已知图像求解析式
- 格式:ppt
- 大小:133.00 KB
- 文档页数:5
当给出函数y=Asin(ωx+ψ)+b 的图像时,可由图像求出A、ω、b、ψ的值,进而求出函数y=Asin(ωx+ψ)+b 的解析式。
(当ψ的范围没给时,找一个适合题意的绝对值最小的;A 和ω正负没给时,一般取正。
)那么,具体如何由三角函数的图像来确定它的解析式?用什么方法达到快速解答的目的?我们用实例来作一简要说明。
一、左右平移法求ψ例1:图1-1是周期为2π的三角函数y=f(x)的图像,那么f(x)可写成():A.sin(1+x)、B.sin(-1-x)、C.sin(x-1)、D.sin(1-x).分析:y=sinx →(左移π-1个单位)y=sin(x+π-1)=sin(π+x-1)=-sin(x-1)=sin(1-x).选D.(图1-1)(图1-2)(图2)(图3)(图4)例2:图2是函数y=Asin(ωx+ψ)的图像,确定A、ω、ψ的值,确定其一个函数解析式。
分析:由A=3,T=π,点(-π6,0),可知图像是将y=3sin2x →(左移π6个单位)y=3sin2(x+π6),即y=3sin(2x+π6).二、非平衡点代入法求ψA=y m ax -y m in 2,b=y max +y min 2,ω=πT ,ψ最后求,求ψ的方法是非平衡点代入法。
例3:如图3,是函数y=Asin(ωx+ψ)+B(A>0,ω>0)的图像的一部分,求f(x)的表达式。
分析:T 2=4,T=8=2πω,ω=π4,A=y m ax -y m in 2=2.b=y m ax +y m in 2=2,∴y=2sin(+ψ)+2.当x=-2时,y m ax =4,2sin[π4×(-2)+ψ]+2=4,∴-π2+ψ=2kπ+π2(k∈Z).取k=0,ψ=π,∴y=2sin(π4+π)+2.例4:图4是函数y=Asin(ωx+ψ)+k 在一个周期内的图像,这个函数的解析式为():A.y=3sin(x 2+π6)-1、B.y=2sin(2x+π6)-1、C.y=3sin(2x+π3)-1、D.y=3sin(2x+π6)-1.分析:T=π,∴ω=2πT =2,A=y m ax -y m in 2=3.b=y m ax +y m in 2=-1,∴y=3sin(2x+ψ)-1.当x=π12时,y m ax =2,将点(π12,2)的坐标代入上式,得ψ=π3+2kπ(k∈Z),∴y=3sin(2x+π3)-1,选C.以上几例以图像的形式考查三角函数解析式的求法,是高考中的热点题型,要求学生把所学的三角函数图像与性质和函数的解析式结合起来分析思考,充分体现了“数形结合”的命题原则。
初中数学如何通过函数的图像确定其解析式通过函数的图像确定其解析式是一个常见且重要的数学问题。
在本文中,我们将详细讨论如何通过函数的图像确定其解析式。
要通过函数的图像确定其解析式,我们可以按照以下步骤进行:1. 观察图像的形状和特点:首先,仔细观察函数图像的形状和特点。
注意函数图像的曲线、拐点、交点等信息。
通过观察图像,我们可以猜测函数的类型和形式。
2. 确定函数的类型:根据图像的形状和特点,我们可以初步确定函数的类型。
常见的函数类型包括线性函数、二次函数、指数函数、对数函数等。
根据函数的类型,我们可以有针对性地进行后续的分析和确定。
3. 确定函数的一般形式:根据函数的类型,我们可以猜测函数的一般形式。
例如,如果函数图像是一条直线,我们可以猜测函数的一般形式为f(x) = ax + b,其中a 和 b 是常数。
如果函数图像是一个抛物线,我们可以猜测函数的一般形式为f(x) = ax^2 + bx + c,其中a、b 和c 是常数。
4. 使用已知点确定解析式:选择图像上的几个已知点,然后将这些点的坐标代入到猜测的一般形式中。
通过解方程组,我们可以求解出函数的解析式的具体参数值。
5. 确认结果:计算出函数的解析式后,我们需要确认结果是否合理。
