据三角形的内角和定理得到所求式子中C等于180°﹣A﹣B,而A=45°,得到C=135°﹣B,把所求的式子利用两角差的正弦函数公式及特殊角的三角函数值化简后,把sinB和cosB的值代入即可求出值;(Ⅱ)根据正弦定理,由BC,sinA和(Ⅰ)中求得的sinC,即可求出AB的长度,然后利用三角形的面积公式,由sinB,AB和BC的值即可求出三角形ABC的面积.【解答】解:(Ⅰ)∵,且B∈(0°,180°),∴.sinC=sin(180°﹣A﹣B)=sin(135°﹣B)=;(Ⅱ)由正弦定理得,即,解得AB=14.则△ABC的面积.【点评】此题考查学生灵活运用同角三角函数间的基本关系、正弦定理及三角形的面积公式化简求值,是一道基础题.18.(2014秋•阿勒泰市校级期中)已知△ABC中,AB=6,∠A=30°,∠B=120°,解此三角形.【分析】利用条件,结合余弦定理,即可得出结论.【解答】解:∵AB=6,∠A=30°,∠B=120°,∴∠C=30°,BC=6,AC==6.【点评】本题考查解三角形,考查学生的计算能力,比较基础.19.(2010•南海区模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,满足,且△ABC的面积为2.(Ⅰ)求bc的值;(Ⅱ)若b+c=6,求a的值.【分析】(Ⅰ)根据同角三角函数的基本关系利用sin的值求得cos的值,进而利用二倍角公式求得sinA的值,最后利用三角形面积公式求得bc的值.(Ⅱ)利用二倍角公式和sin的值求得cosA的值,进而把bc和b+c的值代入余弦定理求得a的值.【解答】解:(Ⅰ)∵,0<A<π∴.∴.∵,∴bc=5.(Ⅱ)∵,∴.∵bc=5,b+c=6,∴a2=b2+c2﹣2bccosA=(b+c)2﹣2bc(1+cosA)=20∴.【点评】本题主要考查了解三角形问题,余弦定理的应用,二倍角公式的化简求值.考查了学生综合运用所学知识和基本的运算能力.20.在△ABC中,角A,B,C的对边分别为a,b,c.(1)若b=3,c=1,A=60°,求a;(2)若a=30,b=10,A=60°,求B,C,c.【分析】(1)使用余弦定理解出;(2)使用正弦定理解出.【解答】解:(1)由余弦定理得a2=b2+c2﹣2bccosA=9+1﹣2×=7,∴a=.(2)由正弦定理得,即,解得sinB=,∴B=150°(舍)或B=30°.∴C=180°﹣A﹣B=90°.∴c==20.【点评】本题考查了正余弦定理在解三角形中的应用,属于基础题.21.(2011•安徽模拟)已知函数.(I)求f(x)的最小正周期及单调递减区间;(II)在△ABC中,a,b,c分别是角A,B,C的对边,若f(A)=2,b=1,△ABC 的面积为,求a的值.【分析】(I)利用两角和正弦公式化简f(x)=sin(2x+)+3,最小正周期T==π,令2kπ+≤2x+≤2kπ+,k∈z,解出x的范围,即得单调递减区间.(II)由f(A)=2 求出sin(2A+)=,由<2A+<,求得A 值,余弦定理求得a 值.【解答】解:(I)函数==sin (2x+)+.故最小正周期T==π,令2kπ+≤2x+≤2kπ+,k∈z,解得kπ+≤x≤kπ+,故函数的减区间为[kπ+,kπ+],k∈z.(II)由f(A)=2,可得sin(2A+)+=2,∴sin(2A+)=,又0<A<π,∴<2A+<,∴2A+=,A=.∵b=1,△ABC的面积为=,∴c=2.又a2=b2+c2﹣2bc•cosA=3,∴a=.【点评】本题考查两角和正弦公式,正弦函数的单调性,奇偶性,根据三角函数的值求角,求出角A的值是解题的难点.22.(2014秋•清河区校级月考)在△ABC中,A=30°,C=105°,a=10,求b,c.【分析】由A与C的度数求出B的度数,再由正弦定理即可求出b,c的值.【解答】解:∵A=30°,C=105°,∴B=45°,∵,∴b==10,c==5+5.【点评】此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.23.(2014秋•思明区校级期中)在△ABC中,已知,b=2,C为锐角,△ABC的面积S=,求第三边c.【分析】根据三角形的面积公式,可求,结合C为锐角可求C,再由由余弦定理c2=a2+b2﹣2abcosC可求【解答】解:根据三角形的面积公式可得,∴∴∵C为锐角∴C=30°由余弦定理可得,c2=a2+b2﹣2abcosC=∴c=2【点评】本题主要考查了三角形的面积公式及正弦定理、余弦定理等公式在解题中的应用,属于基础试题.24.(2012•荆州模拟)已知△ABC的面积为,且,向量和向量是共线向量.(1)求角C;(2)求△ABC的边长c.【分析】(1)利用向量共线的条件,建立等式,再利用和角的正弦公式化简等式,即可求得角C;(2)由得:,进而利用△ABC的面积为,及余弦定理可求△ABC的边长c.【解答】解:(1)∵,∴(tanA+tanB)cosAcosB=sin2C,即sinAcosB+cosAsinB=sin2C,∴sin(A+B)=sin2C,∴sinC=2sinCcosC∵sinC≠0,∴,∵C∈(0,π)∴…(6分)(2)由得:,∴,∴,∴c2=a2+b2﹣2abcosC=54,∴…(12分)【点评】本题重点考查正弦、余弦定理的运用,考查向量知识的运用,解题的关键是正确运用正弦、余弦定理求出三角形的边.25.(2015秋•北京校级月考)在△ABC中内角A,B,C的对边分别为a,b,c,已知(1)求sinC的值(2)求b边的长.【分析】(1)利用正弦定理可得sinC;(2)由条件可得△ABC是等边三角形,即可求b边的长.【解答】解:(1)由正弦定理可得sinC==;(2)由条件可得△ABC是等边三角形,∴b=2.【点评】本题考查利用正弦定理解三角形,考查学生的计算能力,属于容易题.26.(2011秋•九江县校级月考)已知△ABC的面积其中a,b,c分别为角A,B,C所对的边(1)求角A的大小.(2)若a=2,求的最大值.【分析】(1)用三角形面积公式表示出S,利用题设等式建立等式,进而利用余弦定理求得2bccosA=b2+c2﹣a2,进而整理求得sinA和cosA的关系进而求得A.(2)由余弦定理可知2bccosA=b2+c2﹣a2,结合a=2,A=45°,及基本不等式可以求出bc的范围,结合=bc求出答案.【解答】解:(1)由三角形面积公式可知S=bcsinA,∵,∴bcsinA=由余弦定理可知2bccosA=b2+c2﹣a2∴sinA=cosA,即tana=1,又由A是三角形内角∴A=45°(2)∵由余弦定理可知2bccosA=b2+c2﹣a2,a=2,即bc=b2+c2﹣4≥2bc﹣4∴(2﹣)bc≤4∴bc≤=4+2∴=cosA=bc≤2+2故的最大值为2+2【点评】本题考查的知识点是解三角形,平面向量的综合题,本题的突破点是利用三角形的面积公式表示出S,与已知的S相等,化简得到tanC的值.要求学生熟练掌握三角形的面积公式以及余弦定理,牢记特殊角的三角函数值.27.(2012•迎泽区校级模拟)在△ABC中,角A,B,C的对边分别为a bc且.求:(Ⅰ)的值;(Ⅱ)b的值.【分析】(Ⅰ)由正弦定理可得,==2cosA,代入即可求解(Ⅱ)由a+c=10及可求a,c然后由余弦定理可知,cosA=即可求解b【解答】解:(Ⅰ)由正弦定理可得,==2cosA=(Ⅱ)由a+c=10及可得a=4,c=6由余弦定理可知,cosA==∴b2﹣9b+20=0∴b=4或b=5当b=4时,a=4,c=6,此时B=A,C=2A∴A=45°,与cosA=矛盾∴b=5【点评】本题主要考查了正弦定理及余弦定理在求解三角形中的应用,属于基础试题28.(2009秋•揭阳期末)已知:△ABC中角A、B、C所对的边分别为a、b、c且.(1)求角C的大小;(2)若sinA,sinC,sinB成等差数列,且,求c边的长.【分析】(1)利用两角和公式和诱导公式整理题设等式求得sin(A+B)=sin2C,进而整理求得cosC的值,进而求得C.(2)利用sinA,sinC,sinB成等差数列求得三者的关系式,利用正弦定理转化成边的关系式,利用求得ab的值,进而分别代入余弦定理求得c.【解答】解:(1)由cos(﹣A)•cosB+sinB•sin(+A)=sin(π﹣2C)得sinA•cosB+sinB•cosA=sin2C∴sin(A+B)=sin2C,∵A+B=π﹣C,∴sin(A+B)sinC∴sinC=sin2C=2sinCcosC,∵0<C<π∴sinC>0∴cosC=∴C=(2)由sinA,sinC,sinB成等差数列,得2sinC=sinA+sinB,由正弦定理得2c=a+b∵,即abcosC=18,ab=36由余弦弦定理c2=a2+b2﹣2abcosC=(a+b)2﹣3ab,∴c2=4c2﹣3×36,c2=36,∴c=6【点评】本题主要考查了解三角形问题,三角函数恒等变换及化简求值.考查了考生分析问题的能力和基本的运算能力.29.(2016秋•兖州区校级期中)根据下列条件,解三角形.(Ⅰ)已知b=4,c=8,B=30°,求C,A,a;(Ⅱ)在△ABC中,B=45°,C=75°,b=2,求a,c,A.【分析】(Ⅰ)由条件利用正弦定理求得sinC的值,可得C为直角,求得A,再由勾股定理求得a的值.(Ⅱ)由条件利用三角形内角和公式求得A的值,再利用正弦定理求得a的值.【解答】解:(Ⅰ)已知△ABC中,∵已知b=4,c=8,B=30°,由正弦定理可,得sinC=1,可得C=90°,A=60°∴a=,(Ⅱ)∵已知△ABC中,B=45°,C=75°,b=2,由三角形内角和公式可得A=60°,由正弦定理可得=,得a=,c=【点评】本题主要考查了三角形内角和公式、正弦定理的应用,属于基础题.30.已知△ABC中,A=45°,C=30°,c=10cm,解三角形.【分析】由三角形内角和定理,直接计算可得B=180°﹣A﹣C=105°;根据三角形的三个角的大小和边c长,结合正弦定理加以计算即可得到a和b的大小.【解答】解:∵△ABC中,A=45°,C=30°,∴根据三角形内角和定理,得B=180°﹣A﹣C=105°;由正弦定理,得,解之得a=10cm,b=5(+)cm【点评】本题给出三角形的两个角和一条边,解此三角形.着重考查了三角形内角和定理、特殊角的三角函数和正弦定理等知识,属于基础题.31.在△ABC中,已知a=,b=1,∠B=45°,解此三角形.【分析】利用正弦定理,可求得A,从而由三角形的内角和定理可求得C,由三角形特点求c.【解答】解:由正弦定理得,即,所以sinA=1,所以A=90°,所以C=180°﹣A﹣B=45°,所以△ABC是等腰直角三角形,所以c=b=1.【点评】本题考查正弦定理的运用,考查运算能力.属于基础题.32.(2010春•沙坪坝区校级期末)在△ABC中,a、b、c分别是角A、B、C的对边,已知,sinB=cosAsinC,(I)求边AC的长度;(II)若BC=4,求角B的大小.【分析】(I)联立,sinB=cosAsinC,可知cbcosA=9,cosA•c=b,从而可求边AC的长度;(II)由(I),结合BC=4=a,b=3代入即得AB=5,从而三角形为直角三角形,由此可求角B的大小.【解答】解:(I),又sinB=cosAsinC⇒cosA•c=b代入得b=3,(II),将BC=4=a,b=3代入即得AB=5⇒【点评】本题以三角形为载体,考查向量的数量积,考查正余弦定理的运用,属于基础题.33.(2011•江西校级模拟)在△ABC中,角A、B、C的对边分别为a、b、c,若sin22C+sin2C•sinC+cos2C=1,且a+b=5,c=.(1)求角C的大小;(2)求△ABC的面积.【分析】(1)通过二倍角公式化简已知表达式,求出cosC的值,然后在三角形中求角C的大小;(2)结合(1)通过余弦定理,求出ab的值,然后直接求△ABC的面积.【解答】解:(1)因为sin22C+sin2C×sinC+cos2C=1,所以4sin2Ccos2C+2sin2CcosC+1﹣2sin2C=1,则2cos2C+cosC﹣1=0.得出cosC=所以C=60°…(6分)(2)由余弦定理可知:∴…(12分)【点评】本题是基础题,借助三角形考查二倍角公式的应用,余弦定理是解答(2)的关键,考查计算能力.34.(2016秋•陕西期中)(1)在△ABC中,a=3,c=2,B=60°求b(2)在△ABC中,A=60°,B=45°,a=2 求c.【分析】(1)利用余弦定理即可求出b的值;(2)利用三角形内角和求出C的值,再由正弦定理求出c的值.【解答】解:(1)在△ABC中,a=3,c=2,B=60°,由余弦定理可得b2=a2+c2﹣2accosB=32+22﹣2×3×2×cos60°=7,∴b=;(2)在△ABC中,A=60°,B=45°,∴C=75°,∴sin75°=sin(30°+45°)=sin30°cos45°+cos30°sin45°=;又a=2,由正弦定理得=,∴c=×sin75°=×=+.【点评】本题考查了正弦、余弦定理的应用问题,也考查了三角形内角和定理与三角恒等变换问题,是基础题.35.(2010•沈丘县校级模拟)已知△ABC的周长为4(),且sinB+sinC=sinA.求边长a的值.【分析】先根据正弦定理用角的正弦值和外接圆半径表示出边长,再由sinB+sinC=sinA可得到b+c=a,结合△ABC的周长为4(),可求得a 的值.【解答】解:设三角形的外接圆半径为R,根据正弦定理有a=2R×sinA,b=2R×sinB,c=2R×sinC因为sinB+sinC=sinA,两边同时乘以2R得:2R×sinB+2R×sinC=×2RsinA 即:b+c= a ①又由题意有:a+b+c=4(+1)②;解①②得:a=4即边长a的值为4.【点评】本题主要考查正弦定理的应用.正弦定理和余弦定理在解三角形中应用比较广泛,对于定理的内容一定要熟练掌握并能够熟练应用.36.(2013春•仙桃校级期中)在△ABC中,a=1,,B=45°,求角A、C及边c.【分析】由已知中a=1,,B=45°°,代入正弦定理可得A的正弦值,结合已知中a<b,可得A值,进而根据内角和定理求出C,再由正弦定理求出c.【解答】解:由正弦定理∴sinA=,∵a<b,∴A=30°,C=105°,∵=2,∴c=.【点评】本题考查的知识点是正弦定理,考查学生的计算能力,比较基础.37.在锐角△ABC中,已知,,BC=3.求△ABC的面积.【分析】先利用同角三角函数基本关系求得sinA和sinC的值,进而利用正弦定理求得AB,根据sinB=sin(A+C)利用两角和公式求得sinB的值,最后利用三角形面积公式求得答案.【解答】解:sinA==,sinC==由正弦定理可知=∴AB=×=2sinB=sin(A+C)=×+×=∴△ABC的面积为AB•BC•sinB=×2×3×=3【点评】本题主要考查了解三角形的实际应用.解题的关键是利用正弦定理完成边角问题的互化.38.在△ABC中,∠C=90°,CD是斜边AB上的高,已知CD=12,AD=5,求BD,AB,AC,BC的长.【分析】利用射影定理,即可求BD,AB,AC,BC的长.【解答】解:∵△ABC中,∠C=90°,CD是斜边AB上的高,∴CD2=AD•BD,∵CD=12,AD=5,∴BD=,∴AB=,∵AC2=AD•AB,BC2=BD•AB,∴AC=13,BC=.【点评】本题考查射影定理,考查学生的计算能力,正确运用射影定理是关键.39.(2016春•西秀区校级月考)在△ABC中,a=5,B=45°,C=105°,解三角形.【分析】由B与C的度数求出A的度数,利用正弦定理求出b与c的值即可.【解答】解:∵在△ABC中,a=5,B=45°,C=105°,∴A=30°,sinC=sin(45°+60°)=,由正弦定理得:b==5,c==.【点评】此题考查了正弦、余弦定理,两角和与差的正弦函数公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.40.(2015秋•邯郸校级月考)在△ABC中,A,B,C所对的边分别为a,b,c 已知,c=1,B=45°,求a,A,C.【分析】利用正弦定理,即可求解.【解答】解:由正弦定理可得,∴sinC=,∵c<b,∴C<B,∴C=30°,∴A=′180°﹣45°﹣35°=105°,∴,∴a=.【点评】本题考查正弦定理,考查学生的计算能力,比较基础.。
