[真题]2015年江苏省南通市中考数学试卷带答案解析
- 格式:doc
- 大小:1.24 MB
- 文档页数:30
2015年江苏省南通市中考数学试卷一.选择题(每小题3分,共30分,四个选项只有一个是符合题意的)1.(3分)(2015•南通)如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作()A.﹣3m B.3m C.6m D.﹣6m2.(3分)(2015•南通)下面四个几何体中,俯视图是圆的几何体共有()A.1个B.2个C.3个D.4个3.(3分)(2015•南通)据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为()A.0.77×107B.7.7×107C.0.77×106D.7.7×1064.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(3分)(2015•南通)下列长度的三条线段能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a(a>0)6.(3分)(2015•南通)如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是()A.B.C.D.27.(3分)(2015•南通)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12 B.15 C.18 D.218.(3分)(2015•南通)关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣29.(3分)(2015•南通)在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个B.2个C.3个D.4个10.(3分)(2015•南通)如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A.2.5 B.2.8 C.3 D.3.2二.填空题(每小题3分,共24分)11.(3分)(2015•南通)因式分解4m2﹣n2=.12.(3分)(2015•南通)已知方程2x2+4x﹣3=0的两根分别为x1和x2,则x1+x2的值等于.13.(3分)(2015•南通)计算(x﹣y)2﹣x(x﹣2y)= .14.(3分)(2015•南通)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是(填“甲”或“乙”)15.(3分)(2015•南通)如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD= cm.16.(3分)(2015•南通)如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=度.17.(3分)(2015•南通)如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,=,△CEF的面积为S1,△AEB的面积为S2,则的值等于.18.(3分)(2015•南通)关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是.三.解答题(共10小题,共96分)19.(10分)(2015•南通)(1)计算:(﹣2)2﹣+(﹣3)0﹣()﹣2(2)解方程:=.20.(8分)(2015•南通)如图,一海伦位于灯塔P的西南方向,距离灯塔40海里的A处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60°方向上的B处,求航程AB的值(结果保留根号).21.(10分)(2015•南通)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.22.(8分)(2015•南通)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.23.(8分)(2015•南通)如图,直线y=mx+n与双曲线y=相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C.(1)求m,n的值;(2)若点D与点C关于x轴对称,求△ABD的面积.24.(8分)(2015•南通)如图,PA,PB分别与⊙O相切于A,B两点,∠ACB=60°.(1)求∠P的度数;(2)若⊙O的半径长为4cm,求图中阴影部分的面积.25.(8分)(2015•南通)如图,在▱ABCD中,点E,F分别在AB,DC上,且ED ⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.26.(10分)(2015•南通)某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?27.(13分)(2015•南通)如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q 分别在BC,AC上,CP=3x,CQ=4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.(1)求证:PQ∥AB;(2)若点D在∠BAC的平分线上,求CP的长;(3)若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围.28.(13分)(2015•南通)已知抛物线y=x2﹣2mx+m2+m﹣1(m是常数)的顶点为P,直线l:y=x﹣1(1)求证:点P在直线l上;(2)当m=﹣3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M是x轴下方抛物线上的一点,∠ACM=∠PAQ(如图),求点M的坐标;(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值.2015年江苏省南通市中考数学试卷参考答案与试题解析一.选择题(每小题3分,共30分,四个选项只有一个是符合题意的)1.(3分)(2015•南通)如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作()A.﹣3m B.3m C.6m D.﹣6m【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【解答】解:因为上升记为+,所以下降记为﹣,所以水位下降6m时水位变化记作﹣6m.故选:D.【点评】考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.(3分)(2015•南通)下面四个几何体中,俯视图是圆的几何体共有()A.1个B.2个C.3个D.4个【考点】简单几何体的三视图..【分析】根据俯视图是从上面看所得到的图形判断即可.【解答】解:从上面看,三棱柱的俯视图为三角形;圆柱的俯视图为圆;四棱锥的俯视图是四边形;球的俯视图是圆;俯视图是圆的几何体共有2个.故选:B.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(3分)(2015•南通)据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为()。
2015年江苏省南通市中考数学试题一.选择题(每小题3分,共30分,四个选项只有一个是符合题意的)1.(3分)(2015•南通)如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作()A.﹣3m B.3m C.6m D.﹣6m考点:正数和负数.分析:首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.解:因为上升记为+,所以下降记为﹣,所以水位下降6m时水位变化记作﹣6m.故选:D.点评:考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.(3分)(2015•南通)下面四个几何体中,俯视图是圆的几何体共有()A.1个B.2个C.3个D.4个考点:简单几何体的三视图..分析:根据俯视图是从上面看所得到的图形判断即可.解:从上面看,三棱柱的俯视图为三角形;圆柱的俯视图为圆;四棱锥的俯视图是四边形;球的俯视图是圆;俯视图是圆的几何体共有2个.故选:B.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(3分)(2015•南通)据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为()A.0.77×107B.7.7×107C.0.77×106D.7.7×106考点:科学记数法—表示较大的数..分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将7700000用科学记数法表示为7.7×106.故选D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形..分析:根据轴对称图形与中心对称图形的概念求解.解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.点评:本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3分)(2015•南通)下列长度的三条线段能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a(a>0)考点:三角形三边关系..分析:根据三角形的三边关系对各选项进行逐一分析即可.解:A、∵10﹣5<6<10+5,∴三条线段能构成三角形,故本选项正确;B、∵11﹣5=6,∴三条线段不能构成三角形,故本选项错误;C、∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误;D、∵4a+4a=8a,∴三条线段不能构成三角形,故本选项错误.故选A.点评:本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.6.(3分)(2015•南通)如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是()A.B.C.D.2考点:解直角三角形;坐标与图形性质..分析:设(2,1)点是B,作BC⊥x轴于点C,根据三角函数的定义即可求解.解答:解:设(2,1)点是B,作BC⊥x轴于点C.则OC=2,BC=1,则tanα==.故选C.点评:本题考查了三角函数的定义,理解正切函数的定义是关键.7.(3分)(2015•南通)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12 B.15 C.18 D.21考点:利用频率估计概率..分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.解:由题意可得,×100%=20%,解得,a=15.故选:B.点评:本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.8.(3分)(2015•南通)关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2考点:一元一次不等式的整数解..分析:表示出已知不等式的解集,根据负整数解只有﹣1,﹣2,确定出b的范围即可.解:不等式x﹣b>0,解得:x>b,∵不等式的负整数解只有两个负整数解,∴﹣3≤b<2故选D.点评:此题考查了一元一次不等式的整数解,弄清题意是解本题的关键.9.(3分)(2015•南通)在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个B.2个C.3个D.4个考点:一次函数的应用..分析:根据题目所给的图示可得,两人在1小时时相遇,行程均为10km,出发0.5小时之内,甲的速度大于乙的速度,0.5至1小时之间,乙的速度大于甲的速度,出发1.5小时之后,乙的路程为15千米,甲的路程为12千米,乙比甲先到达终点.