可以通过将解析式代入其他已知点,然后观察函数图像是否经过这些点。
如果函数图像经过这些点并且满足其他已知条件,则我们可以确认所计算的解析式是正确的。
需要注意的是,通过图像确定函数的解析式是一个近似的过程,存在一定的不确定性。
因此,我们需要选择尽可能多的已知点,以提高计算结果的准确性。
通过以上步骤,我们可以通过函数的图像确定其解析式。
这种方法可以帮助我们更直观地理解函数的性质,并且可以应用于其他类型的函数。
了解函数的解析式对于解决实际问题以及进一步理解数学概念都非常重要。
函数专题之解析式问题求函数解析式的方法把两个变量的函数关系,用一个等式来表示,这个等式叫函数的解析式,简称解析式。
求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式:解方f(x)的解析式。
,∴f(x)=2x+7待定系数法()f x 22(2)f x -=(2)f x --设二次函数满足且图象在轴上的截距为1,在轴截得的线段长为,求的解析式。
x y ()f x 例题:解法一、1222x x a∆-==2248b ac a ∴-=21()212f x x x ∴=++1c =又1,2,12a b c ===解得2()(0)f x ax bx c a =++≠设(2)(2)f x f x -=--由40a b -=得解法二、(0)1f =41a k ∴+=1222x x-=222k a-∴=1,12a k ∴==-221()(2)121212f x x x x ∴=+-=++()y f x =2x =-得的对称轴为(2)(2)f x f x -=--由∴2()(2)f x a x k=++设二 【换元法】(注意新元的取值范围)已知))((x g f 的表达式,欲求)(x f ,我们常设)(x g t =,从而求得)(1t g x -=,然后代入))((x g f 的表达式,从而得到)(t f 的表达式,即为)(x f 的表达式。
三【配凑法(整体代换法)】若已知))((x g f 的表达式,欲求)(x f 的表达式,用换元法有困难时,(如)(x g 不存在反函数)可把)(x g 看成一个整体,把右边变为由)(x g 组成的式子,再换元求出)(x f 的式子。
换元法()f x 211(1)(1)1f x x+=-2211(2)()f x x x x+=+例题:根据条件,分别求出函数的解析式22()(1)12f t t t t∴=--=-11tx+=(1)解:令11t x=-1t ≠则且2()2f x x x=-(1)x ≠即换元法2()2f x x ∴=-(2)x ≥凑配法x1x x+用替代式中的12x x+≥又考虑到211()()2f x x x x+=+-(2)解:【例题】已知f(x-1)= 2x -4x ,解方程f(x+1)=0 分析:如何由f(x-1),求出f(x+1)是解答此题的关键 解1:f(x-1)==2)1(-x -2(x-1)-3,∴f(x)=2x -2x-3 f(x+1)=2)1(+x -2(x+1)-3=2x -4,∴2x -4=0,x=±2解2:f(x-1)=2x -4x ,∴f(x+1)=f[(x+2)-1]=2)2(+x -4(x+2)=2x -4,∴2x -4=0,x=±2 解3:令x-1=t+1,则x=t+2,∴f(t+1)=2)2(+t -4(t+2)=2t -4 ∴f(x+1)=2x -4,∴2x -4=0,∴x=±2评注:只要抓住关键,采用不同方法都可以达到目的。
【高中数学】三角函数中根据图象求解析式的几种方法已知函数y =Asin(ωx+φ)+k(A >0,ω>0)的部分图象,求其解析式,与用“五点法”作函数y =Asin(ωx+φ)+k的图象有着密切联系,最主要的是看图象上的“关键点”与“特殊点”.本文就一般情况例析如下.一、A 值的确定方法:A 等于图象中最高点的纵坐标减去最低点的纵坐标所得差的一半.二、 ω值的确定方法:方法1.在一个周期内的五个“关键点”中,若任知其中两点的横坐标,则可先求出周期T,然后据ω=Tπ2求得ω的值. 方法2:“特殊点坐标法”。