小题专练·作业(十四)一、选择题1.(2014·福建)在下列向量组中,可以把向量a =(3,2)表示出来的是( )A .e 1=(0,0),e 2=(1,2)B .e 1=(-1,2),e 2=(5,-2)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=(-2,3) 答案 B解析 根据平面向量基本定理理解.由题意知,A 选项中e 1=0,C ,D 选项中两向量均共线,都不符合基底条件,故选B(事实上,a =(3,2)=2e 1+e 2).2.(2014·合肥质检)在△ABC 中,已知2a cos B =c ,sin A sin B ·(2-cos C )=sin 2C 2+12,则△ABC 为( )A .等边三角形B .等腰直角三角形C .锐角非等边三角形D .钝角三角形答案 B解析 由2a cos B =c ,得2a ·a 2+c 2-b 22ac =c .所以a 2=b 2,所以a =b .因为sin A sin B (2-cos C )=sin 2C2+12,所以2sin A ·sin B ·(2-cos C )-2+1-2sin 2C2=0,所以2sin A sin B (2-cos C )-2+cos C =0,所以(2-cos C )(2sin A sin B -1)=0.因为cos C ≠2,所以sin A sin B =12.因为a =b ,所以sin 2A =12,所以A =B =π4,所以△ABC 是等腰直角三角形,故选B.3.(2014·广州综合检测)若函数f (x )=x 2+ax +1的定义域为实数集R ,则实数a 的取值范围为( )A .(-2,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2]∪[2,+∞)D .[-2,2]答案 D解析 依题意x 2+ax +1≥0对x ∈R 恒成立,∴Δ=a 2-4≤0,∴-2≤a ≤2.4.(2014·安徽示范性高中测试)已知D 是△ABC 中BC 边上的点,AB =22,AC =4,∠C =30°,∠BAC >∠B ,则满足AD =5的点D 的个数为( )A .1B .2C .3D .0 答案 B解析 方法一 在△ABC 中,由正弦定理,得sin ∠B =AC ·sin ∠C AB =4×sin30°22=22,所以∠B =45°或∠B =135°.又∠BAC >∠B ,所以∠B =45°.若AD =5,则在△ABD 中,由余弦定理,得AD 2=AB 2+BD 2-2AB ·BD ·cos ∠B ,即5=8+BD 2-2·22BD ·cos45°,解得BD =1或BD =3,所以满足条件的点D 的个数为2.方法二 在△ABC 中,由正弦定理,得sin ∠B =AC ·sin ∠CAB =4×sin30°22=22,所以∠B =45°或∠B =135°.又∠BAC >∠B ,所以∠B =45°.过A 作AE ⊥BC ,垂足为E ,在Rt △ACE 中,因为AC =4,∠C =30°,所以AE =2.又AD =5,则AB >AD >AE ,所以满足条件的点D 的个数为2.5.(2014·潍坊期末考试)已知不等式x +2x +1<0的解集为{x |a <x <b },点A (a ,b )在直线mx +ny +1=0上,其中mn >0,则2m +1n 的最小值为( )A .4 2B .8C .9D .12答案 C解析 易知不等式x +2x +1<0的解集为(-2,-1),所以a =-2,b=-1,2m +n =1,2m +1n =(2m +n )(2m +1n )=5+2m n +2nm ≥5+4=9(当且仅当m =n =13时取等号),所以2m +1n 的最小值为9.6.(2014·浙江)设θ为两个非零向量a ,b 的夹角,已知对任意实数t ,|b +t a |的最小值为1.( )A .若θ确定,则|a |唯一确定B .若θ确定,则|b |唯一确定C .若|a |确定,则θ唯一确定D .若|b |确定,则θ唯一确定 答案 B解析 先求出向量的模,再通过函数最值求解. |b +t a |2=b 2+2a·b ·t +t 2a 2 =|a |2t 2+2|a|·|b |cos θ·t +|b |2. 因为|b +t a |min =1,所以4|a|2·|b |2-4|a|2·|b |2cos 2θ4|a |2=|b |2(1-cos 2θ)=1.所以|b |2sin 2θ=1,所以|b |sin θ=1,即|b |=1sin θ.即θ确定,|b |唯一确定.7.(2014·皖南八校联考)设A (a,1),B (2,b ),C (4,5)为坐标平面上三点(其中a ,b ∈R ),O 为坐标原点,若OA →与OB →在OC →方向上的投影相同,则实数a 与b 满足的关系式为( )A .4a -5b =3B .5a -4b =3C .4a +5b =14D .5a +4b =12答案 A解析 因为OA →与OB →在OC →方向上的投影相同,所以|OA →|cos 〈OA →,OC →〉=|OB →|cos 〈OB →,OC →〉,所以OA →·OC →=OB →·OC →.因为A (a,1),B (2,b ),C (4,5),所以(a,1)·(4,5)=(2,b )·(4,5),化简得4a -5b =3.8.(2014·武汉模拟)已知△ABC 的内角A ,C 满足sin Csin A =cos(A +C ),则tan C 的最大值为( )A. 2B.24C.22D.33 答案 B解析 因为sin Csin A =cos(A +C ),所以sin C =sin A cos(A +C ),即sin[(A +C )-A ]=sin A cos(A +C ),整理得sin(A +C )·cos A =2sin A ·cos(A +C ),则tan(A +C )=2tan A .因为sin Csin A =cos(A +C )>0.所以A 为锐角,则tan A >0.又tan C =tan[(A +C )-A ]=tan (A +C )-tan A 1+tan (A +C )tan A =tan A1+2tan 2A=11tan A +2tan A≤121tan A ·2tan A =24,当且仅当1tan A =2tan A 时等号成立,所以tan C 的最大值为24.9.(2014·江西五校联考)在棱长均为1的正四棱锥P -ABCD 中,点E 是BC 的中点,动点M 在四棱锥表面上运动,并且总保持ME →·AC →=0,则动点M 的轨迹的长度总和为( )A .2+ 2B .2+22 C .1+22 D .2答案 C 解析连接AC ,BD ,设其交点为O ,连接PO ,得AC ⊥BD ,AC ⊥PO ,所以AC ⊥平面PBD .过E 作与平面PBD 平行的平面EFG ,由ME →·AC →=0,得M 在平面EFG 内,则点M 的轨迹的长度总和等于三角形PBD 周长的一半.因为BD =2,PB =PD =1,所以三角形PBD 的周长为2+2,所以动点M 的轨迹的长度总和为1+22,故选C.10.(2014·福建)要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元答案 C解析 设底面矩形的一条边长是x m ,总造价是y 元,把y 与x 的函数关系式表示出来,再利用均值(基本)不等式求最小值.由题意知,体积V =4 m 3,高h =1 m ,所以底面积S =4 m 2,设底面矩形的一条边长是x m ,则另一条边长是4x m .又设总造价是y 元,则y =20×4+10×⎝ ⎛⎭⎪⎫2x +8x ≥80+202x ·8x =160,当且仅当2x=8x ,即x =2时取得等号.11.(2014·江南十校联考)在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP →=xOB →+yOC →,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( )A.1063B.1463 C .4 3 D .6 2答案 B解析 根据向量加法的平行四边形法则得动点P 的轨迹是以OB ,OC 为邻边的平行四边形,其面积为△BOC 面积的2倍.在△ABC 中,由余弦定理a 2=b 2+c 2-2bc cos A ,得BC =7.设△ABC 的内切圆的半径为r ,则12bc sin A =12(a +b +c )r ,解得r =263,所以S △BOC =12×BC ×r =12×7×263=763,故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463,故选B.12.(2014·江西二校联合测试)已知圆C :(x -2)2+y 2=4,圆M :(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R ),过圆M 上任意一点P 作圆C 的两条切线PE ,PF ,切点分别为E ,F ,则PE →·PF →的最小值是( )A .5B .6C .10D .12答案 B解析 圆C :(x -2)2+y 2=4的圆心C (2,0),半径为2;圆M :(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R )的圆心M (2+5cos θ,5sin θ),半径为1.所以|CM |=(5cos θ)2+(5sin θ)2=5,圆M 上任意一点P 到点C 的距离的取值范围为4≤|PC |≤6,设|PE |2=|PF |2=t ,因为t =|PC |2-4,所以12≤t ≤32.因为cos ∠EPF =cos2∠FPC =2cos 2∠FPC -1=2t t +4-1=t -4t +4=1-8t +4,所以PE →·PF →=|PE ||PF |cos ∠EPF =|PE |2·(1-8t +4)=t (1-8t +4)=t +32t +4-8,设y =t +32t +4-8(12≤t ≤32),因为y ′=1-32(t +4)2≥1-32(12+4)2=78>0,所以函数y =t +32t +4-8在[12,32]上为增函数,所以y ≥12+3212+4-8=6,即PE →·PF →的最小值是6,故选B.二、填空题13.(2014·山东)在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC 的面积为________.答案 16解析 由向量知识求出|AB →||AC →|的值,代入三角形面积公式求解. 已知A =π6,由题意得|AB →||AC →|cos π6=tan π6,|AB →||AC →|=23,所以△ABC 的面积S =12|AB →||AC →|sin π6=12×23×12=16.14.(2014·天津)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________.答案 2解析 根据条件把向量AF →,AE →用向量AB →,AD →表示出来,然后根据向量数量积公式求解.AE →·AF →=(AB →+BE →)·(AD →+DF →)=⎝ ⎛⎭⎪⎪⎫AB →+13BC →·⎝ ⎛⎭⎪⎪⎫AD →+1λDC →=AB →·AD →+1λAB →·DC →+13BC →·AD →+13λBC →·DC →=2×2×cos120°+1λ×2×2+13×2×2+13λ×2×2×cos120°=-2+4λ+43-23λ=103λ-23,又∵AE →·AF →=1,∴103λ-23=1,∴λ=2.15.(2014·齐鲁名校联考)定义在(0,+∞)上的函数f (x )满足f (x )+f (y )=f (xy ),且当x >1时,f (x )<0,若不等式f (x 2+y 2)≤f (xy )+f (a )对任意x ,y ∈(0,+∞)恒成立,则实数a 的取值范围是________.答案 (0,2]解析 ∵f (x 2+y 2)≤f (xy )+f (a ),∴f (x 2+y 2)≤f (a xy ).设0<x 1<x 2,则f (x 2)-f (x 1)=f (x 2x 1×x 1)-f (x 1)=f (x 2x 1).∵x 2x 1>1,∴f (x 2x 1)<0,则函数f (x )在(0,+∞)上单调递减,即x 2+y 2≥a xy ,∴a ≤x 2+y 2xy .而x 2+y2xy≥2,∴a ≤2,∴0<a ≤ 2.16.(2014·江苏灌云期中)已知不等式x 2-2x -3<0的整数解构成等差数列{a n }的前三项,则数列{a n }的第四项为________.答案 3或-1解析 ∵x 2-2x -3<0,∴-1<x <3,∴a 1=0,a 2=1,a 3=2,a 4=3或a 1=2,a 2=1,a 3=0,a 4=-1.17.(2014·浙江)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若AB =15 m ,AC =25 m ,∠BCM =30°,则tan θ的最大值是________.(仰角θ为直线AP 与平面ABC 所成角)答案539解析 先利用解三角形知识求解,再利用确定函数最值的方法确定最值.如图,过点P 作PO ⊥BC 于点O ,连接AO ,则∠P AO =θ. 设CO =x m ,则OP =33x m.在Rt △ABC 中,AB =15 m ,AC =25 m , 所以BC =20 m .所以cos ∠BCA =45. 所以AO =625+x 2-2×25x ×45=x 2-40 x +625 m.所以tan θ=33xx 2-40x +625=331-40x +625x 2=33⎝ ⎛⎭⎪⎫25x -452+925.当25x =45,即x =1254时,tan θ取得最大值为3335=539.18.(2014·四川)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.答案 5解析 求出定点A ,B 的坐标,并注意已知两直线互相垂直. ∵直线x +my =0与mx -y -m +3=0分别过定点A ,B , ∴A (0,0),B (1,3).