解:由图可得,两人在1小时时相遇,行程均为10km,故②正确;出发0.5小时之内,甲的速度大于乙的速度,0.5至1小时之间,乙的速度大于甲的速度,故①错误;出发1.5小时之后,乙的路程为15千米,甲的路程为12千米,乙的行程比甲多3km,故③错误;乙比甲先到达终点,故④错误.正确的只有①.故选A.点评:本题考查了一次函数的应用,行程问题的数量关系速度=路程后÷时间的运用,解答时理解函数的图象的含义是关键.10.(3分)(2015•南通)如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A.2.5 B.2.8 C.3 D.3.2考点:相似三角形的判定与性质;勾股定理;圆周角定理..分析:连接BD、CD,由勾股定理先求出BD的长,再利用△ABD∽△BED,得出=,可解得DE的长,由AE=AB ﹣DE求解即可得出答案.解:如图1,连接BD、CD,,∵AB为⊙O的直径,∴∠ADB=90°,∴BD=,∵弦AD平分∠BAC,∴CD=BD=,∴∠CBD=∠DAB,在△ABD和△BED中,∴△ABD∽△BED,∴=,即=,解得DE=,∴AE=AB﹣DE=5﹣=2.8.点评:此题主要考查了三角形相似的判定和性质及圆周角定理,解答此题的关键是得出△ABD∽△BE D.二.填空题(每小题3分,共24分)11.(3分)(2015•南通)因式分解4m2﹣n2=(2m+n)(2m﹣n).考点:因式分解-运用公式法..专题:计算题.分析:原式利用平方差公式分解即可.解答:解:原式=(2m+n)(2m﹣n).故答案为:(2m+n)(2m﹣n)点评:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12.(3分)(2015•南通)已知方程2x2+4x﹣3=0的两根分别为x1和x2,则x1+x2的值等于﹣2.考点:根与系数的关系..分析:根据两根之和等于一次项系数与二次项系数商的相反数作答即可.解答:解:∵方程2x2+4x﹣3=0的两根分别为x1和x2,∴x1+x2=﹣=﹣2,故答案为:﹣2.点评:本题考查的是一元二次方程根与系数的关系,掌握两根之和等于一次项系数与二次项系数商的相反数,两根之积等于常数项除二次项系数是解题的关键.13.(3分)(2015•南通)计算(x﹣y)2﹣x(x﹣2y)=y2.考点:整式的混合运算..分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(x﹣y)2﹣x(x﹣2y)=x2﹣2xy+y2﹣x2+2xy=y2点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14.(3分)(2015•南通)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是甲(填“甲”或“乙”)考点:方差;折线统计图..分析:根据方差的意义:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.观察图中的信息可知小华的方差较小,故甲的成绩更加稳定.解答:解:由图表明乙这8次成绩偏离平均数大,即波动大,而甲这8次成绩,分布比较集中,各数据偏离平均小,方差小,则S甲2<S乙2,即两人的成绩更加稳定的是甲.故答案为:甲.点评:本题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.(3分)(2015•南通)如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD=8cm.考点:垂径定理;勾股定理..分析:根据垂径定理,可得AC的长,根据勾股定理,可得OC的长,根据线段的和差,可得答案.解答:解:由垂径定理,得AC=AB=12cm.有半径相等,得OA=OD=13cm.由勾股定理,得OC===5.由线段的和差,得CD=OD﹣OC=13﹣5=8cm,故答案为:8.点评:本题考查了垂径定理,利用垂径定理得出直角三角形OAC是解题关键,又利用了勾股定理.16.(3分)(2015•南通)如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=52度.考点:等腰三角形的性质..分析:设∠ADC=α,然后根据AC=AD=DB,∠BAC=102°,表示出∠B和∠BAD的度数,最后根据三角形的内角和定理求出∠ADC的度数.解答:解:∵AC=AD=DB,∴∠B=∠BAD,∠ADC=∠C,设∠ADC=α,∴∠B=∠BAD=,∵∠BAC=102°,∴∠DAC=102°﹣,在△ADC中,∵∠ADC+∠C+∠DAC=180°,∴2α+102°﹣=180°,解得:α=52°.故答案为:52.点评:本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等.17.(3分)(2015•南通)如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,=,△CEF的面积为S1,△AEB的面积为S2,则的值等于.考点:相似三角形的判定与性质;矩形的性质..分析:首先根据=设AD=BC=a,则AB=CD=2a,然后利用勾股定理得到AC=a,然后根据射影定理得到BC2=CE•CA,AB2=AE•AC从而求得CE=,AE=,得到=,利用△CEF∽△AEB,求得=()2=.解答:解:∵=,∴设AD=BC=a,则AB=CD=2a,∴AC=a,∵BF⊥AC,∴△CBE∽△CAB,△AEB∽△ABC,∴BC2=CE•CA,AB2=AE•AC∴a2=CE•a,2a2=AE•a,∴CE=,AE=,∴=,∵△CEF∽△AEB,∴=()2=,故答案为:.点评:本题考查了矩形的性质及相似三角形的判定,能够牢记射影定理的内容对解决本题起到至关重要的作用,难度不大.18.(3分)(2015•南通)关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是<a<﹣2.考点:抛物线与x轴的交点..分析:首先根据根的情况利用根的判别式解得a的取值范围,然后根据根两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),结合函数图象确定其函数值的取值范围得a,易得a的取值范围.解答:解:∵关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根,∴△=(﹣3)2﹣4×a×(﹣1)>0,解得:a>,设fx=ax2﹣3x﹣1∵实数根都在﹣1和0之间,∴当a>0时,如图①,f(﹣1)>0,f(0)>0f(0)=a×02﹣3×0﹣1=﹣1<0,∴此种情况不存在;当a<0时,如图②,f(﹣1)<0,f(0)<0,即f(﹣1)=a×(﹣1)2﹣3×(﹣1)﹣1<0,f(0)=﹣1<0,解得:a<﹣2,∴<a<﹣2,故答案为:<a<﹣2.点评:本题主要考查了一元二次方程根的情况的判别及抛物线与x轴的交点,数形结合确定当x=0和当x=﹣1时函数值的取值范围是解答此题的关键.三.解答题(共10小题,共96分)19.(10分)(2015•南通)(1)计算:(﹣2)2﹣+(﹣3)0﹣()﹣2(2)解方程:=.考点:实数的运算;零指数幂;负整数指数幂..专题:计算题.分析:(1)原式第一项利用乘方的意义化简,第二项利用立方根定义计算,第三项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)原式=4﹣4+1﹣9=﹣8;(2)去分母得:x+5=6x,解得:x=1,经检验x=1是分式方程的解.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)(2015•南通)如图,一海伦位于灯塔P的西南方向,距离灯塔40海里的A处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60°方向上的B处,求航程AB的值(结果保留根号).考点:解直角三角形的应用-方向角问题..专题:计算题.分析:过P作PC垂直于AB,在直角三角形ACP中,利用锐角三角函数定义求出AC与PC的长,在直角三角形BCP中,利用锐角三角函数定义求出CB的长,由AC+CB求出AB的长即可.解答:解:过P作PC⊥AB于点C,在Rt△ACP中,PA=40海里,∠APC=45°,sin∠APC=,cos∠APC=,∴AC=AP•sin45°=40×=40(海里),PC=AP•cos45°=40×=40(海里),在Rt△BCP中,∠BPC=60°,tan∠BPC=,∴BC=PC•tan60°=40(海里),则AB=AC+BC=(40+40)海里.点评:此题考查了解直角三角形的应用﹣方向角问题,熟练掌握锐角三角函数定义是解本题的关键.21.(10分)(2015•南通)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为144度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.考点:列表法与树状图法;用样本估计总体;频数(率)分布直方图;扇形统计图..分析:(1)由第三组(79.5~89.5)的人数即可求出其扇形的圆心角;(2)首先求出50人中成绩在90分以上(含90分)的同学可以获奖的百分比,进而可估计该校约有多少名同学获奖;(3)列表得出所有等可能的情况数,找出选出的两名主持人“恰好为一男一女”的情况数,即可求出所求的概率.解答:解:(1)由直方图可知第三组(79.5~89.5)所占的人数为20人,所以“第三组(79.5~89.5)”的扇形的圆心角==144°,故答案为:144;(2)估计该校获奖的学生数=×2000=640(人);(3)列表如下:男男女女男﹣﹣﹣(男,男)(女,男)(女,男)男(男,男)﹣﹣﹣﹣(女,男)(女,男)女(男,女)(男,女)﹣﹣﹣(女,女)女(男,女)(男,女)(女,女)﹣﹣﹣所有等可能的情况有12种,其中选出的两名主持人“恰好为一男一女”的情况有8种,则P(选出的两名主持人“恰好为一男一女”)==.故答案为:.点评:本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图、列表法与树状图法.22.(8分)(2015•南通)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.考点:二元一次方程组的应用..分析:1辆大车与1辆小车一次可以运货多少吨?根据题意可知,本题中的等量关系是“3辆大车与4辆小车一次可以运货22吨”和“2辆大车与6辆小车一次可以运货23吨”,列方程组求解即可.解答:解:本题的答案不唯一.问题:1辆大车与1辆小车一次可以运货多少吨?设1辆大车一次运货x吨,1辆小车一次运货y吨.根据题意,得,解得.则x+y=4+2.5=6.5(吨).答:1辆大车与1辆小车一次可以运货6.5吨.点评:本题考查了二元一次方程组的应用.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.23.(8分)(2015•南通)如图,直线y=mx+n与双曲线y=相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C.(1)求m,n的值;(2)若点D与点C关于x轴对称,求△ABD的面积.考点:反比例函数与一次函数的交点问题..分析:(1)由题意,将A坐标代入一次函数与反比例函数解析式,即可求出m与n的值;(2)得出点C和点D的坐标,根据三角形面积公式计算即可.解答:解:(1)把x=﹣1,y=2;x=2,y=b代入y=,解得:k=﹣2,b=﹣1;把x=﹣1,y=2;x=2,y=﹣1代入y=mx+n,解得:m=﹣1,n=1;(2)直线y=﹣x+1与y轴交点C的坐标为(0,1),所以点D的坐标为(0,﹣1),点B的坐标为(2,﹣1),所以△ABD的面积=.点评:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了反比例函数图象的性质.24.(8分)(2015•南通)如图,PA,PB分别与⊙O相切于A,B两点,∠ACB=60°.(1)求∠P的度数;(2)若⊙O的半径长为4cm,求图中阴影部分的面积.考点:切线的性质;扇形面积的计算..分析:(1)由PA与PB都为圆O的切线,利用切线的性质得到OA垂直于AP,OB垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C的度数求出∠AOB的度数,在四边形PABO中,根据四边形的内角和定理即可求出∠P的度数.