特殊点包括曲线与坐标轴的交点、最高点和最低点等。
在求出了A 与φ的值之后,可由特殊点的坐标来确定ω的值.三、 φ值的确定方法:方法1:“关键点对等法”.确定了ω的值之后,把已知图象上五个关键点之一的横坐标代人ωx+φ,它应与曲线y=sinx 上对应五点之一的横坐标相等,由此可求得φ的值.此法最主要的是找准“对等的关键点”,我们知道曲线y =sinx 在区间[0,2π]上的第一至第五个关键点的横坐标依次为0、2π、π、23π、2π,若设所给图象与曲线y=sinx 上对应五点的横坐标为x J (J =1,2,3,4,5), 则顺次有ωx 1+φ=0、 ωx 2+φ=2π、ωx 3+φ=π、ωx 4+φ=23π、ωx 5+φ=2π,由此可求出φ的值。
方法2:“筛选选项法”,对于选择题,可根据图象的平移方向经过筛选选项来确定φ的值.方法3:“特殊点坐标法”.(与2中的方法2类同).四、 k 值的确定方法: K 等于图象向上或向下平移的长度,图象上移时k 为正值,下移时k 为负值.另外A 、ω、φ的值还可以通过“解方程(组)法”来求得. 例1.图1是函数y=2sin (ωx+φ)(ω>0,φ≤2π)的图象,那么正确的是( )A.ω=1110, φ=6π B.ω=1110, φ=-6π C.ω=2,φ=6π D.ω=2,φ=-6π, 解:可用“筛选选项法”.题设图象可看作由y =2sin ωx 的图象向左平移而得到,所以φ>0排除B 和D ,由A,C 知φ=6π;ω值的确定可用“关键点对等法”, 图1因点(1211π,0)是“五点法”中的第五个点,∴ω·1211π+6π=2π 解得ω=2, 故选C .例2.图2是函数y =Asin(ωx+φ)图象上的一段,(A >0,ω>0,φ∈(0,2π)),求该函数的解析式.解法一:观察图象易得A =2,∴T =2×(87π-83π)=π,∴ω=ππ2=2. ∴y =2sin(2x+φ).下面用“关键点对等法”来求出 图2φ的值,由2×83π+φ=π(用“第三点”) 得φ=4π∴所求函数解析式为y =2sin(2x+4π).说明:若用“第二点”,可由2×8π +φ=2π求得φ的值;若用“第五点”,可由2×87π+φ=2π求得φ的值.解法二:由解法一得到T= π,ω=2后,可用“解方程组法”求得φ与A 的值,∵点(0,2)及点(83π,0)在图象上, ∴ Asin φ=2 (1)1211π1211πxy0 2-XY 2Asin(2×83π+φ)=0 (2) 由(2)得 φ=k π-43π(k ∈Z), 又φ∈(0,2π), ∴只有K =1,得φ=4π, 代人(1)得A =2.∴所求函数解析式为 y =2sin(2x+4π).例3.已知函数y =Asin(ωx+φ) (A >0,ω>0, φ<2π)图象上的一部分如图3所示,则必定有( )(A) A=-2 (B )ω=1 (C )φ=3π(D )K =-2解:观察图象可知 A =2,k =2. ∴y =2sin(ωx+φ)+2 下面用“解方程组法”求φ与ω的值.∵ 图象过点(0,2+3)、(-6π,2) ∴ 2+3=2sin φ+2 图32=2sin(-6πω+φ)+2解得ω=2,φ=3π故选C.例4.如图4给出了函数y =Asin(ωx+φ)(A >0,ω>0, φ <2π)图象的一段,求这个函数的解析式.解:由图象可知 T=2×(4-1)=6,∴ω=62π=3π,∴y =2sin (3πx +φ)下面用“特殊点坐标法”求φ,∵ 图象过点(1,2)∴2=2sin(3π×1+φ), 又 φ <2π图4x2+3y0 4 6π-20 1 4 2xy∴只有φ=6π∴所求函数解析式为y =2sin(3πx +6π).说明:本题φ的值也可由“关键点对等法”来求得,如令3π×1+φ=2π 或3π×4+φ=23π等均可求得φ的值.。