当点P 与点A (或B )重合时,|P A |·|PB |为零;当点P 与点A ,B 均不重合时,∵P 为直线x +my =0与mx -y -m +3=0的交点,且易知此两直线垂直,∴△APB 为直角三角形,∴|AP |2+|BP |2=|AB |2=10.∴|P A |·|PB |≤|P A |2+|PB |22=102=5,当且仅当|P A |=|PB |时,上式等号成立.19.(2014·合肥质量检测)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则下列命题正确的是________.(写出所有正确命题的编号)①b a cos C <1-c a cos B ;②△ABC 的面积为S △ABC =12AB →·BC →·tan A ;③若a cos A =c cos C ,则△ABC 一定为等腰三角形;④若A 是△ABC 中的最大角,则△ABC 为钝角三角形的充要条件是-1<sin A +cos A <1;⑤若A =π3,a =3,则b 的最大值为2.答案 ④⑤解析 设R 为△ABC 的外接圆的半径,对于①,将b =2R sin B ,a =2R sin A ,c =2R sin C 代入b a cos C <1-c a cos B 中,可得sin B cos C +sin C cos B <sin A ,即sin(B +C )<sin A ,可得sin A <sin A ,所以①错.对于②,由于△ABC 的面积为S △ABC =12|AB →|·|AC →|·sin A ,此时A 可以取π2,而在S △ABC =12AB →·AC →·tan A 中A 取不到π2,所以②错.对于③,将a =2R sin A ,c =2R sin C 代入a cos A =c cos C 中,得sin A cos A =sin C cos C ⇒sin2A =sin2C ,故A =C 或A +C =π2,所以△ABC 不一定是等腰三角形,所以③错.对于④,必要性:因为△ABC 是钝角三角形且A 为最大角,即π2<A <π,所以0<sin A <1,-1<cos A <0,所以-1<sin A +cos A <1;充分性:因为-1<sin A +cos A <1,所以|sin A +cos A |<1,平方得sin2A <0,故π<2A <2π,即π2<A <π,所以A 为钝角,即△ABC 是钝角三角形,所以④对.对于⑤,由正弦定理,得3sin π3=b sin B ⇒b =2sin B ,当B =π2时,b max =2,所以⑤对.20.(2014·安徽)已知两个不相等的非零向量a ,b ,两组向量x 1,x 2,x 3,x 4,x 5和y 1,y 2,y 3,y 4,y 5均由2个a 和3个b 排列而成,记S =x 1·y 1+x 2·y 2+x 3·y 3+x 4·y 4+x 5·y 5,S min 表示S 所有可能取值中的最小值,则下列命题正确的是________.(写出所有正确命题的编号)①S 有5个不同的值;②若a ⊥b ,则S min 与|a |无关;③若a ∥b ,则S min 与|b |无关;④若|b |>4|a |,则S min >0;⑤若|b |=2|a|,S min =8|a|2,则a 与b 的夹角为π4. 答案 ②④解析 根据分类讨论思想及向量数量积定义求解.∵x i ,y i (i =1,2,3,4,5)均由2个a 和3个b 排列而成, ∴S = i =15x i y i 可能情况有以下三种:(1)S =2a 2+3b 2;(2)S =a 2+2a·b +2b 2;(3)S =4a·b +b 2.∵2a 2+3b 2-(a 2+2a·b +2b 2)=a 2+b 2-2a·b =a 2+b 2-2|a||b|cos θ≥0,a 2+2a·b +2b 2-4a·b -b 2=a 2+b 2-2a·b ≥0,∴S 的最小值为S min =b 2+4a·b.因此S 最多有3个不同的值,故①不正确.当a ⊥b 时,S 的最小值为S min =b 2与|a|无关,故②正确.当a ∥b 时,S 的最小值为S min =b 2+4|a||b|或S min =b 2-4|a||b|与|b |有关,故③不正确.当|b |>4|a|时,S min =b 2+4|a||b|cos θ≥b 2-4|a||b|=|b|(|b |-4|a |)>0.故④正确.当|b |=2|a|时,由S min =b 2+4a·b =8|a |2,知4a·b =4a 2,即a·b =a 2,∴|a||b|cos θ=a 2,∴cos θ=12,∴θ=π3,故⑤不正确.因此正确命题的编号为②④.。
【知识总结】1、设△ABC 中的最大角为C ,若2220a b c +-<,则△ABC 是钝角三角形;若222=0a b c +-,则△ABC 是直角三角形;若2220a b c +->,则△ABC 是锐角三角形;2、若三角形的两边相等或两角相等,则三角形为等腰三角形;3、注意:等腰直角三角形与等腰三角形或直角三角形不一样。
【巩固练习】1、在ABC △中,若222sin sin sin A B C +<,则角C 为()A .锐角B .钝角C .直角D .不确定【答案】B2、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos sin b C c B a A +=,则△ABC的形状为()A .锐角三角形B .直角三角形C .钝角三角形D .不确定B 【解析】∵cos cos sin bC c B a A +=,∴由正弦定理得2sin cos sin cos sin B C C B A +=,∴2sin()sin B C A +=,∴2sin sin A A =,∴sin 1A =,∴△ABC 是直角三角形.3、若则为()A .等边三角形B .等腰直角三角形C .有一个内角为30°的直角三角形D .有一个内角为30°的等腰三角形【答案】B 【解析】因为,而由正弦定理可知所以,即在三角形ABC 中,可得B=45°同理,由正弦定理可知所以,即在三角形ABC 中,可得C=45°所以三角形ABC 为等腰直角三角形所以选B4、在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,其面积为S ,若222a b ab c +-==,则ABC ∆一定是()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形【答案】B综上,故选B.5.在ABC ∆中,若sin 2sin cos A C B =,则ABC ∆是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形【答案】C即22b c =,即b c =,即ABC ∆是等腰三角形,故选:C.6.在ABC △中,若等式222sin sin sin A B C ==成立,则ABC △的形状是().A .等边三角形B .直角三角形C .锐角三角形D .钝角三角形【答案】A【解析】由正弦定理得222a b c ==,即a b c ==,故三角形为等边三角形.7.已知ABC △的内角A ,B ,C 的对边分别是a ,b ,c ,若2sin sin c ba B C+=,则ABC △的形状是A .等边三角形B .等腰直角三角形C .锐角三角形D .钝角【答案】B8.(2019·四川高一期末(文))已知,,a b c 分别是ABC∆的内角,,A B C 的的对边,若cos cA b<,则ABC ∆的形状为()A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形【答案】Asin sin cos C B A <sin()sin cos sin cos sin cos sin cos sin cos 0A B B AA B B A B AA B ∴+<∴+<∴<又sin 0A >,cos 0B ∴<,即B 为钝角,故选:A 。
平面向量与解三角形单元检测题一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1设X, y ∈R,向量a= (x,1), b = (1, y), C = (2, - 4),且a⊥ c, b // c,则∣a+ b∣=( )A. 5B. 10C. 2 5D. 10UuU I UuU UUr Uin 2. 在△ ABC中,N是AC边上一点,且AN = 2 NC , P是BN上的一点,若AP = m AB + 2UUIU2AC ,则实数m的值为()1 1A.9B.3C. 1D. 33. 已知点A( —1 , 1), B(1 , 2), C(- 2,- 1), D(3, 4),则向量AB在CD方向上的投影为3 2 3 '15 3 寸2 3 '15A.石B-2 C-~2 D.-4. 在直角坐标系XOy中,AB= (2,1), AC= (3, k),若三角形ABC是直角三角形,则k 的可能值个数是()A. 1B. 2C. 3D. 45. 已知向量a与b的夹角为120 ° ∣a∣= 3, ∣a+ b∣=√⅞,贝U Ibl等于().A . 5B . 4 C. 3 D . 16. 在四边形ABCD中,AC = (1 , 2), BD = (-4, 2),则该四边形的面积为A. 5B. 2 5C. 5D. 10T →→7. 如图所示,非零向量…=a,.QE= b,且BC丄OA,C为垂足,若」_= λa( λ ≠则),λ =()2 2 2&在△ ABC 中,sin A≤SinB+sin C-Sin BSin C,则A 的取值范围是10. 在平面直角坐标系中,若O为坐标原点,则A, B, C三点在同一直线上的等价条件为存在唯一的实数λ使得OC = λθA + (1 - λθB成立,此时称实数λ为向量OC关于OA和OB的终点共线分解系数”若已知P*3, 1), P2(- 1,3),且向量O→3与向量a= (1,1)垂直,则向量O→3 关于OP1和Ol^的终点共线分解系数”为()A. - 3B. 3C. 1 D . - 1二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)UIr UUlπ(A)( °,∏π(B)[ ,∏69.设△ ABC的内角A,πr 2 πππ(C)(O, ^] (D)[ ^ , π3 3B, C所对边分别为a,3 π 5 πB.— C— D.一3 4 6b, c.若b + C= 2a,3sin A = 5sin B ,则角C=11. 在平面直角坐标系XOy中,已知OA = (- 1, t), OB = (2,2).若∠ ABO = 90°则实数t的值为________12.已知a = (1,2), b = (1, λ ,若a 与b 的夹角为钝角,则实数λ的取值范围是 ______13. 已知正方形 ABCD 的边长为2, E 为CD 的中点,贝U AlBD = ___________ .∏14. 设8, e 2为单位向量,且 e 1, e ?的夹角为3,若a = E + 3e ?, b = 2环 则向量a 在b 方向3上的射影为 _________ .15. ________________________________________________________________ 若非零向量 a , b 满足Ial =Ib(2a + b) b = 0,则a 与b 的夹角为 ___________________________________ . 三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、 证明过程或演算步骤) 16. 已知△ ABC 的角A , B , C 所对的边分别是 a , b , c ,设向量 m = (a , b), n = (Sin B , Sin A), P = (b -2, a — 2).(1)若m ∕/ n ,求证:△ ABC 为等腰三角形;∏ _ ,⑵若m ⊥p ,边长C = 2,角C = 3,求厶ABC 的面积. 17. 在△ ABC 中,角 A,B,C 的对边分别为 a,b,c,已知 Sin ASin B+sin BSin C+cos 2B=1.2 π a(1)求证:a,b,c 成等差数列;(2)若C= ,求 的值•3 b118. 在△ ABC 中,a 、b 、C 分别是角 A 、B 、C 所对的边,且a=—c+bcos C.2(1)求角B 的大小;(2)若S △ABC 3 ,求b 的最小值.C A 3 19. 在△ ABC 中,角 A , B , C 的对边分别为 a , b , c ,若 acos ; + ccos ; = 3b. (1)求证:a , b , C 成等差数列;(2)若∠ B = 60° b = 4,求厶ABC 的面积.20. A ABC 为一个等腰三角形形状的空地 ,腰AC 的长为3(百米),底AB 的长为4(百米)•现决 定在空地内筑一条笔直的小路 EF(宽度不计),将该空地分成一个四边形和一个三角形 ,设分成 的四边形和三角形的周长相等,面积分别为S 1和S 2.(1)若小路一端E 为AC 的中点,求此时小路的长度; (2)若小路的端点E 、F 两点分别在两腰上,求-SL的最小值•S221. 已知△ ABC 的角A , B , C 所对的边分别是 a , b , C ,且满(1)证明:b ∙ c = 2a ;(2)如图,点 0 是厶 ABC 外一点,设∙ AoB-V(0:::二),OA=2OB =2 ,当b = C 时,求平面四边形 OACB 面积的最最大值。