(2)由S阴影=2×(S△PAO﹣S扇形)则可求得结果.解答:解:连接OA、OB,∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=120°,∴∠P=360°﹣(90°+90°+120°)=60°.∴∠P=60°.(2)连接OP,∵PA、PB是⊙O的切线,∴APB=30°,在RT△APO中,tan30°=,∴AP===4cm,∴S阴影=2S△AOP﹣S扇形=2×(×4×﹣)=(16﹣)(cm2).点评:此题考查了切线的性质,解直角三角函数,扇形面积公式等知识.此题难度不大,注意数形结合思想的应用.25.(8分)(2015•南通)如图,在▱ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥B D.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.考点:平行四边形的判定与性质;全等三角形的判定与性质;含30度角的直角三角形..专题:证明题.分析:(1)由四边形ABCD为平行四边形,利用平行四边形的性质得到对边平行且相等,对角相等,再由垂直的定义得到一对直角相等,利用等式的性质得到一对角相等,利用ASA即可得证;(2)过D作DH垂直于AB,在直角三角形ADH中,利用30度所对的直角边等于斜边的一半得到AD=2DH,在直角三角形DEB中,利用斜边上的中线等于斜边的一半得到EB=2DH,易得四边形EBFD为平行四边形,利用平行四边形的对边相等得到EB=DF,等量代换即可得证.解答:证明:(1)∵平行四边形ABCD,∴AD=CB,∠A=∠C,AD∥CB,∴∠ADB=∠CBD,∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,在△AED和△CFB中,,∴△AED≌△CFB(ASA);(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,∴AD=2DH,在Rt△DEB中,∠DEB=45°,∴EB=2DH,∴四边形EBFD为平行四边形,∴FD=EB,∴DA=DF.点评:此题考查了平行四边形的判定与性质,全等三角形的判定与性质,以及含30度直角三角形的性质,熟练掌握平行四边形的判定与性质是解本题的关键.26.(10分)(2015•南通)某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?考点:二次函数的应用..分析:(1)根据题意可得出销量乘以每台利润进而得出总利润,进而得出答案;(2)根据销量乘以每台利润进而得出总利润,即可求出即可.解答:解:(1)y=,(2)在0≤x≤10时,y=100x,当x=10时,y有最大值1000;在10<x≤30时,y=﹣3x2+130x,当x=21时,y取得最大值,∵x为整数,根据抛物线的对称性得x=22时,y有最大值1408.∵1408>1000,∴顾客一次购买22件时,该网站从中获利最多.点评:此题主要考查了二次函数的应用,根据题意得出y与x的函数关系是解题关键.27.(13分)(2015•南通)如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC上,CP=3x,CQ=4x (0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.(1)求证:PQ∥AB;(2)若点D在∠BAC的平分线上,求CP的长;(3)若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围.考点:几何变换综合题..分析:(1)先根据勾股定理求出AC的长,再由相似三角形的判定定理得出△PQC∽△BAC,由相似三角形的性质得出∠CPQ=∠B,由此可得出结论;(2)连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=12﹣4x,故可得出x的值,进而得出结论;(3)当点E在AB上时,根据等腰三角形的性质求出x的值,再分0<x≤;<x<3两种情况进行分类讨论.解答:(1)证明:∵在Rt△ABC中,AB=15,BC=9,∴AC===12.∵==,==,∴=.∵∠C=∠C,∴△PQC∽△BAC,∴∠CPQ=∠B,∴PQ∥AB;(2)解:连接AD,∵PQ∥AB,∴∠ADQ=∠DA B.∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,梦想不会辜负每一个努力的人∴AQ=DQ.在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=2x.∵AQ=12﹣4x,∴12﹣4x=2x,解得x=2,∴CP=3x=6.(3)解:当点E在AB上时,∵PQ∥AB,∴∠DPE=∠PE B.∵∠CPQ=∠DPE,∠CPQ=∠B,∴∠B=∠PEB,∴PB=PE=5x,∴3x+5x=9,解得x=.①当0<x≤时,T=PD+DE+PE=3x+4x+5x=12x,此时0<T≤;②当<x<3时,设PE交AB于点G,DE交AB于F,作GH⊥FQ,垂足为H,∴HG=DF,FG=DH,Rt△PHG∽Rt△PDE,∴==.∵PG=PB=9﹣3x,∴==,∴GH=(9﹣3x),PH=(9﹣3x),∴FG=DH=3x﹣(9﹣3x),∴T=PG+PD+DF+FG=(9﹣3x)+3x+(9﹣3x)+[3x﹣(9﹣3x)]=x+,此时,<T<18.∴当0<x<3时,T随x的增大而增大,∴T=12时,即12x=12,解得x=1;TA=16时,即x+=16,解得x=.∵12≤T≤16,∴x的取值范围是1≤x≤.点评:本题考查的是几何变换综合题,涉及到勾股定理、相似三角形的判定与性质等知识,在解答(3)时要注意进行分类讨论.28.(13分)(2015•南通)已知抛物线y=x2﹣2mx+m2+m﹣1(m是常数)的顶点为P,直线l:y=x﹣1(1)求证:点P在直线l上;(2)当m=﹣3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M是x轴下方抛物线上的一点,∠ACM=∠PAQ(如图),求点M的坐标;(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值.考点:二次函数综合题..专题:综合题.分析:(1)利用配方法得到y=(x﹣m)2+m﹣1,点P(m,m﹣1),然后根据一次函数图象上点的坐标特征判断点P在直线l上;(2)当m=﹣3时,抛物线解析式为y=x2+6x+5,根据抛物线与x轴的交点问题求出A(﹣5,0),易得C(0,5),通过解方程组得P(﹣3,﹣4),Q(﹣2,﹣3),作ME⊥y轴于E,PF⊥x轴于F,QG⊥x轴于G,如图,证明Rt△CME∽Rt△PAF,利用相似得=,设M(x,x2+6x+5),则=,解得x1=0(舍去),x2=﹣4,于是得到点M的坐标为(﹣4,﹣3);(3)通过解方程组得P(m,m﹣1),Q(m+1,m),利用两点间的距离公式得到PQ2=2,OQ2=2m2+2m+1,OP2=2m2﹣2m+1,然后分类讨论:当PQ=OQ时,2m2+2m+1=2;当PQ=OP时,2m2﹣2m+1=2;当OP=OQ时,2m2+2m+1=2m2﹣2m+1,再分别解关于m的方程求出m即可.解答:(1)证明:∵y=x2﹣2mx+m2+m﹣1=(x﹣m)2+m﹣1,∴点P的坐标为(m,m﹣1),∵当x=m时,y=x﹣1=m﹣1,∴点P在直线l上;(2)解:当m=﹣3时,抛物线解析式为y=x2+6x+5,当y=0时,x2+6x+5=0,解得x1=﹣1,x2=﹣5,则A(﹣5,0),当x=0时,y=x2+6x+5=5,则C(0,5),可得解方程组,解得或,则P(﹣3,﹣4),Q(﹣2,﹣3),作ME⊥y轴于E,PF⊥x轴于F,QG⊥x轴于G,如图,∵OA=OC=5,∴△OAC为等腰直角三角形,∴∠ACO=45°,∴∠MCE=45°﹣∠ACM,∵QG=3,OG=2,∴AG=OA﹣OG=3=QG,∴△AQG为等腰直角三角形,∴∠QAG=45°,∵∠APF=90°﹣∠PAF=90°﹣(∠PAQ+45°)=45°﹣∠PAQ,∵∠ACM=∠PAQ,∴∠APF=∠MCE,∴Rt△CME∽Rt△PAF,∴=,设M(x,x2+6x+5),梦想不会辜负每一个努力的人 21 ∴ME =﹣x ,CE =5﹣(x 2+6x +5)=﹣x 2﹣6x ,∴=,整理得x 2+4x =0,解得x 1=0(舍去),x 2=﹣4,∴点M 的坐标为(﹣4,﹣3);(3)解:解方程组得或,则P (m ,m ﹣1),Q (m +1,m ), ∴PQ 2=(m +1﹣m )2+(m ﹣m +1)2=2,OQ 2=(m +1)2+m 2=2m 2+2m +1,OP 2=m 2+(m ﹣1)2=2m 2﹣2m +1, 当PQ =OQ 时,2m 2+2m +1=2,解得m 1=,m 2=;当PQ =OP 时,2m 2﹣2m +1=2,解得m 1=,m 2=; 当OP =OQ 时,2m 2+2m +1=2m 2﹣2m +1,解得m =0,综上所述,m 的值为0,,,,.点评: 本题考查了二次函数的综合题:熟练掌握二次函数图象和一次函数图象上点的坐标特征、二次函数的性质,会求抛物线与直线的交点坐标;理解坐标与图形性质,会利用两点间的距离公式计算线段的长;会运用相似比计算线段的长;能运用分类讨论的思想解决数学问题.。
2015年江苏省南通市中考数学解析版一 选择题(每小题 分,共 分,四个选项只有一个是符合题意的).( 分)( 南通)如果水位升高 时水位变化记作 ,那么水位下降 时水位变化记作().﹣ . . .﹣ .( 分)( 南通)下面四个几何体中,俯视图是圆的几何体共有(). 个 . 个 . 个 . 个 .( 分)( 南通)据统计: 年南通市在籍人口总数约为人,将 用科学记数法表示为(). . . . .( 分)下列图形中既是轴对称图形又是中心对称图形的是() . . . ..( 分)( 南通)下列长度的三条线段能组成三角形的是() . , , . , , . , , . , ,( > ) .( 分)( 南通)如图,在平面直角坐标系中,直线 过点( , ),则 的值是(). . . . .( 分)( 南通)在一个不透明的盒子中装有 个除颜色外完全相同的球,这 个球中只有 个红球,若每次将球充分搅匀后,任意摸出 个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在 左右,则 的值约为() . . . . .( 分)( 南通)关于 的不等式 ﹣ > 恰有两个负整数解,则 的取值范围是().﹣ < <﹣ .﹣ < ﹣ .﹣ ﹣ .﹣ <﹣ .( 分)( 南通)在 越野赛中,甲乙两选手的行程 (单位:)随时间 (单位: )变化的图象如图所示,根据图中提供的信息,有下列说法: 两人相遇前,甲的速度小于乙的速度; 出发后 小时,两人行程均为 ; 出发后 小时,甲的行程比乙多 ; 甲比乙先到达终点.其中正确的有(). 个 . 个 . 个 . 个 .( 分)( 南通)如图, 为 的直径, 为 上一点,弦 平分 ,交 于点 , , ,则 的长为(). . . .二 填空题(每小题 分,共 分).( 分)( 南通)因式分解 ﹣ ..( 分)( 南通)已知方程 ﹣ 的两根分别为 和 ,则 的值等于 ..( 分)( 南通)计算( ﹣ ) ﹣ ( ﹣ ) ..( 分)( 南通)甲乙两人 次射击的成绩如图所示(单位:环)根据图中的信息判断,这 次射击中成绩比较稳定的是(填 甲 或 乙 ).( 分)( 南通)如图,在 中,半径 垂直于弦 ,垂足为 , , ,则 ..( 分)( 南通)如图, 中, 是 上一点, , ,则 度..( 分)( 南通)如图,矩形 中, 是 上一点, ,垂足为 , , 的面积为 , 的面积为 ,则的值等于..( 分)( 南通)关于 的一元二次方程 ﹣ ﹣ 的两个不相等的实数根都在﹣ 和 之间(不包括﹣ 和 ),则 的取值范围是.三 解答题(共 小题,共 分).( 分)( 南通)( )计算:(﹣ ) ﹣ (﹣ ) ﹣()﹣( )解方程: ..( 分)( 南通)如图,一海伦位于灯塔 的西南方向,距离灯塔海里的 处,它沿正东方向航行一段时间后,到达位于灯塔 的南偏东 方向上的 处,求航程 的值(结果保留根号)..