求三角函数解析式常用的方法三角函数是高中数学的一个重点,而三角函数图象与性质又是其中的难点,学生往往不知如何挖掘出有用的信息,去求A 、ω、φ。
现就几道例题谈谈常用的求解方法。
1 利用五点法,逆求函数解析式例1.右图所示的曲线是)sin(ϕω+=x A y (0>A ,0>ω)图象的一部分,求这个函数的解析式. 解:由22y -≤≤,得A=2已知第二个点(,2)12π和第五个点5(,0)6π 35346124T πππ=-= T π∴= 2ω=把(,2)12π代入,2122ππφ⨯+=得3πϕ=所以y=)32sin(2π+x点评:由图像确定解析式,观察图像的特征,形助数寻找“五点法”中的整体点,从而确定初相ϕ。
2 利用图像平移,选准变换过程切入求解例2下列函数中,图象的一部分如右图所示的是( )A .sin 6y x π⎛⎫=+ ⎪⎝⎭ B.sin 26y x π⎛⎫=- ⎪⎝⎭C.cos 43y x π⎛⎫=- ⎪⎝⎭D.cos 26y x π⎛⎫=- ⎪⎝⎭解:从图象看出,41T =1264πππ+=,所以函数的最小正周期为π,函数应为y=sin 2x 向左平移了6π个单位,即sin 2()6y x π=+=sin(2)cos(2)cos(2)3236x x x ππππ+=-++=-,故选择答案D 。
点评:数形结合,由图像确定周期和初相位后,选准图像平移变换过程切入,如本题y=sin 2x 向左平移了6π个单位进行验证化简是求解的关键。
对于利用图象的变换来求解函数的解析式,一定要清楚每一种变换对,,A ωϕ的影响,注重整体变量观念的应用。
3 特殊化赋值法求解例3设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8π=x 。
求()y f x =的解析式。
解:对称性特殊赋值切入,8x π=是函数()y f x =的图像的对称轴,()()88f x f x ππ∴+=-令8x π=,则()(0)4f f π=,即sin() =sin cos 2πϕϕϕ+=,tan 1ϕ∴=。
求函数解析式的方法和例题一、常见的求函数解析式的方法。
1. 代数法,通过代数运算,将已知的函数关系式化简成解析式的形式。
例如,对于一元一次函数y=ax+b,我们可以通过代数运算将已知的函数关系式y=ax+b化简为解析式y=2x+3。
2. 图像法,通过观察函数的图像特征,推导出函数的解析式。
例如,对于二次函数y=ax^2+bx+c,我们可以通过观察抛物线的开口方向、顶点坐标等特征来推导出函数的解析式。
3. 系数法,对于一些特定的函数类型,可以通过系数的求解来得到函数的解析式。
例如,对于指数函数y=a^x,我们可以通过已知的函数值和指数的关系来求解出函数的解析式。
4. 反函数法,有些函数的解析式可以通过求解其反函数得到。
例如,对于对数函数y=log_a(x),我们可以通过求解其反函数来得到函数的解析式。
二、求函数解析式的例题。
1. 求一元一次函数y=ax+b的解析式,已知当x=1时,y=3;当x=2时,y=5。
解:根据已知条件,我们可以列出方程组:a1+b=3。
a2+b=5。
通过解方程组,可以求解出a=2,b=1,因此函数的解析式为y=2x+1。
2. 求二次函数y=ax^2+bx+c的解析式,已知其图像经过点(1,2),顶点坐标为(-1,3)。
解:根据已知条件,我们可以列出方程组:a1^2+b1+c=2。
a(-1)^2+b(-1)+c=3。
通过解方程组,可以求解出a=1,b=0,c=1,因此函数的解析式为y=x^2+1。
3. 求指数函数y=a^x的解析式,已知当x=2时,y=16;当x=3时,y=64。
解:根据已知条件,我们可以列出方程组:a^2=16。
a^3=64。
通过解方程组,可以求解出a=4,因此函数的解析式为y=4^x。
以上就是关于求函数解析式的方法和例题的介绍,希望能对大家有所帮助。
通过学习和掌握这些方法和技巧,相信大家可以更好地理解和运用函数解析式,提高数学解题的能力。