第四章三角函数练习一角的的概念的推广(一)要点1.正角、负角和零角:规定,一条射线绕它的端点按逆时针方向旋转形成的角为正角.按顺时针方向旋转形成的角为负角.射线没有旋转,形成零角.2.象限角:在平面直角坐标系中,使角的顶点与坐标原点重合,角的终边在x轴的非负半轴上,角的终边落在第几象限内,就称这个角是第几象限角.3. 轴上角:当角的终边落在坐标轴上时,就称之为轴上角,它不属于任何象限.同步练习1.给出命题:①-880是第四象限角;②2560是第三象限角;③4800是第二象限角;④-3000是第一象限角.其中正确的有别( )(A)1个(B)2个(C)3个(D)4个2.有下列四个角:⑴-2100,⑵-1900,⑶-6300,⑷12300其中第二象限的角为( )(A)⑴⑷(B)⑴⑶⑷(C)⑴⑵⑷(D)⑴⑵⑶⑷3.下列各组的两个角中,终边不重合的一组是( )(A) -210与6990(B) 1800与-5400(C) 900与9900(D) 1500与69004.时针的分针经过期2小时40分钟,它所转过的角是______度,这个角是第____象限角.5.在00~3600范围内,找出与下列各角终边相同的角,并判断它们是第几象限角或哪个轴上的角.⑴6900; ⑵5400; ⑶-2000; ⑷-4500.6.在平面直角坐标系中,作出下列各角,并指出它们是哪个象限的角.⑴-3300; ⑵-18300; ⑶-6300; ⑷9900.7.在[-1800, 12600]内,写出与1800角终边相同的所有角.练习二 角的概念的推广(二)要点1. 与角α终边相同的角的集合为{β|β=α+k ·3600,k ∈Z}.2. 第一象限角、锐角和小于900的角的区别与联系.1.下列命题中,正确的是 ( )(A)第一象限角必是锐角 (B)终边相同的角必相等(C)相等的角终边位置必相同 (D)不相等的角终边位置必不相同2. 以下四个命题:⑴小于900的角为锐角 ; ⑵钝角是第二象限角; ⑶第一象限角不一定是负角;⑷第二象限角必大于第一象限角.其中正确命题的个数是 ( ) (A)1 (B)2 (C) 3 (D)43. 角α的终边上一点的坐标是(2,-2),则角α的集合是________________.4. 与-20050终边相同且绝对值最小的角是________________.5. 写出与下列各角终边相同的角的集合,并把集合中适合不等式-3600≤α≤3600的元素α写出来.⑴ 600; ⑵ -834030/.6.写出下列角的集合:⑴终边在y 轴负半轴上的角;⑵终边在坐标轴上的角;⑶终边在第二、第四象限角平分线上的角;⑷终边在第三象限的角;⑸终边在第四象限的角. [思考与研究]若α是第一象限角,试确定2α、2α、3α所在的象限.练习三 弧度制 (一)要点1. 角度制与弧度制:这是两种不同的度量角的制度.角度制是以“度”为单位;弧度制是以“弧度”为单位. 2. 度与弧度的相互换算:10≈0.01745弧度, 1弧度≈57018/.3. 在同一个式子中,两种制度不能混用.如:与600终边相同的角的集合不能表示为{x|x=2k π+600,k ∈Z},正确的表示方法是x|x=2k π+3π,k ∈Z }或{ x|x=k ·3600 +600,k ∈Z } 同步练习1. 若α=-3.2,则角α的终边在 ( ) (A)第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限2.①4π, ② -45π,③419π,④-43π,其中终边相同的角是 ( )(A) ①和② (B) ②和③ (C) ③和④ (D) ①和④ 3. 若4π<α<6π,且与-32π角的终边相同,则α=_________. 4.正三角形,正四边形,正五边形, 正六边形, 正八边形, 正十边形, 正n 边形的一个内角的大小分别_____,____ ,_____,_____,_____,_____, ______.(用弧度表示) 5.把下列各角用另一种度量制表示. ⑴1350⑵ -67030/⑶2 ⑷-67π6. 将下列各数按从小到大的顺序排列.Sin40, sin21, sin300, sin17. 把下列各角化成2k π+α(0≤α<2π,)的形式, 并求出在(-2π,4π)内和它终边相同的角.(1)-316π; (2)-6750.8. 若角θ的终边与1680角的终边相同,求在[0,2π]内终边与3θ角的终边相同的角.练习四 弧度制(二)要点1. 弧长公式和扇形面积公式:弧长公式 L=|α|r 扇形面积公式 S=21Lr=21|α|r 2其中α是圆心角的弧度数,L 为圆心角α所对的弧长,r 为圆半径.2. 无论是角度制还是用弧度制,都能在角的集合与实数集之间建立起一一对应的关系,但用弧度制表示角时,容易找出与角对应的实数. 同步练习1.半径为5 cm 的圆中,弧长为415cm 的圆弧所对的圆心角等于 ( ) (A)145(B) 1350(C)π135 (D)π1452.将分针拨快10分钟,则分针转过的弧度数是 ( ) (A)3π (B)-3π (C) 6π (D)-6π 3. 半径为 4 的扇形,基它的周长等于弧所在的半圆周的长,则这个扇形的面积是_________.4. 已知一弧所对的圆周角为600,圆的半径为10cm,则此弧所在的弓形的面积等于___________.5. 已知扇形的周长为6cm,面积为2cm 2,求扇形圆心角的弧度数.6. 2弧度的圆心角所对的弦长为2,求这个圆心角所夹扇形的面积.7. 一条弦的长度等于其所在圆的半径r.(1) 求这条弦所在的劣弧长;(2) 求这条弦和劣弧所组成的弓形的面积.练习五 任意角的三角函数 (一)要点1. 三角函数是以角为自变量,以比值为函数值的函数.三角函数的定义域:sin α,cos α的定义域都是R,tan α的定义域是{α|α≠k π+2π, k ∈Z}. 2. 三角函数值在各个象限的符号:第一象限全正,第二象限只有正弦正,第三象限只有正切正,第四象限只有余弦正. 同步练习1.当α为第二象限角时ααsin |sin |-|cos |cos αα的值是 ( ) (A)-2 (B)0 (C)-1 (D)22.设角α的终边过点P(-3α,-4α),(α≠0),则sin α-cos α的值是 ( ) (A)51 (B)- 51 (C)- 51或 -57 (D) -51或51 3.在三角形ABC 中,若cosA ·tanB ·cotC<0,则这个三角形的的形状是_____. 4.设θ为第二象限角,其终边上一点为P(m,5),且cos α,则α的值为_______. 5.已知β的终边经过点P(m,-3)(m ≠0),且cos β=2m,求sin β,tan β的值.6.求cos 3π-tan 45π+43tan 26π+sin 611π+cos 267π-sin 23π的值.7.求函数y=xxsin 1tan +的定义域.练习六 任意角的三角函数(二)要点1. 终边相同角的同名三角函数值相等(公式一),利用这组公式可以将任意角的三角函数值化为00~3600(或0~2π)间的角的三角函数值. 2. 三角函数线都是有向线段、线段的方向表示三角函数值的正负,线段的长度表示三角函数值的绝对值.书写三角函数线时,要注意起点与与终点的次序. 同步练习 1.sin637π的值等于 ( ) (A)21 (B)23 (C)- 21(D) -232.设α、β是第二象限角,若sin α>sin β,则 ( )(A)tan α>tan β (B)cos α<cot β (C)cos α>cos β (D)sec α>sec β 3. 在下列各题中的_____处,填上适当的符号(>,=,<). ⑴sin1560·cos(-4400)_____0; ⑵cot(-817π)·sin(-34π)_______0;⑶5.1tan 4sin ____0;⑷sin320π·tan(-417π)·cos 27π______0. 4. 已知α∈(-π,π),且cos α>-23,则角α的取值范围是________. 5. 计算:(1) m 2sin(-6300)+n 2tan(-3150)-2mncos(-7200);(2) sin(-623π)+cos 713πtan4π-cos 313π.6. 在单位圆中,用阴影线表示满足条件的θ的终边的范围: (1)tan θ≥1 (2)cos θ<21 (3)-21<sin θ≤237. 设0<α<2π,利用单位圆中的三角函数线证明:sin α+cos α>1练习七 同角三角函数的基本关系式(一)要点同角三角函数的基本关系式:sin 2α+cos 2α=1,ααcos sin =tan α,tan α·cot α=1.(1)公式中应注意“同角”二字,如sin 2α+cos 2β=1就不恒成立.(2)注意α的范围,第二个关系式中α≠k π+2π(k ∈Z),第三个关系式中α≠2πk (k ∈Z).(3)对公式的的使用要做到顺用、逆用、变用、活用.同步练习1.下列各式正确的是 ( ) (A)sin 2300+cos 2600=1 (B)sin23π/cos 23π=tan 23π (C)tan2π·cot2π=1 (D)sin 220050+cos 220050=12.下列各式能成立的是 ( ) (A)sin α=cos α=21 (B)cos α=21且tan α=2 (C)sin α=21且tan α=33 (D)tan α=2且cot α=-213. 已知cos θ=31,,则1+tan 4θ=______. 4. 已知sin α+ sin 2α=1则cos 2α+cos 4α的值等于_________. 5. 已知sin α=-53,α是第四象限角,求cos α、tan α的值.6. 已知cot α=-3,求sin α、cos α的值.7. 已知cos α=m(|m|≤1),求tan α和sin α.练习八 同角三角函数的基本关系式(二)要点1. 化简三角函数式的一般要求是(1)能求出函数值的要求出函数值,函数种类尽可能的少;(2)要使化简后的式子项数最少,次数最低;(3)尽量化去含有根式的式子,尽可能的不含分母.2. 证明三角恒等式的实质是消除等式两边的差异,一般由繁到简,可采用:①左边⇒右边 ②右边⇒左边③左边-右边=0④分别从左右两边推出相同的结果. 同步练习1.化简02100sin 1-等于 ( )2.若tan α=a,且sin α=21aa +,则α是 ( )(A) 第一、二象限角 (B)第一、三象限角 (C)第一、四象限角 (D)第二、三象限角3. 化简sin 2α+sin 2β-sin 2αsin 2β+cos 2αcos 2β=____________4. 若tanx=3则xx22cos 1sin +的值是___________ 5. 化简下列各式: (1) ααcos 1cos 1-+-ααcos 1cos 1+-,其中α为第二象限角;(2)αααα2222tan sin tan sin -.6. 证明下列恒等式(1) cos α(αcos 2+tan α) (αcos 1-2tan α)=2cos α-3tan α (2) x x x x 2sin 2cos 2cos 2sin 2122--=xx2tan 12tan 1+-练习九 正余弦的诱导公式(一)要点1.公式二:sin(1800+α)=-sin α,cos(1800+α)=-cos α. 公式三: sin(-α)=-sin α, cos(-α)=cos α.2. 公式中的α是任意角,但在记忆时,可把α看作锐角,从而1800+α可看作第三象限角, -α可看作第四象限角. 同步练习1.下列等式中,恒成立的是 ( )(A) sin(1800+2000)=sin2000(B)cos(-α)=-cos α(C) cos(1800+2000)=-cos2000(D)sin(-α)=sin α 2.sin 2(π+α)-cos(π+α)cos(-α)+1的值是 ( )(A) 2sin 2α (B)0 (C)1 (D)2 3. 计算sin34πcos(-6π)tan(-45π)=_________.4. 化简sin 2(-α)tan α+cos 2(π+α)cot α-2 sin(π+α) cos(-α)=_____5. 求下列各三角函数值:(1) sin(-13200) (2) tan9450(3)cos655π(4)cot(-322π)6.(1)求值sin 2(-300) +sin 22250 +2sin2100 +cos 2(-450) ; (2)若sin(π+α)= 41,求[]1)cos(cos )cos(-++απααπ-)cos()cos()2cos()cos(απαπαπα-+++--值;(3) 已知sin(3π-α)= 31;求sin(6π+α),sin(310π-α)的值.7. 化简:)(cos )tan()2cot()cos()(sin 32πααππααππα++--++练习十 正余弦的诱导公式(二)要点1.公式四: sin(1800-α)=sin α,cos(1800-α)=-cos α.公式五sin(3600-α)=-sin α,cos(3600-α)=cos α.2.记忆公式时, 1800-α可看作第二象限角, 3600-α可看作第四象限角 同步练习 1.sin(-619π)的值是 ( ) (A)21 (B) -21(C)23 (D) -232.已知cos(π-x)=-21,23π<x<2π,则sin(2π-x)的值等于 ( ) (A)21(B)± 23 (C)23 (D) -233.计算:sin(-15600)cos9300+cos(-13800) sin(-14100)=_______. 4. 已知COS(6π+θ)= 33,则COS(65π-θ)=__________.5. 求值0200170cos 110cos 10cos 10sin 21---6. 已知cos(π-α)=-21,计算: (1) sin(2π-α); (2)cot[2)12(π+k +α](k ∈Z)7. 已知sin(α-π) =2cos(2π-α),求)sin()cos(3)2cos(5)sin(ααπαπαπ----+-的值数学家陈景润陈景润(1933~1996),中国数学家、中国科学院院士。
第五编 平面向量、解三角形§5.1 平面向量的概念及线性运算基础自测 1.下列等式正确的是 (填序号).①a +0=a ②a +b =b +a ③+≠0 ④=++答案 ①②④2.如图所示,在平行四边行ABCD 中,下列结论中正确的是 . ①= ②+= ③-= ④+=0答案 ①②④3.(2008²广东理,8)在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若=a ,=b ,则= . 答案 32a +31b 4.若ABCD 是正方形,E 是DC 边的中点,且AB =a ,AD =b ,则= . 答案 b -21a 5.设四边形ABCD 中,有=21,且||=||,则这个四边形是 . 答案 等腰梯形例1 给出下列命题①向量的长度与向量的长度相等;②向量a 与向量b 平行,则a 与b 的方向相同或相反;③两个有共同起点并且相等的向量,其终点必相同;④两个有共同终点的向量,一定是共线向量;⑤向量与向量是共线向量,则点A 、B 、C 、D 必在同一条直线上;⑥有向线段就是向量,向量就是有向线段.其中假命题的个数为 .答案 4例2 如图所示,若四边形ABCD 是一个等腰梯形, AB ∥DC ,M 、N 分别是DC 、AB 的中点,已知=a ,=b,=c,试用a 、b 、c 表示,,+.C D∵MN =MD ++AN ,∴=-21,=-,=21, ∴MN =21a -b -21c . +CN =+MN +CM +MN =2MN =a -2b -c .例3 设两个非零向量a 与b 不共线,(1)若=a +b ,=2a +8b ,=3(a -b ),求证:A 、B 、D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 共线.(1)证明 ∵=a +b ,=2a +8b ,=3(a -b ),∴=+=2a +8b +3(a -b )=2a +8b +3a -3b=5(a +b )=5.∴、共线,又∵它们有公共点B ,∴A 、B 、D 三点共线.(2)解 ∵k a +b 与a +k b 共线,∴存在实数λ,使k a +b =λ(a +k b ), 即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b .∵a 、b 是不共线的两个非零向量,∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1.例4 (14分)如图所示,在△ABO 中,=41, =21,AD 与BC 相交于点M ,设=a ,=b .试 用a 和b 表示向量.解 设OM =m a +n b , 则=-=m a +n b -a =(m -1)a +n b .=-=21-=-a +21b . 又∵A 、M 、D 三点共线,∴AM 与AD 共线.∴存在实数t ,使得=t ,即(m -1)a +n b =t (-a +21b ). 4分 ∴(m -1)a +n b =-t a +21t b . ⎪⎩⎪⎨⎧=-=-21t n t m ,消去t 得:m -1=-2n . 