( 分)( 南通)为增强学生环保意识,某中学组织全校 名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:( )若抽取的成绩用扇形图来描述,则表示 第三组( ~ ) 的扇形的圆心角为度;( )若成绩在 分以上(含 分)的同学可以获奖,请估计该校约有多少名同学获奖?( )某班准备从成绩最好的 名同学(男、女各 名)中随机选取 名同学去社区进行环保宣传,则选出的同学恰好是 男 女的概率为..( 分)( 南通)由大小两种货车, 辆大车与 辆小车一次可以运货 吨, 辆大车与 辆小车一次可以运货 吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程..( 分)( 南通)如图,直线 与双曲线 相交于 (﹣ , ), ( , )两点,与 轴相交于点 .( )求 , 的值;( )若点 与点 关于 轴对称,求 的面积..( 分)( 南通)如图, , 分别与 相切于 , 两点, .( )求 的度数;( )若 的半径长为 ,求图中阴影部分的面积..( 分)( 南通)如图,在 中,点 , 分别在 , 上,且 , .( )求证: ;( )若 , ,求证: ..( 分)( 南通)某网店打出促销广告:最潮新款服装 件,每件售价 元.若一次性购买不超过 件时,售价不变;若一次性购买超过 件时,每多买 件,所买的每件服装的售价均降低 元.已知该服装成本是每件 元,设顾客一次性购买服装 件时,该网店从中获利 元.( )求 与 的函数关系式,并写出自变量 的取值范围;( )顾客一次性购买多少件时,该网店从中获利最多?.( 分)( 南通)如图, 中, , , ,点 , 分别在 , 上, , ( < < ).把 绕点 旋转,得到 ,点 落在线段 上.( )求证: ;( )若点 在 的平分线上,求 的长;( )若 与 重叠部分图形的周长为 ,且 ,求 的取值范围..( 分)( 南通)已知抛物线 ﹣ ﹣ ( 是常数)的顶点为 ,直线 : ﹣( )求证:点 在直线 上;( )当 ﹣ 时,抛物线与 轴交于 , 两点,与 轴交于点 ,与直线 的另一个交点为 , 是 轴下方抛物线上的一点, (如图),求点 的坐标;( )若以抛物线和直线 的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的 的值.年江苏省南通市中考数学解析版一 选择题(每小题 分,共 分,四个选项只有一个是符合题意的).( 分)考点:正数和负数.分析:首先审清题意,明确 正 和 负 所表示的意义,再根据题意作答.解答:解:因为上升记为 ,所以下降记为﹣,所以水位下降 时水位变化记作﹣ .故选: .点评:考查了正数和负数,解题关键是理解 正 和 负 的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示..( 分)考点:简单几何体的三视图.分析:根据俯视图是从上面看所得到的图形判断即可.解答:解:从上面看,三棱柱的俯视图为三角形;圆柱的俯视图为圆;四棱锥的俯视图是四边形;球的俯视图是圆;俯视图是圆的几何体共有 个.故选: .点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图..( 分)考点:科学记数法 表示较大的数.分析:科学记数法的表示形式为 的形式,其中 < , 为整数.确定 的值时,要看把原数变成 时,小数点移动了多少位, 的绝对值与小数点移动的位数相同.当原数绝对值> 时, 是正数;当原数的绝对值< 时, 是负数.解答:解:将 用科学记数法表示为 .故选 .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为 的形式,其中 < , 为整数,表示时关键要正确确定 的值以及 的值. .( 分)考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解: 、既是轴对称图形,又是中心对称图形,故 正确;、不是轴对称图形,是中心对称图形,故 错误;、是轴对称图形,不是中心对称图形,故 错误;、是轴对称图形,不是中心对称图形,故 错误.故选: .点评:本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转 度后两部分重合..( 分)考点:三角形三边关系.分析:根据三角形的三边关系对各选项进行逐一分析即可.解答:解: 、 ﹣ < < , 三条线段能构成三角形,故本选项正确;、 ﹣ , 三条线段不能构成三角形,故本选项错误;、 < , 三条线段不能构成三角形,故本选项错误;、 , 三条线段不能构成三角形,故本选项错误.故选 .点评:本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键..( 分)考点:解直角三角形;坐标与图形性质.分析:设( , )点是 ,作 轴于点 ,根据三角函数的定义即可求解.解答:解:设( , )点是 ,作 轴于点 .则 , ,则 .故选 .点评:本题考查了三角函数的定义,理解正切函数的定义是关键..( 分)考点:利用频率估计概率.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.解答:解:由题意可得, ,解得, .故选: .点评:本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系..( 分)考点:一元一次不等式的整数解.分析:表示出已知不等式的解集,根据负整数解只有﹣ ,﹣ ,确定出 的范围即可.解答:解:不等式 ﹣ > ,解得: > ,不等式的负整数解只有两个负整数解,﹣ <故选 .点评:此题考查了一元一次不等式的整数解,弄清题意是解本题的关键..( 分)考点:一次函数的应用.分析:根据题目所给的图示可得,两人在 小时时相遇,行程均为 ,出发 小时之内,甲的速度大于乙的速度, 至 小时之间,乙的速度大于甲的速度,出发 小时之后,乙的路程为 千米,甲的路程为 千米,乙比甲先到达终点.解答:解:由图可得,两人在 小时时相遇,行程均为 ,故 正确;出发 小时之内,甲的速度大于乙的速度, 至 小时之间,乙的速度大于甲的速度,故 错误;出发 小时之后,乙的路程为 千米,甲的路程为 千米,乙的行程比甲多 ,故 错误;乙比甲先到达终点,故 错误.正确的只有 .故选 .点评:本题考查了一次函数的应用,行程问题的数量关系速度 路程后 时间的运用,解答时理解函数的图象的含义是关键..( 分)考点:相似三角形的判定与性质;勾股定理;圆周角定理.分析:连接 、 ,由勾股定理先求出 的长,再利用 ,得出 ,可解得 的长,由 ﹣ 求解即可得出答案.解答:解:如图 ,连接 、 ,,为 的直径,,,弦 平分 ,,,在 和 中,,,即 ,解得 ,﹣ ﹣ .点评:此题主要考查了三角形相似的判定和性质及圆周角定理,解答此题的关键是得出 .二 填空题(每小题 分,共 分).( 分)考点:因式分解 运用公式法.专题:计算题.分析:原式利用平方差公式分解即可.解答:解:原式 ( )( ﹣ ).故答案为:( )( ﹣ )点评:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键..( 分)考点:根与系数的关系.分析:根据两根之和等于一次项系数与二次项系数商的相反数作答即可.解答:解: 方程 ﹣ 的两根分别为 和 ,﹣ ﹣ ,故答案为:﹣ .点评:本题考查的是一元二次方程根与系数的关系,掌握两根之和等于一次项系数与二次项系数商的相反数,两根之积等于常数项除二次项系数是解题的关键..( 分)考点:整式的混合运算.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:( ﹣ ) ﹣ ( ﹣ )﹣ ﹣点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理..( 分)考点:方差;折线统计图.分析:根据方差的意义:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.观察图中的信息可知小华的方差较小,故甲的成绩更加稳定.解答:解:由图表明乙这 次成绩偏离平均数大,即波动大,而甲这 次成绩,分布比较集中,各数据偏离平均小,方差小,则 甲 < 乙 ,即两人的成绩更加稳定的是甲.故答案为:甲.点评:本题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定..( 分)考点:垂径定理;勾股定理.分析:根据垂径定理,可得 的长,根据勾股定理,可得 的长,根据线段的和差,可得答案.解答:解:由垂径定理,得.有半径相等,得.由勾股定理,得.由线段的和差,得﹣ ﹣ ,故答案为: .点评:本题考查了垂径定理,利用垂径定理得出直角三角形 是解题关键,又利用了勾股定理..( 分)考点:等腰三角形的性质.分析:设 ,然后根据 , ,表示出 和 的度数,最后根据三角形的内角和定理求出 的度数.解答:解: ,, ,设 ,,,﹣,在 中,,﹣ ,解得: .故答案为: .点评:本题考查了等腰三角形的性质: 等腰三角形的两腰相等; 等腰三角形的两个底角相等..( 分)考点:相似三角形的判定与性质;矩形的性质.分析:首先根据 设 ,则 ,然后利用勾股定理得到 ,然后根据射影定理得到 , 从而求得 , ,得到 ,利用 ,求得 () .解答:解: ,设 ,则 ,,,, ,,, ,, ,,,() ,故答案为:.点评:本题考查了矩形的性质及相似三角形的判定,能够牢记射影定理的内容对解决本题起到至关重要的作用,难度不大..( 分)考点:抛物线与 轴的交点.分析:首先根据根的情况利用根的判别式解得 的取值范围,然后根据根两个不相等的实数根都在﹣ 和 之间(不包括﹣ 和 ),结合函数图象确定其函数值的取值范围得 ,易得 的取值范围.解答:解: 关于 的一元二次方程 ﹣ ﹣ 的两个不相等的实数根, (﹣ ) ﹣ (﹣ )> ,解得: >,设 ﹣ ﹣实数根都在﹣ 和 之间,当 > 时,如图 , (﹣ )> , ( )>( ) ﹣ ﹣ ﹣ < ,此种情况不存在;当 < 时,如图 , (﹣ )< , ( )< ,即 (﹣ ) (﹣ ) ﹣ (﹣ )﹣ < , ( ) ﹣ < ,解得: <﹣ ,< <﹣ ,故答案为:< <﹣ .点评:本题主要考查了一元二次方程根的情况的判别及抛物线与 轴的交点,数形结合确定当 和当 ﹣ 时函数值的取值范围是解答此题的关键.三 解答题(共 小题,共 分).( 分)考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:( )原式第一项利用乘方的意义化简,第二项利用立方根定义计算,第三项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果;( )分式方程去分母转化为整式方程,求出整式方程的解得到 的值,经检验即可得到分式方程的解.解答:解:( )原式 ﹣ ﹣ ﹣ ;( )去分母得: ,解得: ,经检验 是分式方程的解.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键..( 分)考点:解直角三角形的应用 方向角问题.专题:计算题.分析:过 作 垂直于 ,在直角三角形 中,利用锐角三角函数定义求出与 的长,在直角三角形 中,利用锐角三角函数定义求出 的长,由 求出 的长即可.解答:解:过 作 于点 ,在 中, 海里, , , ,(海里),(海里),在 中, , ,(海里),则 ( )海里.点评:此题考查了解直角三角形的应用﹣方向角问题,熟练掌握锐角三角函数定义是解本题的关键..( 分)考点:列表法与树状图法;用样本估计总体;频数(率)分布直方图;扇形统计图.分析:( )由第三组( ~ )的人数即可求出其扇形的圆心角;( )首先求出 人中成绩在 分以上(含 分)的同学可以获奖的百分比,进而可估计该校约有多少名同学获奖;( )列表得出所有等可能的情况数,找出选出的两名主持人 恰好为一男一女 的情况数,即可求出所求的概率.解答:解:( )由直方图可知第三组( ~ )所占的人数为 人,所以 第三组( ~ ) 的扇形的圆心角,故答案为: ;( )估计该校获奖的学生数 (人);( )列表如下:男男女女男﹣﹣﹣(男,男)(女,男)(女,男)男(男,男)﹣﹣﹣﹣(女,男)(女,男)女(男,女)(男,女)﹣﹣﹣(女,女)女(男,女)(男,女)(女,女)﹣﹣﹣所有等可能的情况有 种,其中选出的两名主持人 恰好为一男一女 的情况有 种,则 (选出的两名主持人 恰好为一男一女 ) .故答案为:.点评:本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图、列表法与树状图法..( 分)考点:二元一次方程组的应用.分析: 辆大车与 辆小车一次可以运货多少吨?根据题意可知,本题中的等量关系是 辆大车与 辆小车一次可以运货 吨 和 辆大车与 辆小车一次可以运货 吨 ,列方程组求解即可.解答:解:本题的答案不唯一.问题: 辆大车与 辆小车一次可以运货多少吨?设 辆大车一次运货 吨, 辆小车一次运货 吨.根据题意,得,解得.则 (吨).答: 辆大车与 辆小车一次可以运货 吨.点评:本题考查了二元一次方程组的应用.利用二元一次方程组求解的应用题一般情况下题中要给出 个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键..( 分)考点:反比例函数与一次函数的交点问题.分析:( )由题意,将 坐标代入一次函数与反比例函数解析式,即可求出 与 的值;( )得出点 和点 的坐标,根据三角形面积公式计算即可.解答:解:( )把 ﹣ , ; , 代入 ,解得: ﹣ , ﹣ ;把 ﹣ , ; , ﹣ 代入 ,解得: ﹣ , ;( )直线 ﹣ 与 轴交点 的坐标为( , ),所以点 的坐标为( ,﹣ ),点 的坐标为( ,﹣ ),所以 的面积 .点评:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了反比例函数图象的性质..( 分)考点:切线的性质;扇形面积的计算.分析:( )由 与 都为圆 的切线,利用切线的性质得到 垂直于 , 垂直于 ,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的 倍,由已知 的度数求出 的度数,在四边形 中,根据四边形的内角和定理即可求出 的度数.( )由 阴影 ( ﹣ 扇形)则可求得结果.解答:解:连接 、 ,、 是 的切线,, ,,又 ,﹣( ) ..( )连接 ,、 是 的切线,,在 中, ,,阴影 ﹣ 扇形 ( ﹣) ( ﹣)( ).点评:此题考查了切线的性质,解直角三角函数,扇形面积公式等知识.此题难度不大,注意数形结合思想的应用..( 分)考点:平行四边形的判定与性质;全等三角形的判定与性质;含 度角的直角三角形.专题:证明题.分析:( )由四边形 为平行四边形,利用平行四边形的性质得到对边平行且相等,对角相等,再由垂直的定义得到一对直角相等,利用等式的性质得到一对角相等,利用 即可得证;( )过 作 垂直于 ,在直角三角形 中,利用 度所对的直角边等于斜边的一半得到 ,在直角三角形 中,利用斜边上的中线等于斜边的一半得到 ,易得四边形 为平行四边形,利用平行四边形的对边相等得到 ,等量代换即可得证.解答:证明:( ) 平行四边形 ,, , ,,, ,,,在 和 中,,( );( )作 ,垂足为 ,在 中, ,,在 中, ,,四边形 为平行四边形,,.点评:此题考查了平行四边形的判定与性质,全等三角形的判定与性质,以及含 度直角三角形的性质,熟练掌握平行四边形的判定与性质是解本题的关键..( 分)考点:二次函数的应用.分析:( )根据题意可得出销量乘以每台利润进而得出总利润,进而得出答案;( )根据销量乘以每台利润进而得出总利润,即可求出即可.解答:解:( ),( )在 时, ,当 时, 有最大值 ;在 < 时, ﹣ ,当 时, 取得最大值,为整数,根据抛物线的对称性得 时, 有最大值 . > ,顾客一次购买 件时,该网站从中获利最多.点评:此题主要考查了二次函数的应用,根据题意得出 与 的函数关系是解题关键. .( 分)考点:几何变换综合题.分析:( )先根据勾股定理求出 的长,再由相似三角形的判定定理得出 ,由相似三角形的性质得出 ,由此可得出结论;( )连接 ,根据 可知 ,再由点 在 的平分线上,得出 ,故 , .在中根据勾股定理可知, ﹣ ,故可得出 的值,进而得出结论;( )当点 在 上时,根据等腰三角形的性质求出 的值,再分 < ;< < 两种情况进行分类讨论.解答:( )证明: 在 中, , ,., ,.,,,;( )解:连接 ,,.点 在 的平分线上,,,.在 中, ,,.﹣ ,﹣ ,解得 ,.( )解:当点 在 上时,,., ,,,,解得 .当 < 时, ,此时 < ;当< < 时,设 交 于点 , 交 于 ,作 ,垂足为 ,, , ,.﹣ ,,( ﹣ ), ( ﹣ ),﹣( ﹣ ),( ﹣ ) ( ﹣ ) ﹣( ﹣ ),此时,< < .当 < < 时, 随 的增大而增大,时,即 ,解得 ;时,即 ,解得 .,的取值范围是 .点评:本题考查的是几何变换综合题,涉及到勾股定理、相似三角形的判定与性质等知识,在解答( )时要注意进行分类讨论..( 分)考点:二次函数综合题.专题:综合题.分析:( )利用配方法得到 ( ﹣ ) ﹣ ,点 ( , ﹣ ),然后根据一次函数图象上点的坐标特征判断点 在直线 上;( )当 ﹣ 时,抛物线解析式为 ,根据抛物线与 轴的交点问题求出 (﹣ , ),易得 ( , ),通过解方程组得 (﹣ ,﹣ ), (﹣ ,﹣ ),作 轴于 , 轴于 , 轴于 ,如图,证明 ,利用相似得 ,设 ( , ),则 ,解得 (舍去), ﹣ ,于是得到点 的坐标为(﹣ ,﹣ );( )通过解方程组得 ( , ﹣ ), ( , ),利用两点间的距离公式得到 , , ﹣ ,然后分类讨论:当 时, ;当 时,﹣ ;当 时, ﹣ ,再分别解关于 的方程求出 即可.解答:( )证明: ﹣ ﹣ ( ﹣ ) ﹣ , 点 的坐标为( , ﹣ ),当 时, ﹣ ﹣ ,点 在直线 上;( )解:当 ﹣ 时,抛物线解析式为 ,当 时, ,解得 ﹣ , ﹣ ,则 (﹣ , ),当 时, ,则 ( , ),可得解方程组,解得或,则 (﹣ ,﹣ ), (﹣ ,﹣ ),作 轴于 , 轴于 , 轴于 ,如图, ,为等腰直角三角形,,﹣ ,, ,﹣ ,为等腰直角三角形,,﹣ ﹣( ) ﹣ ,,,,,设 ( , ),﹣ , ﹣( ) ﹣ ﹣ , ,整理得 ,解得 (舍去), ﹣ ,点 的坐标为(﹣ ,﹣ );( )解:解方程组得或,则 ( , ﹣ ), ( , ),( ﹣ ) ( ﹣ ) , ( ) , ( ﹣ ) ﹣ ,当 时, ,解得 , ;当 时, ﹣ ,解得 , ;当 时, ﹣ ,解得 ,综上所述, 的值为 ,,,,.点评:本题考查了二次函数的综合题:熟练掌握二次函数图象和一次函数图象上点的坐标特征、二次函数的性质,会求抛物线与直线的交点坐标;理解坐标与图形性质,会利用两点间的距离公式计算线段的长;会运用相似比计算线段的长;能运用分类讨论的思想解决数学问题.。
2015年江苏省南通市中考数学试卷一.选择题(每小题3分,共30分,四个选项只有一个是符合题意的)1.(3分)如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作()A.﹣3m B.3m C.6m D.﹣6m2.(3分)下面四个几何体中,俯视图是圆的几何体共有()A.1个B.2个C.3个D.4个3.(3分)据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为()A.0.77×107B.7.7×107C.0.77×106D.7.7×1064.(3分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(3分)下列长度的三条线段能组成三角形的是()A.5,6,10B.5,6,11C.3,4,8D.4a,4a,8a(a>0)6.(3分)如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是()A.B.C.D.27.(3分)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12B.15C.18D.218.(3分)关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2B.﹣3<b≤﹣2C.﹣3≤b≤﹣2D.﹣3≤b<﹣2 9.(3分)在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个B.2个C.3个D.4个10.(3分)如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A.2.5B.2.8C.3D.3.2二.填空题(每小题3分,共24分)11.(3分)因式分解4m2﹣n2=.12.(3分)已知方程2x2+4x﹣3=0的两根分别为x1和x2,则x1+x2的值等于.13.(3分)计算(x﹣y)2﹣x(x﹣2y)=.14.(3分)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是(填“甲”或“乙”)15.(3分)如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD=cm.16.(3分)如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC =度.17.(3分)如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,,△CEF 的面积为S1,△AEB的面积为S2,则的值等于.18.(3分)关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是.三.解答题(共10小题,共96分)19.(10分)(1)计算:(﹣2)2(﹣3)0﹣()﹣2(2)解方程:.20.(8分)如图,一海伦位于灯塔P的西南方向,距离灯塔40海里的A处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60°方向上的B处,求航程AB的值(结果保留根号).21.(10分)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.22.(8分)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.23.(8分)如图,直线y=mx+n与双曲线y相交于A(﹣1,2),B(2,b)两点,与y 轴相交于点C.(1)求m,n的值;(2)若点D与点C关于x轴对称,求△ABD的面积.24.(8分)如图,P A,PB分别与⊙O相切于A,B两点,∠ACB=60°.(1)求∠P的度数;(2)若⊙O的半径长为4cm,求图中阴影部分的面积.25.(8分)如图,在▱ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.26.(10分)某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?27.(13分)如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC 上,CP=3x,CQ=4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.(1)求证:PQ∥AB;(2)若点D在∠BAC的平分线上,求CP的长;(3)若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围.28.(13分)已知抛物线y=x2﹣2mx+m2+m﹣1(m是常数)的顶点为P,直线l:y=x﹣1.(1)求证:点P在直线l上;(2)当m=﹣3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M是x轴下方抛物线上的一点,∠ACM=∠P AQ(如图),求点M的坐标;(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值.2015年江苏省南通市中考数学试卷参考答案与试题解析一.选择题(每小题3分,共30分,四个选项只有一个是符合题意的)1.(3分)如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作()A.﹣3m B.3m C.6m D.﹣6m【解答】解:因为上升记为+,所以下降记为﹣,所以水位下降6m时水位变化记作﹣6m.