即m +2n =1. ① 6分∴又∵CM =-=m a +n b -41a =(m -41)a +n b . =-=b -41a =-41a +b . 又∵C 、M 、B 三点共线,∴与共线. 10分∴存在实数t 1,使得=t 1,∴(m -41)a +n b =t 1⎪⎭⎫ ⎝⎛+-41, ∴⎪⎩⎪⎨⎧=-=-114141t n t m ,消去t 1得,4m +n =1 ② 12分由①②得m =71,n =73, ∴OM =71a +73b . 14分1.下列命题中真命题的个数为 .①若|a |=|b |,则a =b 或a =-b ;②若=,则A 、B 、C 、D 是一个平行四边形的四个顶点;③若a =b ,b =c ,则a =c ;④若a ∥b ,b ∥c ,则a ∥c . 答案 12.在△OAB 中,延长BA 到C ,使AC =BA ,在OB 上取点D ,使DB =31OB .DC 与OA 交于E ,设=a ,=b ,用a , b 表示向量,. 解 因为A 是BC 的中点,所以=21(+),即=2-=2a -b ; =-=-32=2a -b -32b =2a -35b . 3.若a ,b 是两个不共线的非零向量,a 与b 起点相同,则当t 为何值时,a ,t b ,31(a +b )三向量的终点在同一条直线上? 解 设=a ,=t b ,=31(a +b ), ∴=-=-32a +31b ,=-=t b -a . 要使A 、B 、C 三点共线,只需AC =λ即-32a +31b =λt b -λa a b∴有 ⎪⎪⎩⎪⎪⎨⎧=-=-t λλ3132,∴⎪⎪⎩⎪⎪⎨⎧==2132t λ ∴当t =21时,三向量终点在同一直线上. 4.如图所示,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM 的值.解 方法一 设e 1=BM ,e 2=, 则=+CM =-3e 2-e 1,=+=2e 1+e 2.=λ=-3λe 2-λe 1,因为A 、P 、M 和B 、P 、N 分别共线,所以存在实数μ、λ,使=μ=2μe 1+μe 2,∴=-=(λ+2μ)e 1+(3λ+μ)e 2, 另外=+=2e 1+3e 2,⎩⎨⎧=+=+3322μλμλ,∴⎪⎪⎩⎪⎪⎨⎧==5354μλ, ∴=54,=53,∴AP ∶PM =4∶1. 方法二 设=λAM , ∵=21(+)=21+43, ∴=2λ+43λ. ∵B 、P 、N 三点共线,∴-=t (-),∴=(1+t )-t ∴⎪⎪⎩⎪⎪⎨⎧-=+=t t λλ4312∴2λ+43λ=1,λ=54,∴AP ∶PM =4∶1.一、填空题1.下列算式中正确的是 (填序号).①++=0 ②-= ③0²=0 ④λ(μa )=λ²μ²a 答案 ①③④2.(2008²全国Ⅰ理)在△ABC 中,=c ,=b ,若点D 满足=2,则= (用b ,c 表示). 答案 32b +31c11是 .答案 等腰梯形4.如图所示,平面内的两条相交直线OP 1和OP 2将该平面分割成四个部分Ⅰ、Ⅱ、Ⅲ、Ⅳ(不包括边界).若=a 1+b 2,且点P 落在第Ⅲ部分,则实数a ,b 满足a 0,b 0.(用“>”,“<”或“=”填空)答案 > <5.设=x +y ,且A 、B 、C 三点共线(该直线不过端点O ),则x +y = .答案 16.已知平面内有一点P 及一个△ABC ,若++=,则点P 在线段 上.答案 AC7.在△ABC 中,=a ,=b ,M 是CB 的中点,N 是AB 的中点,且CN 、AM 交于点P ,则可用a 、b 表示为 . 答案 -32a +31b 8.在△ABC 中,已知D 是AB 边上一点,若=2,=31+λ,则λ= . 答案 32 二、解答题9.如图所示,△ABC 中,=32,DE ∥BC 交AC 于E ,AM 是BC 边上中线,交DE 于N .设=a ,=b ,用a ,b 分别表示向量,,,,,. 解 ⎪⎭⎪⎬⎫=BC DE 32//⇒=32=32b . BC =AC -=b -a .由△ADE ∽△ABC ,得=32=32(b -a ). 由AM 是△ABC 的中线,DE ∥BC ,得=21DE =31(b -a ). 而且=+=a +21=a +21(b -a ) =21(a +b ). ⎪⎭⎪⎬⎫=∆∆ABM ADN 32⇒=32=31(a +b ). 10.如图所示,在△ABC 中,D 、F 分别是BC 、AC 的中点,=32,=a ,=b . (1)用a 、b 表示向量、、、、;(2)求证:B 、E 、F 三点共线.(1)解 延长AD 到G ,使=21, 连接BG 、CG ,得到 ABGC , ∽AD =21=21(a +b ), =32=31(a +b ). =21=21b , =-=31(a +b )-a =31(b -2a ). =-=21b -a =21(b -2a ). (2)证明 由(1)可知=32BF ,所以B 、E 、F 三点共线. 11.已知:任意四边形ABCD 中,E 、F 分别是AD 、BC 的中点,求证:=21(+). 证明 方法一 如图,∵E 、F 分别是AD 、BC 的中点,∴+=0,FB +=0,又∵+++=0, ∴=++ ① 同理=++ ② 由①+②得,2=++(+)+(+)=+.∴=21(+). 方法二 连结,,则=+DC ,=+AB ,∴=21(+) =21(+++) =21(+). 12.已知点G 为△ABC 的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且=x ,=y , 求x 1+y1的值. 解 根据题意G 为三角形的重心,故AG =31(+AC ), =-=31(+)-x=(31-x )+31, =-=y - =y -31(+) =(y -31)-31, 由于MG 与GN 共线,根据共线向量基本定理知=λ⇒(31-x )+31 =λ⎥⎦⎤⎢⎣⎡--AB AC y 31)31(, ⎪⎪⎩⎪⎪⎨⎧-=-=-)31(313131y x λλ⇒3131--x =3131-y ⇒x +y -3xy =0两边同除以xy 得x 1+y1=3. §5.2 平面向量基本定理及坐标表示基础自测 1.已知平面向量a =(1,1),b =(1,-1),则向量21a -23b = . 答案 (-1,2) 2.(2008² 安徽理)在平行四边形ABCD 中,AC 为一条对角线,若=(2,4),=(1,3),则= . 答案 (-3,-5)3.若向量a =(1,1),b =(1,-1),c =(-2,1),则c = (用a ,b 表示).答案 -21a -23b 4.已知向量a =⎪⎭⎫ ⎝⎛x 2`1,8,b =(x ,1),其中x >0,若(a -2b )∥(2a +b ),则x 的值为 . 答案 45.设a =⎪⎭⎫ ⎝⎛43,sin x ,b =⎪⎭⎫ ⎝⎛x ,cos 2131,且a ∥b ,则锐角x 为 . 答案4π例1 设两个非零向量e 1和e 2不共线.(1)如果=e 1-e 2,=3e1+2e 2,=-8e 1-2e 2,求证:A 、C 、D 三点共线;121212(1)证明 =e 1-e 2,BC =3e 1+2e 2, CD =-8e 1-2e 2,=+=4e 1+e 2=-21(-8e 1-2e 2)=-21, ∴与共线, 又∵与有公共点C , ∴A 、C 、D 三点共线.(2)解 =+=(e 1+e 2)+(2e 1-3e 2)=3e 1-2e 2,∵A 、C 、D 三点共线,∴与共线,从而存在实数λ使得=λ,即3e 1-2e 2=λ(2e 1-k e 2),由平面向量的基本定理,得⎩⎨⎧-=-=kλλ223,解之得λ=32,k =34. 例2 已知点A (1,0)、B (0,2)、C (-1,-2),求以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.解 设D 的坐标为(x ,y ).(1)若是 ,则由=DC 得(0,2)-(1,0)=(-1,-2)-(x ,y ),即(-1,2)=(-1-x ,-2-y ),∴⎩⎨⎧=---=--2211y x , ∴x =0,y =-4.∴D 点的坐标为(0,-4)(如图中的D 1).(2,则由=CB 得(x ,y )-(1,0)=(0,2)-(-1,-2),即(x -1,y )=(1,4).解得x =2,y =4.∴D 点坐标为(2,4)(如图中的D 2).(3,则由=得(0,2-(1,0)=(x ,y )-(-1,-2),即(-1,2)=(x +1,y +2).解得x =-2,y =0.∴D 点的坐标为(-2,0)(如图中的D 3).综上所述,以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标为(0,-4)或(2,4)或(-2,0). 例3 (14分)平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1).回答下列问题:(1)若(a +k c )∥(2b -a ),求实数k ;(2)设d =(x ,y )满足(d -c )∥(a +b )且|d -c |=1,求d .解 (1)∵(a +k c )∥(2b -a ),又a +k c =(3+4k ,2+k ),2b -a =(-5,2), 2分 ∴2³(3+4k )-(-5)³(2+k )=0, 4分 ∴k =-1316. 6分 (2)∵d -c =(x -4,y -1),a +b =(2,4),又(d -c )∥(a +b )且|d -c |=1,∴()()()()⎪⎩⎪⎨⎧=-+-=---1140124422y x y x , 10分 解得⎪⎪⎩⎪⎪⎨⎧+=+=5521554y x 或⎪⎪⎩⎪⎪⎨⎧-=-=5521554y x . 12分∴d =⎪⎪⎭⎫ ⎝⎛++55255520,或d =⎪⎪⎭⎫ ⎝⎛--55255520,. 14分1.如图所示,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM =c ,=d ,试用c ,d 表示,AD . 解 方法一 设AB =a ,AD =b ,则a =+=d +⎪⎭⎫ ⎝⎛-b 21 b =+=c +⎪⎭⎫ ⎝⎛-a 21 将②代入①得a =d +⎪⎭⎫ ⎝⎛-21⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+a c 21 ⇒a =d 34-32c ,代入② 得b =c+⎪⎭⎫ ⎝⎛-21=⎪⎭⎫ ⎝⎛-c d 323434c -32d 即=34d-32c ,=34c -32d 方法二 设=a ,=b .因M ,N 分别为CD ,BC 的中点,所以=21b ,=21a , 因而⇒⎪⎪⎩⎪⎪⎨⎧+=+=b a d a b c 2121⎪⎪⎩⎪⎪⎨⎧-=-=)2(32)2(32d c b c d a , 即AB =32(2d -c ), AD =32(2c -d ). 2.已知A (-2,4)、B (3,-1)、C (-3,-4)且CM =3,=2,求点M 、N 及的坐标. 解 ∵A (-2,4)、B (3,-1)、C (-3,-4), ∴=(1,8),=(6,3),∴CM =3=(3,24),=2=(12,6). 设M (x ,y ),则有CM =(x +3,y +4),∴⎩⎨⎧=+=+24433y x ,∴⎩⎨⎧==200y x , ∴M 点的坐标为(0,20).同理可求得N 点坐标为(9,2),因此=(9,-18),故所求点M 、N 的坐标分别为(0,20)、(9,2),的坐标为(9,-18).3.已知A 、B 、C 三点的坐标分别为(-1,0)、(3,-1)、(1,2),并且=31,=31. 求证:∥. 证明 设E 、F 两点的坐标分别为(x 1,y 1)、(x 2,y 2),则依题意,得=(2,2),=(-2,3), =(4,-1).AE =31=⎪⎭⎫ ⎝⎛32,32,BF =31=⎪⎭⎫ ⎝⎛-1,32 =(x 1,y 1)-(-1,0)= ⎪⎭⎫ ⎝⎛32,32, =(x 2,y 2)-(3,-1)= ⎪⎭⎫ ⎝⎛-1,32.一、填空题1.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则n m = . 答案 -21 2.设a 、b 是不共线的两个非零向量,已知=2a +p b ,BC =a +b ,CD =a -2b .若A 、B 、D 三点共线,则 p 的值为 .答案 -13.已知向量=(3,-2),=(-5,-1),则21= . 答案 ⎪⎭⎫ ⎝⎛-214, 4.(2007²北京文)已知向量a =(2,4),b =(1,1),若向量b ⊥(a +λb ),则实数λ的值是. 答案 -3EF EF .AB AB的坐标为 .答案 ⎪⎭⎫ ⎝⎛272, 6.设0≤θ<2π,已知两个向量1=(cos θ,sin θ),2OP =(2+sin θ,2-cos θ),则向量21P P 长度的最大值是 . 答案 327.(2008²全国Ⅱ文)设向量a =(1,2),b =(2,3),若向量λa +b 与向量c =(-4,-7)共线,则λ= .答案 28.(2008²菏泽模拟)已知向量m =(a -2,-2),n =(-2,b -2),m ∥n (a >0,b >0),则ab 的最小值是 .答案 16二、解答题9.已知A (-2,4),B (3,-1),C (-3,-4).设=a ,=b ,=c ,且CM =3c ,=-2b ,(1)求:3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n .解 由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵mb +nc =(-6m +n ,-3m +8n ),∴⎩⎨⎧-=+-=+-58356n m n m ,解得⎩⎨⎧-=-=11n m . 10.若a ,b 为非零向量且a ∥b ,λ1,λ2∈R ,且λ1λ2≠0.求证:λ1a +λ2b 与λ1a -λ2b 为共线向量.证明 设a =(x 1,y 1),b =(x 2,y 2).∵a ∥b ,b ≠0,a ≠0,∴存在实数m ,使得a =m b ,即a =(x 1,y 1)=(mx 2,my 2),∴λ1a +λ2b =((m λ1+λ2)x 2,(m λ1+λ2)y 2)=(m λ1+λ2)(x 2,y 2)同理λ1a -λ2b =(m λ1-λ2)(x 2,y 2),∴(λ1a +λ2b )∥(λ1a -λ2b )∥b , 而b ≠0,∴(λ1a +λ2b )∥(λ1a -λ2b ). 11.中,A (1,1),=(6,0),点M 是线段AB 的中点,线段CM 与BD 交于点P .(1)若=(3,5),求点C 的坐标;(2)当||=||时,求点P 的轨迹.解 (1)设点C 坐标为(x 0,y 0),又=+=(3,5)+(6,0)=(9,5),即(x 0-1,y 0-1)=(9,5),∴x 0=10,y 0=6,即点C (10,6).(2)由三角形相似,不难得出=2MP设P (x ,y ),则BP =-=(x -1,y -1)-(6,0)=(x -7,y -1),=AM +MC =21+3MP=21+3(-21) =3-=(3(x -1),3(y -1))-(6,0)=(3x -9,3y -3),∵||=||为菱形,∴AC ⊥BD ,∴⊥BP ,即(x -7,y -1)²(3x -9,3y -3)=0.(x -7)(3x -9)+(y -1)(3y -3)=0,∴x 2+y 2-10x -2y +22=0(y ≠1).∴(x -5)2+(y -1)2=4(y ≠1).故点P 的轨迹是以(5,1)为圆心,2为半径的圆去掉与直线y =1的两个交点.12.A (2,3),B (5,4),C (7,10),=+λ.当λ为何值时,(1)点P 在第一、三象限的角平分线上;(2)点P 到两坐标轴的距离相等?解 (1)由已知=(3,1),AC =(5,7),则+λ=(3,1)+λ(5,7)=(3+5λ,1+7λ).设P (x ,y ),则=(x -2,y -3),∴⎩⎨⎧+=-+=-λλ713532y x ,∴⎩⎨⎧+=+=λλ7455y x .∵点P 在第一、三象限的角平分线上,∴x =y ,即5+5λ=4+7λ,∴λ=21. (2)若点P 到两坐标轴的距离相等,则|x |=|y |,即|5+5λ|=|4+7λ|,∴λ=21或λ=-43.1.已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为 .答案 565 2.在边长为1的正三角形ABC 中,设=a ,=c ,=b ,则a ²b +b ²c +c ²a = . 答案21 3.向量a =(cos15°,sin15°),b =(-sin15°,-cos15°),则|a -b |的值是 .答案 34.(2009²常州市武进区四校高三联考)已知向量a =(2,1),b =(3,λ) (λ>0),若(2a -b )⊥b ,则λ= .答案 35.(2008²浙江理)已知a 、b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )²(b -c )=0,则|c |的最大值是 . 答案 2例1 已知向量a =⎪⎭⎫ ⎝⎛x x 23sin ,23cos b =⎪⎭⎫ ⎝⎛-2sin ,2cos x x 且x ∈⎥⎦⎤⎢⎣⎡-4,3ππ. (1)求a ²b 及|a +b |; (2)若f (x )=a ²b -|a +b |,求f (x )的最大值和最小值.解 (1)a ²b =cos 23x cos 2x -sin 23x sin 2x =cos2x , a +b =⎪⎭⎫ ⎝⎛-+2sin 23sin 2cos 23cos x x ,x x(2)由(1)可得f (x )=cos2x -2cos x =2cos 2x -2cos x -1∴当cos x =21时,f (x )取得最小值为-23; 当cos x =1时,f (x )取得最大值为-1.例2 已知a =(cos α,sin α),b =(cos β,sin β)(0<α<β<π).(1)求证:a +b 与a -b 互相垂直;(2)若k a +b 与a -k b 的模相等,求β-α.(其中k 为非零实数)(1)证明 (a +b )²(a -b )=a 2-b 2=|a |2-|b |2=(cos 2α+sin 2α)-(cos 2β+sin 2β)=0, ∴a +b 与a -b 互相垂直.(2)解 k a +b =(k cos α+cos β,k sin α+sin β),a -k b =(cos α-k cos β,sin α-k sin β), b a +k =,1)cos(22+-+αβk kb a k -=.)cos(212k k +--αβb a +k =b a k -,).cos(2)cos(2αβαβ--=-∴k k又k ≠0,∴cos(αβ-)=0.而0<α<β<π,∴β-α=2π. 例3 (14分)设两个向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1与e 2的夹角为3π,若向量2t e 1+7e 2与e 1+t e 2的夹 角为钝角,求实数t 的范围.解 由向量2t e 1+7e 2与e 1+t e 2的夹角为钝角,得()()2121212·72·72e e e e e e e ++++<0, 3分 即(2t e 1+7e 2)²(e 1+t e 2)<0, 化简即得:2t 2+15t +7<0,t e 1 t t t解得-7<t <-21, 7分 当夹角为π时,也有(2te 1+7e 2)²(e 1+t e 2)<0,但此时夹角不是钝角,2t e 1+7e 2与e 1+t e 2反向. 9分设2t e 1+7e 2=λ(e 1+t e 2),λ<0,可求得⎪⎩⎪⎨⎧<==072λλλt t ,∴⎪⎩⎪⎨⎧-=-=21414t λ 12分∴所求实数t 的范围是⎪⎪⎭⎫ ⎝⎛--2147, ⎪⎪⎭⎫ ⎝⎛--21,214. 14分1.向量a =(cos23°,cos67°),向量b =(cos68°,cos22°).(1)求a ²b ;(2)若向量b 与向量m 共线,u =a +m ,求u 的模的最小值.解 (1)a ²b =cos23°²cos68°+cos67°²cos22°=cos23°²sin22°+sin23°²cos22°=sin45°=22. (2)由向量b 与向量m 共线,得m =λb (λ∈R ),u =a +m =a +λb=(cos23°+λcos68°,cos67°+λcos22°)=(cos23°+λsin22°,sin23°+λcos22°),|u |2=(cos23°+λsin22°)2+(sin23°+λcos22°)2 =λ2+2λ+1=222⎪⎪⎭⎫ ⎝⎛+λ +21, ∴当λ=-22时,|u |有最小值为22. 2.已知平面向量a =⎪⎪⎭⎫ ⎝⎛-23,21,b =(-3,-1). (1)证明:a ⊥b ;(2)若存在不同时为零的实数k 、t ,使x =a +(t 2-2)b ,y =-k a +t 2b ,且x ⊥y ,试把k 表示为t 的函数.(1)证明 a ²b =⎪⎪⎭⎫ ⎝⎛-23,21²()1,3-- =⎪⎭⎫ ⎝⎛-21³(-3)+23³(-1)=0, ∴a ⊥b .(2)解 ∵x ⊥y ,∴x ²y =0,即[a +(t 2-2)b ]²(-k a +t 2b )=0.展开得-k a 2+[t 2-k (t 2-2)]a ²b +t 2(t 2-2)b 2=0,∵a ²b =0,a 2=|a |2=1,b 2=|b |2=4,∴-k +4t 2(t 2-2)=0,∴k =f (t )=4t 2 (t 2-2).3.设a =(cos α,sin α),b =(cos β,sin β),且a 与b 具有关系|k a +b |=3|a -k b |(k >0).(1)用k 表示a ²b ;(2)求a ²b 的最小值,并求此时a 与b 的夹角.解 (1)∵|k a +b |=3|a -k b |,∴(k a +b )2=3(a -k b )2,且|a |=|b |=1,即k 2+1+2k a ²b =3(1+k 2-2k a ²b ),∴4k a ²b =k 2+1.∴a ²b =kk 412+(k >0). (2)由(1)知:∵k >0∴a ²b =kk k k 1··2·41414≥+ =21. ∴a ²b 的最小值为21(当且仅当k =1时等号成立) 设a 、b 的夹角为θ,此时cos θ=b a b a ·=21. 0≤θ≤π,∴θ=3π. 故a ²b 的最小值为21,此时向量a 与b 的夹角为3π.一、填空题 1.点O 是三角形ABC 所在平面内的一点,满足OA ²OB =OB ² OC =OC ²OA ,则点O 是△ABC 的 心.答案 垂2.若向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则a ²b +b ²b 的值为 .答案 53.已知向量a ,b 满足|a |=1,|b |=4,且a ²b =2,则a 与b 的夹角为 .答案 3π 4.若a 与b -c 都是非零向量,则“a ²b =a ²c ”是“a ⊥(b -c )”的 条件.答案 充要5.已知a ,b 是非零向量,且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角是 .答案 3π 6.(2009²成化高级中学高三期中)已知3a +4b +5c =0,且|a |=|b |=|c |=1,则a ²(b +c )= .答案 53- 7.(2008²天津理,14)如图所示,在平行四边形ABCD 中,=(1,2),=(-3,2),则²= .答案 38.(2008² 江西理,13)直角坐标平面内三点A (1,2)、B (3,-2)、C (9,7),若E 、F 为线段BC 的三等分点,则²= . 答案 22二、解答题9.已知平面上三个向量a 、b 、c 的模均为1,它们相互之间的夹角均为120°.(1)求证:(a -b )⊥c ;(2)若|k a +b +c |>1 (k ∈R ),求k 的取值范围.(1)证明 ∵(a -b )²c =a ²c -b ²c=|a |²|c |²cos120°-|b |²|c |²cos120°=0,∴(a -b )⊥c .(2)解 |k a +b +c |>1⇔|k a +b +c |2>1, ⇔k 2a 2+b 2+c 2+2k a ²b +2k a ²c +2b ²c >1. ∵|a |=|b |=|c |=1,且a 、b 、c 的夹角均为120°, ∴a 2=b 2=c 2=1,a ²b =b ²c =a ²c =-21, ∴k 2+1-2k >1,即k 2-2k >0,∴k >2或k <0.10.已知a =⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛32cos ,32sin ,34cos ,34sin θθθθb ,且θ∈⎥⎦⎤⎢⎣⎡π30,. (1)求ba b a +·的最值; (2)若|k a +b |=3|a -k b | (k ∈R ),求k 的取值范围.解 (1)a ²b =-sin34θ²sin 32θ+cos 34θ²cos 32θ=cos2θ, |a +b |2=|a |2+|b |2+2a ²b =2+2cos2θ=4cos 2θ.∵θ∈⎥⎦⎤⎢⎣⎡3,0π,∴cos θ∈⎥⎦⎤⎢⎣⎡1,21,∴|a +b |=2cos θ. ∴ba b a +·= θθcos 22cos =cos θ-θcos 21. 令t =cos θ,则21≤t ≤1,⎪⎭⎫ ⎝⎛-t t 21′=1+221t >0, ∴t -t 21在t ∈⎥⎦⎤⎢⎣⎡121,上为增函数. ∴-21≤t -t21≤21, 即所求式子的最大值为21,最小值为-21. (2)由题设可得|k a +b |2=3|a -k b |2,∴(k a +b )2=3(a -k b )2又|a |=|b |=1,a ²b =cos2θ,∴cos2θ=kk 412+. 由θ∈⎥⎦⎤⎢⎣⎡π30,,得-21≤cos2θ≤1. ∴-21≤kk 412+≤1.解得k ∈[2-3,2+3] {-1}. 11.设n 和m 是两个单位向量,其夹角是60°,求向量a =2m +n 与b =2n -3m 的夹角.解 由|m |=1,|n |=1,夹角为60°,得m ²n =21. 则有|a |=|2m +n |=2)2(n m +=2244n n ·m m ++=7.|b |=2)32(m n -=229124m n m n +⋅-=7.而a ²b =(2m +n )²(2n -3m )=m ²n -6m 2+2n 2=-27, 设a 与b 的夹角为θ, 则cos θ=b a b a ··=727-=-21.故a ,b 夹角为120°. 12.已知向量a =⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-222323x sin ,x cos ,x sin ,x cos b ,x ∈⎥⎦⎤⎢⎣⎡20π,.若函数f (x )=a ²b -21λ|a +b |的最小值为-23,求实数λ的值. 解 ∵|a |=1,|b |=1,x ∈⎥⎦⎤⎢⎣⎡20π,, ∴a ²b =cos 23x cos 2x -sin 23x sin 2x =cos2x , |a +b |=2)(b a +=222b b a a +⋅+=x 2cos 22+=2x cos =2cos x .∴f (x )=cos2x -λcos x =2cos 2x -λcos x -1 =224cos ⎪⎭⎫ ⎝⎛-λx -82λ-1,cos x ∈[0,1]. ①当λ<0时,取cos x =0,此时f (x )取得最小值,并且f (x )min =-1≠-23,不合题意. ②当0≤λ≤4时,取cos x =4λ, 此时f (x )取得最小值,并且f (x )min =-82λ-1=-23,解得λ=2. ③当λ>4时,取cos x =1,此时f (x )取得最小值,并且f (x )min =1-λ=-23, 解得λ=25,不符合λ>4舍去,∴λ=2. §5.4 正弦定理和余弦定理1.(2008²陕西理,3)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则a = .答案 22.(2008²福建理,10)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为 . 答案 3π或32π 3.下列判断中不正确的结论的序号是 .①△ABC 中,a =7,b =14,A =30°,有两解②△ABC 中,a =30,b =25,A =150°,有一解③△ABC 中,a =6,b =9,A =45°,有两解④△ABC 中,b =9,c =10,B =60°,无解答案 ①③④4.在△ABC 中,A =60°,AB =5,BC =7,则△ABC 的面积为 .答案 1035.(2008²浙江理,13)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若(3b -c )cos A =a cos C ,则cos A = . 答案 33例1 在△ABC 中,已知a =3,b =2,B =45°,求A 、C 和c .解 ∵B =45°<90°且a sin B <b <a ,∴△ABC 有两解.由正弦定理得sin A =b B a sin =245sin 3︒ =23, 则A 为60°或120°.①当A =60°时,C =180°-(A +B )=75°,c =B C b sin sin =︒︒45sin 75sin 2=︒︒+︒45sin )3045sin(2=226+. ②当A =120°时,C =180°-(A +B )=15°,c =B C b sin sin =︒︒45sin 15sin 2=︒︒-︒45sin )3045sin(2=226-. 故在△ABC 中,A =60°,C =75°,c =226+或 A =120°,C =15°,c =226-. 例2 在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且C B cos cos =-c a b +2. (1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.