故选:D.2.(3分)下面四个几何体中,俯视图是圆的几何体共有()A.1个B.2个C.3个D.4个【解答】解:从上面看,三棱柱的俯视图为三角形;圆柱的俯视图为圆;四棱锥的俯视图是四边形;球的俯视图是圆;俯视图是圆的几何体共有2个.故选:B.3.(3分)据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为()A.0.77×107B.7.7×107C.0.77×106D.7.7×106【解答】解:将7700000用科学记数法表示为7.7×106.故选:D.4.(3分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.5.(3分)下列长度的三条线段能组成三角形的是()A.5,6,10B.5,6,11C.3,4,8D.4a,4a,8a(a>0)【解答】解:A、∵10﹣5<6<10+5,∴三条线段能构成三角形,故本选项正确;B、∵11﹣5=6,∴三条线段不能构成三角形,故本选项错误;C、∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误;D、∵4a+4a=8a,∴三条线段不能构成三角形,故本选项错误.故选:A.6.(3分)如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是()A.B.C.D.2【解答】解:设(2,1)点是B,作BC⊥x轴于点C.则OC=2,BC=1,则tanα .故选:C.7.(3分)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12B.15C.18D.21【解答】解:由题意可得,100%=20%,解得,a=15.故选:B.8.(3分)关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2B.﹣3<b≤﹣2C.﹣3≤b≤﹣2D.﹣3≤b<﹣2【解答】解:不等式x﹣b>0,解得:x>b,∵不等式的负整数解只有两个负整数解,∴﹣3≤b<﹣2故选:D.9.(3分)在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个B.2个C.3个D.4个【解答】解:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km,故②正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故③正确;甲到达终点所用的时间较少,因此甲比乙先到达终点,故④正确.故选:C.10.(3分)如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A.2.5B.2.8C.3D.3.2【解答】解:如图1,连接BD、CD,,∵AB为⊙O的直径,∴∠ADB=90°,∴BD,∵弦AD平分∠BAC,∴CD=BD,∴∠CBD=∠DAB,在△ABD和△BED中,∠∠∴△ABD∽△BED,∴,即,解得DE,∴AE=AD﹣DE=5 2.8.故选:B.二.填空题(每小题3分,共24分)11.(3分)因式分解4m2﹣n2=(2m+n)(2m﹣n).【解答】解:原式=(2m+n)(2m﹣n).故答案为:(2m+n)(2m﹣n)12.(3分)已知方程2x2+4x﹣3=0的两根分别为x1和x2,则x1+x2的值等于﹣2.【解答】解:∵方程2x2+4x﹣3=0的两根分别为x1和x2,∴x1+x22,故答案为:﹣2.13.(3分)计算(x﹣y)2﹣x(x﹣2y)=y2.【解答】解:(x﹣y)2﹣x(x﹣2y)=x2﹣2xy+y2﹣x2+2xy=y214.(3分)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是甲(填“甲”或“乙”)【解答】解:由图表明乙这8次成绩偏离平均数大,即波动大,而甲这8次成绩,分布比较集中,各数据偏离平均小,方差小,则S甲2<S乙2,即两人的成绩更加稳定的是甲.故答案为:甲.15.(3分)如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD=8cm.【解答】解:由垂径定理,AC AB=12cm.由半径相等,得OA=OD=13cm.由勾股定理,得OC5.由线段的和差,得CD=OD﹣OC=13﹣5=8cm,故答案为:8.16.(3分)如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC =52度.【解答】解:∵AC=AD=DB,∴∠B=∠BAD,∠ADC=∠C,设∠ADC=α,∴∠B=∠BAD,∵∠BAC=102°,∴∠DAC=102°,在△ADC中,∵∠ADC+∠C+∠DAC=180°,∴2α+102°180°,解得:α=52°.故答案为:52.17.(3分)如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,,△CEF 的面积为S1,△AEB的面积为S2,则的值等于.【解答】解:∵,∴设AD=BC=a,则AB=CD=2a,∴AC a,∵BF⊥AC,∴△CBE∽△CAB,△AEB∽△ABC,∴BC2=CE•CA,AB2=AE•AC∴a2=CE•a,2a2=AE•a,∴CE,AE,∴,∵△CEF∽△AEB,∴()2,故答案为:.18.(3分)关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是<a<﹣2.【解答】解:∵关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根∴△=(﹣3)2﹣4×a×(﹣1)>0,解得:a>设f(x)=ax2﹣3x﹣1,如图,∵实数根都在﹣1和0之间,∴﹣1<<,∴a<,且有f(﹣1)<0,f(0)<0,即f(﹣1)=a×(﹣1)2﹣3×(﹣1)﹣1<0,f(0)=﹣1<0,解得:a<﹣2,∴<a<﹣2,故答案为:<a<﹣2.三.解答题(共10小题,共96分)19.(10分)(1)计算:(﹣2)2(﹣3)0﹣()﹣2(2)解方程:.【解答】解:(1)原式=4﹣4+1﹣9=﹣8;(2)去分母得:x+5=6x,解得:x=1,经检验x=1是分式方程的解.20.(8分)如图,一海伦位于灯塔P的西南方向,距离灯塔40海里的A处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60°方向上的B处,求航程AB的值(结果保留根号).【解答】解:过P作PC⊥AB于点C,在Rt△ACP中,P A=40海里,∠APC=45°,sin∠APC,cos∠APC,∴AC=AP•sin45°=4040(海里),PC=AP•cos45°=4040(海里),在Rt△BCP中,∠BPC=60°,tan∠BPC,∴BC=PC•tan60°=40(海里),则AB=AC+BC=(40+40)海里.21.(10分)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为144度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.【解答】解:(1)由直方图可知第三组(79.5~89.5)所占的人数为20人,所以“第三组(79.5~89.5)”的扇形的圆心角144°,故答案为:144;(2)估计该校获奖的学生数2000=640(人);(3)列表如下:所有等可能的情况有12种,其中选出的两名主持人“恰好为一男一女”的情况有8种,则P(选出的两名主持人“恰好为一男一女”).故答案为:.22.(8分)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.【解答】解:本题的答案不唯一.问题:1辆大车与1辆小车一次可以运货多少吨?设1辆大车一次运货x吨,1辆小车一次运货y吨.根据题意,得,解得.则x+y=4+2.5=6.5(吨).答:1辆大车与1辆小车一次可以运货6.5吨.23.(8分)如图,直线y=mx+n与双曲线y相交于A(﹣1,2),B(2,b)两点,与y 轴相交于点C.(1)求m,n的值;(2)若点D与点C关于x轴对称,求△ABD的面积.【解答】解:(1)把x=﹣1,y=2;x=2,y=b代入y,解得:k=﹣2,b=﹣1;把x=﹣1,y=2;x=2,y=﹣1代入y=mx+n,解得:m=﹣1,n=1;(2)直线y=﹣x+1与y轴交点C的坐标为(0,1),所以点D的坐标为(0,﹣1),点B的坐标为(2,﹣1),所以△ABD的面积.24.(8分)如图,P A,PB分别与⊙O相切于A,B两点,∠ACB=60°.(1)求∠P的度数;(2)若⊙O的半径长为4cm,求图中阴影部分的面积.【解答】解:连接OA、OB,∵P A、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=120°,∴∠P=360°﹣(90°+90°+120°)=60°.∴∠P=60°.(2)连接OP,∵P A、PB是⊙O的切线,∴∠APB=30°,在Rt△APO中,tan30°,∴AP4cm,∴S阴影=2S△AOP﹣S扇形=2×(4)=(16)(cm2).25.(8分)如图,在▱ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.【解答】证明:(1)∵平行四边形ABCD,∴AD=CB,∠A=∠C,AD∥CB,AB∥CD,∴∠ADB=∠CBD,∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,在△AED和△CFB中,∠∠,∴△AED≌△CFB(ASA);(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,∴AD=2DH,在Rt△DEB中,∠DEB=45°,∴EB=2DH,∵ED⊥DB,FB⊥BD.∴DE∥BF,∵AB∥CD,∴四边形EBFD为平行四边形,∴FD=EB,∴DA=DF.26.(10分)某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?【解答】解:(1)y ,且为整数<,且为整数,(2)在0≤x≤10时,y=100x,当x=10时,y有最大值1000;在10<x≤30时,y=﹣3x2+130x,当x=21时,y取得最大值,∵x为整数,根据抛物线的对称性得x=22时,y有最大值1408.∵1408>1000,∴顾客一次购买22件时,该网站从中获利最多.27.(13分)如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC 上,CP=3x,CQ=4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.(1)求证:PQ∥AB;(2)若点D在∠BAC的平分线上,求CP的长;(3)若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围.【解答】(1)证明:∵在Rt△ABC中,AB=15,BC=9,∴AC12.∵,,∴.∵∠C=∠C,∴△PQC∽△BAC,∴∠CPQ=∠B,∴PQ∥AB;(2)解:连接AD,∵PQ∥AB,∴∠ADQ=∠DAB.∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ.在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=2x.∵AQ=12﹣4x,∴12﹣4x=2x,解得x=2,∴CP=3x=6.(3)解:当点E在AB上时,∵PQ∥AB,∴∠DPE=∠PGB.∵∠CPQ=∠DPE,∠CPQ=∠B,∴∠B=∠PGB,∴PB=PG=5x,∴3x+5x=9,解得x.①当0<x时,T=PD+DE+PE=3x+4x+5x=12x,此时0<T;②当<x<3时,设PE交AB于点G,DE交AB于F,作GH⊥PQ,垂足为H,∴HG=DF,FG=DH,Rt△PHG∽Rt△PDE,∴.∵PG=PB=9﹣3x,∴,∴GH(9﹣3x),PH(9﹣3x),∴FG=DH=3x(9﹣3x),∴T=PG+PD+DF+FG=(9﹣3x)+3x(9﹣3x)+[3x(9﹣3x)] x,此时,<T<18.