解 (1)由余弦定理知:cos B =acb c a 2222-+, cos C =abc b a 2222-+.将上式代入C B cos cos =-ca b +2得: ac b c a 2222-+²2222cb a ab -+=-c a b +2 整理得:a 2+c 2-b 2=-ac∴cos B =ac b c a 2222-+=ac ac 2- =-21 ∵B 为三角形的内角,∴B =32π. (2)将b =13,a +c =4,B =32π代入 b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B∴b 2=16-2ac ⎪⎭⎫ ⎝⎛-211,∴ac =3. ∴S △ABC =21ac sin B =433. 例3 (14分)△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-a 2+bc =0. (1)求角A 的大小;(2)若a =3,求bc 的最大值;(3)求cb C a --︒)30sin(的值. 解 (1)∵cos A =bca cb 2222-+=bc bc 2-=-21, 2分 又∵A ∈(0°,180°),∴A =120°. 4分(2)由a =3,得b 2+c 2=3-bc ,又∵b 2+c 2≥2bc (当且仅当c =b 时取等号),∴3-bc ≥2bc (当且仅当c =b 时取等号). 6分 即当且仅当c =b =1时,bc 取得最大值为1. 8分 (3)由正弦定理得:===C c B b A a sin sin sin 2R , ∴C R B R C A R c b C a sin 2sin 2)30sin(sin 2)30sin(--︒=--︒ 10分 =CB C A sin sin )30sin(sin --︒ 11分 =CC C C sin )60sin()sin 23cos 21(23--︒- 12分 =C C C C sin 23cos 23)sin 43cos 43-- 13分 =21. 14分 例4 在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2+b 2)sin (A -B )=(a 2-b 2)sin (A +B ),判断三角形的形状.解 方法一 已知等式可化为a 2[sin (A -B )-sin (A +B )]=b 2[-sin (A +B )-sin(A -B )]∴2a 2cos A sin B =2b 2cos B sin A由正弦定理可知上式可化为:sin 2A cos A sin B =sin 2B cos B sin A∴sin A sin B (sin A cos A -sin B cos B )=0∴sin2A =sin2B ,由0<2A ,2B <2π得2A =2B 或2A =π-2B ,即A =B 或A =2π-B ,∴△ABC 为等腰或直角三角形. 方法二 同方法一可得2a 2cos A sin B =2b 2sin A cos B由正、余弦定理,可得a 2b bc a c b 2222-+= b 2a ac b c a 2222-+ ∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2)即(a 2-b 2)(a 2+b 2-c 2)=0∴a =b 或a 2+b 2=c 2∴△ABC 为等腰或直角三角形.1.(1)△ABC 中,a =8,B =60°,C =75°,求b ;(2)△ABC 中,B =30°,b =4,c =8,求C 、A 、a .解 (1)由正弦定理得B b A a sin sin =. ∵B =60°,C =75°,∴A =45°, ∴b =︒︒⨯=45sin 60sin 8sin sin A B a =46. (2)由正弦定理得sin C =430sin 8sin ︒=b B c =1. 又∵30°<C <150°,∴C =90°.∴A =180°-(B +C )=60°,a =22b c -=43.2.已知△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,求tan C 的值.解 依题意得ab sin C =a 2+b 2-c 2+2ab ,由余弦定理知,a 2+b 2-c 2=2ab cos C .所以,ab sin C =2ab (1+cos C ), 即sin C =2+2cos C ,所以2sin 2C cos 2C =4cos 22C 化简得:tan2C =2.从而tan C =2tan 12tan22C C-=-34. 3.(2008²辽宁理,17)在△ABC 中,内角A 、B 、C 对边的边长分别是a 、b 、c .已知c =2,C =3π. (1)若△ABC 的面积等于3,求a 、b 的值;(2)若sin C +sin(B -A )=2sin2A ,求△ABC 的面积.解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以21ab sin C =3,所以ab =4. 联立方程组⎪⎩⎪⎨⎧==-+,4,422ab ab b a 解得⎩⎨⎧==22b a . (2)由题意得sin(B +A )+sin(B -A )=4sin A cos A , 即sin B cos A =2sin A cos A , 当cos A =0时,A =2π,B =6π,a =334,b =332. 当cos A ≠0时,得sin B =2sin A ,由正弦定理得b =2a ,联立方程组⎪⎩⎪⎨⎧==-+,2,422a b ab b a 解得⎪⎪⎩⎪⎪⎨⎧==.334332b ,a 所以△ABC 的面积S =21ab sin C =332. 4.已知△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等差数列,且2cos2B -8cos B +5=0,求角B 的大小并判断△ABC 的形状.解 方法一 ∵2cos2B -8cos B +5=0,∴2(2cos 2B -1)-8cos B +5=0.∴4cos 2B -8cos B +3=0,即(2cos B -1)(2cos B -3)=0.解得cos B =21或cos B =23(舍去).∴cos B =21. ∵0<B <π,∴B =3π. ∵a ,b ,c 成等差数列,∴a +c =2b .∴cos B =acb c a 2222-+=ac c a c a 2)2(222+-+=21, 化简得a 2+c 2-2ac =0,解得a =c .又∵B =3π,∴△ABC 是等边三角形. 方法二 ∵2cos2B -8cos B +5=0,∴2(2cos 2B -1)-8cos B +5=0.∴4cos 2B -8cos B +3=0,即(2cos B -1)(2cos B -3)=0.解得cos B =21或cos B =23(舍去). ∴cos B =21,∵0<B <π,∴B =3π, ∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B =2sin 3π=3. ∴sin A +sin ⎪⎭⎫ ⎝⎛-A 32π=3, ∴sin A +sin A cos 32π-cos A sin 32π=3. 化简得23sin A +23cos A =3,∴sin ⎪⎭⎫ ⎝⎛+6πA =1. ∴A +6π=2π,∴A =3π, ∴C =3π,∴△ABC 为等边三角形.一、填空题1.在△ABC 中,若2cos B sin A =sin C ,则△ABC 一定是 三角形.答案 等腰 2.在△ABC 中,A =120°,AB =5,BC =7,则C B sin sin 的值为 . 答案 53 3.已知△ABC 的三边长分别为a ,b ,c ,且面积S △ABC =41(b 2+c 2-a 2),则A = . 答案 45°4.在△ABC 中,BC =2,B =3π,若△ABC 的面积为23,则tan C 为 . 答案 33 5.在△ABC 中,a 2-c 2+b 2=ab ,则C = .答案 60°6.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则C = .答案 45°或135° 7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,b =7,c =3,则B = .答案 65π 8.某人向正东方向走了x 千米,他右转150°,然后朝新方向走了3千米,结果他离出发点恰好3千米,那么x 的值是 .答案 3或23二、解答题9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,并且a 2=b (b +c ).(1)求证:A =2B ;(2)若a =3b ,判断△ABC 的形状.(1)证明 因为a 2=b (b +c ),即a 2=b 2+bc ,所以在△ABC 中,由余弦定理可得, cos B =ac b c a 2222-+=ac bc c 22+=a c b 2+ =ab a 22=b a 2=BA sin 2sin , 所以sin A =sin2B ,故A =2B . (2)解 因为a =3b ,所以ba =3, 由a 2=b (b +c )可得c =2b , cos B =ac b c a 2222-+=22223443bb b b -+=23, 所以B =30°,A =2B =60°,C =90°. 所以△ABC 为直角三角形.10.(2008²全国Ⅱ理,17)在△ABC 中,cos B =-135,cos C =54. (1)求sin A 的值;(2)△ABC 的面积S △ABC =233,求BC 的长. 解 (1)由cos B =-135,得sin B =1312, 由cos C =54,得sin C =53. 所以sin A =sin(B +C )=sin B cos C +cos B sin C =6533. (2)由S △ABC =233,得21³AB ³AC ³sin A =233. 由(1)知sin A =6533,故AB ³AC =65. 又AC =C B AB sin sin ⨯=1320AB , 故1320AB 2=65,AB =213. 所以BC =C A AB sin sin ⨯=211. 11.已知a 、b 、c 是△ABC 的三边长,关于x 的方程ax 2-222b c - x -b =0 (a >c >b )的两根之差的平方等于4,△ABC 的面积S =103,c =7.(1)求角C ;(2)求a ,b 的值.解 (1)设x 1、x 2为方程ax 2-222b c -x -b =0的两根, 则x 1+x 2=a b c 222-,x 1²x 2=-ab . ∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=222)(4a b c -+ab 4=4. ∴a 2+b 2-c 2=ab . 又cos C =abc b a 2222-+=ab ab 2=21, 又∵C ∈(0°,180°),∴C =60°.(2)由S =21ab sin C =103,∴ab =40. ① 由余弦定理c 2=a 2+b 2-2ab cos C , 即c 2=(a +b )2-2ab (1+cos60°). ∴72=(a +b )2-2³40³⎪⎭⎫ ⎝⎛+211. ∴a +b =13.又∵a >b ②∴由①②,得a =8,b =5.12.(2008²广东五校联考)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a +b =5,c =7,且4sin 22B A +-cos2C =27. (1)求角C 的大小;(2)求△ABC 的面积.解 (1)∵A +B +C =180°,由4sin22B A +-cos2C =27, 得4cos 22C -cos2C =27, ∴4²2cos 1C +-(2cos 2C -1)=27, 整理,得4cos 2C -4cos C +1=0,解得cos C =21, ∵0°<C <180°,∴C =60°.(2)由余弦定理得c 2=a 2+b 2-2ab cos C ,即7=a 2+b 2-ab ,∴7=(a +b )2-3ab , 由条件a +b =5,得7=25-3ab ,ab =6,∴S △ABC =21ab sin C =21³6³23=233.§5.5 正弦定理、余弦定理的应用1.在某次测量中,在A 处测得同一半平面方向的B 点的仰角是60°,C 点的俯角为70°,则∠BAC = . 答案 130°2.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α、β的大小关系为 .答案 α=β3.在△ABC 中,若(a +b +c )(a +b -c )=3ab ,且sin C =2sin A cos B ,则△ABC 是 三角形.答案 等边4.已知A 、B 两地的距离为10 km,B 、C 两地的距离为20 km,现测得∠ABC =120°,则A 、C 两地的距离为 km.答案 1075.线段AB 外有一点C ,∠ABC =60°,AB =200 km,汽车以80 km/h 的速度由A 向B 行驶,同时摩托车以50 km/h 的速度由B 向C 行驶,则运动开始 h 后,两车的距离最小.答案4370例1 要测量对岸A 、B 两点之间的距离,选取相距3 km 的C 、D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,求A 、B 之间的距离.解 如图所示,在△ACD 中,∠ACD =120°,∠CAD =∠ADC =30°,∴AC =CD =3 km.在△BCD 中,∠BCD =45°,∠BDC =75°,∠CBD =60°.∴BC =︒︒60sin 75sin 3=226+. △ABC 中,由余弦定理,得AB 2=(3)2+(226+)2-2³3³226+³cos75° =3+2+3-3=5,∴AB =5(km).∴A 、B 之间的距离为5 km.例2 (14分)沿一条小路前进,从A 到B ,方位角(从正北方向顺时针转到AB 方向所成的角)是50°,距离是3 km ,从B 到C ,方位角是110°,距离是3 km ,从C 到D ,方位角是140°,距离是(9+33)km.试画出示意图,并计算出从A 到D 的方位角和距离(结果保留根号).解 示意图如图所示, 3分连接AC ,在△ABC 中,∠ABC =50°+(180°-110°)=120°,又AB =BC =3,∴∠BAC =∠BCA =30°. 5分由余弦定理可得AC =︒⋅-+120cos 222BC AB BC AB = )21(33299-⨯⨯⨯-+ =27=33(km). 8分在△ACD 中,∠ACD =360°-140°-(70°+30°)=120°,CD =33+9.由余弦定理得AD =︒⋅-+120222cos CD AC CD AC= )21()933(332)933(272-⨯+⨯⨯-++ =2629)(+(km). 10分 由正弦定理得sin ∠CAD =AD ACD sin CD ∠⋅ =2692923)933(+⨯+=22. 