∴当0<x<3时,T随x的增大而增大,∴T=12时,即12x=12,解得x=1;T=16时,即x16,解得x.∵12≤T≤16,∴x的取值范围是1≤x.28.(13分)已知抛物线y=x2﹣2mx+m2+m﹣1(m是常数)的顶点为P,直线l:y=x﹣1.(1)求证:点P在直线l上;(2)当m=﹣3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M是x轴下方抛物线上的一点,∠ACM=∠P AQ(如图),求点M的坐标;(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值.【解答】(1)证明:∵y=x2﹣2mx+m2+m﹣1=(x﹣m)2+m﹣1,∴点P的坐标为(m,m﹣1),∵当x=m时,y=x﹣1=m﹣1,∴点P在直线l上;(2)解:当m=﹣3时,抛物线解析式为y=x2+6x+5,当y=0时,x2+6x+5=0,解得x1=﹣1,x2=﹣5,则A(﹣5,0),当x=0时,y=x2+6x+5=5,则C(0,5),可得解方程组,解得或,则P(﹣3,﹣4),Q(﹣2,﹣3),作ME⊥y轴于E,PF⊥x轴于F,QG⊥x轴于G,如图,∵OA=OC=5,∴△OAC为等腰直角三角形,∴∠ACO=45°,∴∠MCE=45°﹣∠ACM,∵QG=3,OG=2,∴AG=OA﹣OG=3=QG,∴△AQG为等腰直角三角形,∴∠QAG=45°,∵∠APF=90°﹣∠P AF=90°﹣(∠P AQ+45°)=45°﹣∠P AQ,∵∠ACM=∠P AQ,∴∠APF=∠MCE,∴Rt△CME∽Rt△P AF,∴,设M(x,x2+6x+5),∴ME=﹣x,CE=5﹣(x2+6x+5)=﹣x2﹣6x,∴,整理得x2+4x=0,解得x1=0(舍去),x2=﹣4,∴点M的坐标为(﹣4,﹣3);(3)解:解方程组得或,则P(m,m﹣1),Q(m+1,m),∴PQ2=(m+1﹣m)2+(m﹣m+1)2=2,OQ2=(m+1)2+m2=2m2+2m+1,OP2=m2+(m﹣1)2=2m2﹣2m+1,当PQ=OQ时,2m2+2m+1=2,解得m1,m2;当PQ=OP时,2m2﹣2m+1=2,解得m1,m2;当OP=OQ时,2m2+2m+1=2m2﹣2m+1,解得m=0,综上所述,m的值为,,,,0.。
数学试卷 第1页(共34页) 数学试卷 第2页(共34页)绝密★启用前江苏省南通市2015年初中毕业、升学考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果水位升高6m 时水位变化记作6m +,那么水位下降6m 时水位变化记作 ( ) A .3m -B .3mC .6mD .6m - 2.下面四个几何体中,俯视图是圆的几何体共有( )A .1个B .2个C .3个D .4个3.据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为( ) A .70.7710⨯B .77.710⨯C .60.7710⨯D .67.710⨯4.下列图形中既是轴对称图形又是中心对称图形的是( )ABCD5.下列长度的三条线段能组成三角形的是( )A .5,6,10B .5,6,11C .3,4,8D .4,4,80()a a a a > 6.如图,在平面直角坐标系中,直线OA 过点(2,1),则tan α的值是( )ABC .12D .27.在一个不透明的盒子中装有a 个除颜色外完全相同的球,这a 个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a 的值大约为( ) A .12B .15C .18D .218.关于x 的不等式0x b ->恰有两个负整数解,则b 的取值范围是( )A .32b --<<B .32b --<≤C .32b --≤≤D .32b --≤<9.在20km 越野赛中,甲乙两选手的行程y (单位:km )随时间x (单位:h )变化的图象如图所示,根据图中提供的信息,有下列说法: ①两人相遇前,甲的速度小于乙的速度; ②出发后1小时,两人行程均为10km ; ③出发后1.5小时,甲的行程比乙多3km ; ④甲比乙先到达终点. 其中正确的有 ( ) A .1个B .2个C .3个D .4个10.如图,AB 为O 的直径,C 为O 上一点,弦AD 平分BAC ∠,交BC 于点E ,6AB =,5AD =,则AE 的长为 ( )A .2.5B .2.8C .3D .3.2第Ⅱ卷(非选择题 共120分)二、填空题(本大题共8小题,每小题3分,共24分.把答案填写在题中的横线上) 11.因式分解224m n -= .12.已知方程22430x x +-=的两根分别为1x 和2x ,则12x x +的值等于 . 13.计算2(2())x y x x y ---= .14.甲乙两人8次射击的成绩如图所示(单位:环).根据图中的信息判断,这8次射击中成绩比较稳定的是 (填“甲”或“乙”).毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共34页) 数学试卷 第4页(共34页)15.如图,在O 中,半径OD 垂直于弦AB ,垂足为C ,13cm OD =,24cm AB =,则CD = cm .第15题图第16题图第17题图16.如图,ABC △中,D 是BC 上一点,AC AD DB ==,102BAC =∠,则ADC =∠ 度. 17.如图,矩形ABCD 中,F 是DC 上一点,BF AC ⊥,垂足为E ,12AD AB =,CEF △的面积为1S ,AEB △的面积为2S ,则12SS 的值等于 .18.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在1-和0之间(不包括1-和0),则a 的取值范围是 . 三、解答题(本大题共10小题,共96分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分)(1)计算:2021()((33)2)----;(2)解方程1325x x =+.20.(本小题满分8分)如图,一海轮位于灯塔P 的西南方向,距离灯塔A 处,它沿正东方向航行一段时间后,到达位于灯塔P 的南偏东60方向上的B 处,求航程AB 的值(结果保留根号).21.(本小题满分10分)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数.从中抽取部分同学的成绩进行统计,并绘制成如下统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组()79.589.5”的扇形的圆心角为 度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为 .22.(本小题满分8分)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.23.(本小题满分8分)如图,直线y mx n =+与双曲线ky x=相交于2()1,A -,()2,B b 两点,与y 轴相交于点C .(1)求,m n 的值;(2)若点D 与点C 关于x 轴对称,求ABD △的面积.数学试卷 第5页(共34页) 数学试卷 第6页(共34页)24.(本小题满分8分)如图,,PA PB 分别与O 相切于,A B 两点,60ACB =∠. (1)求P ∠的度数;(2)若O 的半径长为4cm ,求图中阴影部分的面积.25.(本小题满分8分)如图,在□ABCD 中,点,E F 分别在,AB DC 上,且ED DB ⊥,FB BD ⊥. (1)求证:AED CFB △≌△;(2)若30A =∠,45DEB =∠,求证:DA DF =.26.(本小题满分10分) 某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元.设顾客一次性购买服装x 件时,该网店从中获利y 元.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围; (2)顾客一次性购买多少件时,该网店从中获利最多?27.(本小题满分13分)如图,Rt ABC △中,90C =∠,15AB =,9BC =,点,P Q 分别在,BC AC 上,3CP x =,403()CQ x x =<<.把PCQ △绕点P 旋转,得到PDE △,点D 落在线段PQ 上. (1)求证:PQ AB ∥;(2)若点D 在BAC ∠的平分线上,求CP 的长;(3)若PDE △与ABC △重叠部分图形的周长为T ,且1216T ≤≤,求x 的取值范围.28.(本小题满分13分)已知抛物线2221y x mx m m =-++-(m 是常数)的顶点为P ,直线l :1y x =-. (1)求证:点P 在直线l 上;(2)当3m =-时,抛物线与x 轴交于,A B 两点,与y 轴交于点C ,与直线l 的另一个交点为,Q M 是x 轴下方抛物线上的一点,ACM PAQ =∠∠(如图),求点M 的坐标;(3)若以抛物线和直线l 的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m 的值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共34页)数学试卷 第8页(共34页)江苏省南通市2015年初中毕业、升学考试数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】根据正数和负数具有相反意义的量,水位上升记为“+”,水位下降记为“-”,所以水位下降6m时水位变化记作6m -,故选D 。
2015年江苏省南通市中考数学解析版一.选择题(每小题3分,共30分,四个选项只有一个是符合题意的)1.(3分)(2015•南通)如果水位升高6m 时水位变化记作+6m ,那么水位下降6m 时水位变化记作( )A . ﹣3mB .3m C . 6m D . ﹣6m2.(3分)(2015•南通)下面四个几何体中,俯视图是圆的几何体共有( )A . 1个B . 2个C . 3个D . 4个3.(3分)(2015•南通)据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为( )A . 0.77×107B . 7.7×107C . 0.77×106D . 7.7×1064.(3分)下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.(3分)(2015•南通)下列长度的三条线段能组成三角形的是( )A . 5,6,10 B. 5,6,11 C . 3,4,8 D . 4a ,4a ,8a (a >0)6.(3分)(2015•南通)如图,在平面直角坐标系中,直线OA 过点(2,1),则tan α的值是( )A .B .C .D .2 7.(3分)(2015•南通)在一个不透明的盒子中装有a 个除颜色外完全相同的球,这a 个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a 的值约为( )A . 12B . 15C . 18D . 21 8.(3分)(2015•南通)关于x 的不等式x ﹣b >0恰有两个负整数解,则b 的取值范围是( ) A . ﹣3<b <﹣2 B . ﹣3<b ≤﹣2 C . ﹣3≤b ≤﹣2 D . ﹣3≤b <﹣29.(3分)(2015•南通)在20km 越野赛中,甲乙两选手的行程y (单位:km )随时间x (单位:h )变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km ;③出发后1.5小时,甲的行程比乙多3km ;④甲比乙先到达终点.其中正确的有( )A.1个B.2个C.3个D.4个10.(3分)(2015•南通)如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A.2.5 B.2.8 C.3D.3.2二.填空题(每小题3分,共24分)11.(3分)(2015•南通)因式分解4m2﹣n2=.12.(3分)(2015•南通)已知方程2x2+4x﹣3=0的两根分别为x1和x2,则x1+x2的值等于.13.(3分)(2015•南通)计算(x﹣y)2﹣x(x﹣2y)=.14.(3分)(2015•南通)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是(填“甲”或“乙”)15.