12分 ∴∠CAD =45°,于是AD 的方位角为50°+30°+45°=125°,所以,从A 到D 的方位角是125°,距离为2)62(9+km. 14分 例3 如图所示,已知半圆的直径AB =2,点C 在AB的延长线上,BC =1,点P 为半圆上的一个动点,以DC 为边作等边△PCD ,且点D 与圆心O 分别在PC的两侧,求四边形OPDC 面积的最大值.解 设∠POB =θ,四边形面积为y ,则在△POC 中,由余弦定理得PC 2=OP 2+OC 2-2OP ²OC cos θ=5-4cos θ.∴y =S △OPC +S △PCD =21³1³2sin θ+43(5-4cos θ) =2sin(θ-3π)+435. ∴当θ-3π=2π,即θ=65π时,y max =2+435. 所以四边形OPDC 面积的最大值为2+435.1.某观测站C 在A 城的南偏西20°的方向.由A 城出发的一条公路,走向是南偏东40°,在C 处测得公路上B 处有一人距C 为31千米正沿公路向A 城走去,走了20千米后到达D 处,此时CD 间的距离为21千米,问这人还要走多少千米才能到达A 城?解 设∠ACD =α,∠CDB =β.在△BCD 中,由余弦定理得cos β=CD BD CB CD BD ⋅-+2222 =21202312120222⨯⨯-+=-71, 则sin β=734, 而sin α=sin(β-60°)=sin βcos60°-cos βsin60°=734³21+23³71=1435, 在△ACD 中,由正弦定理得︒60sin 21=αsin AD , ∴AD =︒60sin sin 21α=23143521⨯=15(千米). 答 这个人再走15千米就可到达A 城.2.如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB .解 在△BCD 中,∠CBD =π-α-β由正弦定理得BDC BC ∠sin =CBD CD ∠sin , 所以BC =CBD BDC CD ∠∠sin sin =)sin(sin s β+αβ⋅ 在Rt △ABC 中,AB =BC tan ∠ACB =)sin(sin tan βαβθ+s . 3.为了竖一块广告牌,要制造三角形支架.三角形支架如图所示,要求∠ACB =60°,BC 的长度大于1米,且AC 比AB 长0.5米.为了使广告牌稳固,要求AC 的长度越短越好,求AC 最短为多少米?且当AC 最短时,BC 长度为多少米?解 设BC =a (a >1),AB =c ,AC =b ,b -c =21. c 2=a 2+b 2-2ab cos60°,将c =b -21代入得(b -21)2=a 2+b 2-ab , 化简得b (a -1)=a 2-41.由a >1,知a -1>0. b =1412--a a =14322)1(2-+-+-a a a =(a -1)+)1(43-a +2≥3+2, 当且仅当a -1=)1(43-a 时,取“=”号,即a =1+23时,b 有最小值2+3. 答 AC 最短为(2+3)米,此时,BC 长为(1+23)米.一、填空题1.海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°视角,则B 、C 的距离是 海里.答案 562.为测量某塔AB 的高度,在一幢与塔AB 相距20 m 的楼顶处测得塔顶A 的仰角为30°,测得塔基B 的俯角为45°,那么塔AB 的高度是 m.答案 20(1+33) 3.如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为 km.答案 3a4.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为 海里/小时.答案 2617 5.如图所示,在河岸AC 测量河的宽度BC ,图中所标的数据a ,b ,c ,α,β是可供测量的数据.下面给出的四组数据中,对测量河宽较适宜的是 (填序号).①c 和α ②c 和b ③c 和β ④b 和α答案 ④6.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后,又测得灯塔在货轮的东北方向,则货轮的速度为 海里/小时.答案 20(6-2) 7.在△ABC 中,若∠C =60°,则c b a ++ac b += . 答案 18.(2008²苏州模拟)在△ABC 中,边a ,b ,c 所对角分别为A ,B ,C ,且a A sin =b B cos =c C cos ,则∠A = . 答案 2π 二、解答题 9.在△ABC 中,a ,b ,c 分别为角A 、B 、C 的对边,设f (x )=a 2x 2-(a 2-b 2)x -4c 2.(1)f (1)=0且B -C =3π,求角C 的大小; (2)若f (2)=0,求角C 的取值范围. 解 (1)∵f (1)=0,∴a 2-(a 2-b 2)-4c 2=0,∴b 2=4c 2,∴b =2c ,∴sin B =2sin C ,又B -C =3π.∴sin(C +3π)=2sin C , ∴sin C ²cos3π+cos C ²sin 3π=2sin C , ∴23sin C -23cos C =0,∴sin(C -6π)=0, 又∵-6π<C -6π<65π,∴C =6π. (2)若f (2)=0,则4a 2-2(a 2-b 2)-4c 2=0,∴a 2+b 2=2c 2,∴cos C =ab c b a 2222-+=ab c 22, 又2c 2=a 2+b 2≥2ab ,∴ab ≤c 2,∴cos C ≥21, 又∵C ∈(0,π),∴0<C ≤3π. 10.(2008²泰安模拟)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边.已知a =1,b =2,cos C =43. (1)求边c 的值;(2)求sin(C -A )的值.解(1)c 2=a 2+b 2-2ab cos C=12+22-2³1³2³43=2, ∴c =2.(2)∵cos C =43,∴sin C =47. 在△ABC 中,A a sin =C c sin ,即A sin 1=472.∴sin A =814,∵a <b ,∴A 为锐角,cos A =825. ∴sin(C -A )=sin C cos A -cos C sin A=47³825-43³814=1614. 11.如图所示,扇形AOB ,圆心角AOB 等于60°,半径为2,在弧 AB 上有一动点P ,过P 引平行于OB 的直线和OA 交于点C ,。
高一数学阶段性检测一(解三角形、平面向量部分)一、选择题(共60分)1.已知平面向量a ,b 的夹角为3π,且1=a ,12=b ,则2-=a b ( ) A .1B .3C .2D .322.在△ABC 中,A =π3,BC =3,AB =6,则角C 等于( )A .π4或3π4B .3π4C .π4D .π63.若|2|=a ,2||=b 且(b a -)⊥a ,则a 与b 的夹角是 ( ) (A )6π (B )4π (C )3π(D )π125 4.设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c, b ∥c ,则|a +b |=( )A.5B.10 C .2 5 D .105.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB →在CD →方向上的投影为 A.322B.3152 C .-322D .-31526.在ABC △中,内角A ,B ,C 所对的边分别是a ,b ,c ,若()sin sin sin a A b B c b C =+-, 则角A 的值为( ) A .6πB .4π C .3π D .23π 7.△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若cb <cos A ,则△ABC 为( ).A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形8.在△ABC 中,AE →=15AB →,EF ∥BC ,EF 交AC 于F ,设AB →=a ,AC →=b ,则BF →等于( )A .-a +15b B .a -15b C .23a -13bD .13a +23b9.已知△ABC 中,∠A =120°,且AB =3,AC =4,若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为( ) A .2215 B .103 C .6 D .12710.已知向量a =(2,1),b =(1,k ),且a 与b 的夹角为锐角,则实数k 的取值范围是( ) A .(-2,+∞) B .⎝ ⎛⎭⎪⎫-2,12∪⎝ ⎛⎭⎪⎫12,+∞ C .(-∞,-2)D .(-2,2)11.如图所示,在△ABC 中,AN →=13AC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为( )A .911B .511C .311D .21112.在△ABC 中,A =π3,BC =3,则△ABC 的两边AC +AB 的取值范围是 A .[33,6] B .(2,43) C .(33,43)D .(3,6]二、填空题(共20分)13.设a ,b 是两个不共线的向量.若向量k a +2b 与8a +k b 的方向相反,则k = . 14.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若b =1,c =3,C =23π,则S △ABC =________.15.设e 1,e 2为单位向量,且e 1,e 2的夹角为π3,若a =e 1+3e 2,b =2e 1,则向量a 在b 方向上的投影为________. 16.已知AB →与AC →的夹角为90°,|AB →|=2,|AC →|=1,AM →=λAB →+μAC →(λ,μ∈R ),且AM →·BC →=0,则λμ的值为________.三、解答题(共70分)17.(本小题12分)已知△ABC 的角A ,B ,C 所对的边分别是a ,b ,c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2). (1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.18.(本小题12分)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .向量m =(a ,3b )与n =(cos A ,sin B )平行. (1)求A ;(2)若a =7,b =2,求△ABC 的面积.19. (本小题12分)在锐角△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且A c a sin 23=。
课前测试
1. 若等边△ABC 边长为23,平面内一点M 满足CM →=12CB →+23OA →,则MA
→·MB →
=( )
A .-1
B .2
C .-2
D .23
2. 已知△ABC 中,AB =AC =4,BC =43,点P 为BC 边所在直线上的一个动点,则AP
→·(AB →+AC →)满足( )
A .最大值为16
B .最小值为4
C .为定值8
D .与P 的位置有关
3. 如图,△ABC 中,sin 12∠ABC =3
3,AB =2,点D 在线段AC 上,且AD
=2DC ,BD =43
3.
(1)求BC 的长;
(2)求△DBC 的面积.
备用例题
1. 已知A 、B 是单位圆上的两点,O 为圆心,且∠AOB =120°,MN 是圆O 的一条直径,点C 在圆内,且满足OC →=λOA →+(1-λ)OB →(0<λ<1),则CM →·CN →的取
值范围是( )
A .[-1
2,1)
B .[-1,1)
C .[-3
4,0) D .[-1,0)
2. 设点P (x ,y )为平面上以A (4,0),B (0,4),C (1,2)为顶点的三角形区域(包括边界)内一动点,O 为原点,且OP →=λOA →+μOB →,
则λ+μ的取值范围为________.
3. 已知点G 是△ABC 的重心,AG →=λAB →+μAC →(λ、μ∈R ),若∠A =120°,AB →·AC →
=-2,则|AG
→|的最小值是( ) A.33 B .22 C.23 D.34
4. 已知四边形ABCD 中,AD ∥BC ,∠BAC =45°,AD =2,AB =2,BC =1,P 是边AB 所在直线上的动点,则|PC
→+2PD →|的最小值为( )
A .2
B .4 C.522 D.25
2
5. 如图,OA
→,OB →分别为x 轴,y 轴非负半轴上的单位向量,点C 在x 轴上
且在点A 的右侧,D 、E 分别为△ABC 的边AB 、BC 上的点.若OE →与OA →+OB →共
线.DE
→与OA →共线,则OD →·BC →的值为( )
A .-1
B .0
C .1
D .2
6. 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,b =c ,且满足sin B
sin A =1-cos B
cos A ,若点O 是△ABC 外一点,∠AOB =θ(0<θ<π),OA =2OB =2,则平面四边形OACB 面积的最大值是( )
A.
8+534 B.4+53
4
C .3 D.4+5
2
7. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若∠B =∠C 且7a 2+b 2+c 2=43,则△ABC 面积的最大值为________.
8. 如图,在△ABC 中,已知AB =4,AC =3,∠BAC =60°,点D ,E 分别是边AB ,AC 上的点,且DE =2,则
S 四边形BCED
S △ABC
的最小值等于________.
9. 已知O (0,0),A (cos α,sin α),B (cos β,sin β),C (cos γ,sin γ),若kOA →+(2
-k )OB
→+OC →=0(0<k <2),则cos(α-β)的最大值是________. 10. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -3cos C
cos B
=
3c -a b .
(1)求sin C
sin A 的值;
(2)若B 为钝角,b =10,求a 的取值范围.
11. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 2+c 2-a 2=3bc 且b =3a ,则△ABC 不可能是( )
A .等腰三角形
B .钝角三角形
C .直角三角形
D .锐角三角形
12. 在△ABC 中,AC →·AB →=|AC →-AB →
|=3,则△ABC 面积的最大值为( )
A.21
B.321
4
C.21
2 D .321
13. 已知在△ABC 中,C =2A ,cos A =3
4,且2BA →·CB →
=-27. (1)求cos B 的值; (2)求AC 的长度.。