(3分)(2015•南通)如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD=cm.16.(3分)(2015•南通)如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=度.17.(3分)(2015•南通)如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,=,△CEF的面积为S1,△AEB的面积为S2,则的值等于.18.(3分)(2015•南通)关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是.三.解答题(共10小题,共96分)19.(10分)(2015•南通)(1)计算:(﹣2)2﹣+(﹣3)0﹣()﹣2(2)解方程:=.20.(8分)(2015•南通)如图,一海伦位于灯塔P的西南方向,距离灯塔40海里的A 处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60°方向上的B处,求航程AB的值(结果保留根号).21.(10分)(2015•南通)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.22.(8分)(2015•南通)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.23.(8分)(2015•南通)如图,直线y=mx+n与双曲线y=相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C.(1)求m,n的值;(2)若点D与点C关于x轴对称,求△ABD的面积.24.(8分)(2015•南通)如图,PA,PB分别与⊙O相切于A,B两点,∠ACB=60°.(1)求∠P的度数;(2)若⊙O的半径长为4cm,求图中阴影部分的面积.25.(8分)(2015•南通)如图,在▱ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.26.(10分)(2015•南通)某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?27.(13分)(2015•南通)如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC上,CP=3x,CQ=4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.(1)求证:PQ∥AB;(2)若点D在∠BAC的平分线上,求CP的长;(3)若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围.28.(13分)(2015•南通)已知抛物线y=x2﹣2mx+m2+m﹣1(m是常数)的顶点为P,直线l:y=x﹣1(1)求证:点P在直线l上;(2)当m=﹣3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M是x轴下方抛物线上的一点,∠ACM=∠PAQ(如图),求点M的坐标;(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值.2015年江苏省南通市中考数学解析版一.选择题(每小题3分,共30分,四个选项只有一个是符合题意的)1.(3分)考点:正数和负数.分析:首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.解答:解:因为上升记为+,所以下降记为﹣,所以水位下降6m时水位变化记作﹣6m.故选:D.点评:考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.(3分)考点:简单几何体的三视图.分析:根据俯视图是从上面看所得到的图形判断即可.解答:解:从上面看,三棱柱的俯视图为三角形;圆柱的俯视图为圆;四棱锥的俯视图是四边形;球的俯视图是圆;俯视图是圆的几何体共有2个.故选:B.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(3分)考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将7700000用科学记数法表示为7.7×106.故选D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.点评:本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3分)考点:三角形三边关系.分析:根据三角形的三边关系对各选项进行逐一分析即可.解答:解:A、∵10﹣5<6<10+5,∴三条线段能构成三角形,故本选项正确;B、∵11﹣5=6,∴三条线段不能构成三角形,故本选项错误;C、∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误;D、∵4a+4a=8a,∴三条线段不能构成三角形,故本选项错误.故选A.点评:本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.6.(3分)考点:解直角三角形;坐标与图形性质.分析:设(2,1)点是B,作BC⊥x轴于点C,根据三角函数的定义即可求解.解答:解:设(2,1)点是B,作BC⊥x轴于点C.则OC=2,BC=1,则tanα==.故选C.点评:本题考查了三角函数的定义,理解正切函数的定义是关键.7.(3分)考点:利用频率估计概率.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.解答:解:由题意可得,×100%=20%,解得,a=15.故选:B.点评:本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.8.(3分)考点:一元一次不等式的整数解.分析:表示出已知不等式的解集,根据负整数解只有﹣1,﹣2,确定出b的范围即可.解答:解:不等式x﹣b>0,解得:x>b,∵不等式的负整数解只有两个负整数解,∴﹣3≤b<2故选D.点评:此题考查了一元一次不等式的整数解,弄清题意是解本题的关键.9.(3分)考点:一次函数的应用.分析:根据题目所给的图示可得,两人在1小时时相遇,行程均为10km,出发0.5小时之内,甲的速度大于乙的速度,0.5至1小时之间,乙的速度大于甲的速度,出发1.5小时之后,乙的路程为15千米,甲的路程为12千米,乙比甲先到达终点.解答:解:由图可得,两人在1小时时相遇,行程均为10km,故②正确;出发0.5小时之内,甲的速度大于乙的速度,0.5至1小时之间,乙的速度大于甲的速度,故①错误;出发1.5小时之后,乙的路程为15千米,甲的路程为12千米,乙的行程比甲多3km,故③错误;乙比甲先到达终点,故④错误.正确的只有①.故选A.点评:本题考查了一次函数的应用,行程问题的数量关系速度=路程后÷时间的运用,解答时理解函数的图象的含义是关键.10.(3分)考点:相似三角形的判定与性质;勾股定理;圆周角定理.分析:连接BD、CD,由勾股定理先求出BD的长,再利用△ABD∽△BED,得出=,可解得DE的长,由AE=AB﹣DE求解即可得出答案.解答:解:如图1,连接BD、CD,,∵AB为⊙O的直径,∴∠ADB=90°,∴BD=,∵弦AD平分∠BAC,∴CD=BD=,∴∠CBD=∠DAB,在△ABD和△BED中,∴△ABD∽△BED,∴=,即=,解得DE=,∴AE=AB﹣DE=5﹣=2.8.点评:此题主要考查了三角形相似的判定和性质及圆周角定理,解答此题的关键是得出△ABD∽△BED.二.填空题(每小题3分,共24分)11.(3分)考点:因式分解-运用公式法.专题:计算题.分析:原式利用平方差公式分解即可.解答:解:原式=(2m+n)(2m﹣n).故答案为:(2m+n)(2m﹣n)点评:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12.(3分)考点:根与系数的关系.分析:根据两根之和等于一次项系数与二次项系数商的相反数作答即可.解答:解:∵方程2x2+4x﹣3=0的两根分别为x1和x2,∴x1+x2=﹣=﹣2,故答案为:﹣2.点评:本题考查的是一元二次方程根与系数的关系,掌握两根之和等于一次项系数与二次项系数商的相反数,两根之积等于常数项除二次项系数是解题的关键.13.(3分)考点:整式的混合运算.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(x﹣y)2﹣x(x﹣2y)=x2﹣2xy+y2﹣x2+2xy=y2点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14.(3分)考点:方差;折线统计图.分析:根据方差的意义:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.观察图中的信息可知小华的方差较小,故甲的成绩更加稳定.解答:解:由图表明乙这8次成绩偏离平均数大,即波动大,而甲这8次成绩,分布比较集中,各数据偏离平均小,方差小,则S甲2<S乙2,即两人的成绩更加稳定的是甲.故答案为:甲.点评:本题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.(3分)考点:垂径定理;勾股定理.分析:根据垂径定理,可得AC的长,根据勾股定理,可得OC的长,根据线段的和差,可得答案.解答:解:由垂径定理,得AC=AB=12cm.有半径相等,得OA=OD=13cm.由勾股定理,得OC===5.由线段的和差,得CD=OD﹣OC=13﹣5=8cm,故答案为:8.点评:本题考查了垂径定理,利用垂径定理得出直角三角形OAC是解题关键,又利用了勾股定理.16.(3分)考点:等腰三角形的性质.分析:设∠ADC=α,然后根据AC=AD=DB,∠BAC=102°,表示出∠B和∠BAD的度数,最后根据三角形的内角和定理求出∠ADC的度数.解答:解:∵AC=AD=DB,∴∠B=∠BAD,∠ADC=∠C,设∠ADC=α,∴∠B=∠BAD=,∵∠BAC=102°,∴∠DAC=102°﹣,在△ADC中,∵∠ADC+∠C+∠DAC=180°,∴2α+102°﹣=180°,解得:α=52°.故答案为:52.点评:本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等.17.(3分)考点:相似三角形的判定与性质;矩形的性质.分析:首先根据=设AD=BC=a,则AB=CD=2a,然后利用勾股定理得到AC=a,然后根据射影定理得到BC2=CE•CA,AB2=AE•AC从而求得CE=,AE=,得到=,利用△CEF∽△AEB,求得=()2=.解答:解:∵=,∴设AD=BC=a,则AB=CD=2a,∴AC=a,∵BF⊥AC,∴△CBE∽△CAB,△AEB∽△ABC,∴BC2=CE•CA,AB2=AE•AC∴a2=CE•a,2a2=AE•a,∴CE=,AE=,∴=,∵△CEF∽△AEB,∴=()2=,故答案为:.点评:本题考查了矩形的性质及相似三角形的判定,能够牢记射影定理的内容对解决本题起到至关重要的作用,难度不大.18.(3分)考点:抛物线与x轴的交点.分析:首先根据根的情况利用根的判别式解得a的取值范围,然后根据根两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),结合函数图象确定其函数值的取值范围得a,易得a的取值范围.解答:解:∵关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根,∴△=(﹣3)2﹣4×a×(﹣1)>0,解得:a>,设f x=ax2﹣3x﹣1∵实数根都在﹣1和0之间,∴当a>0时,如图①,f(﹣1)>0,f(0)>0f(0)=a×02﹣3×0﹣1=﹣1<0,∴此种情况不存在;当a<0时,如图②,f(﹣1)<0,f(0)<0,即f(﹣1)=a×(﹣1)2﹣3×(﹣1)﹣1<0,f(0)=﹣1<0,解得:a<﹣2,∴<a<﹣2,故答案为:<a<﹣2.点评:本题主要考查了一元二次方程根的情况的判别及抛物线与x轴的交点,数形结合确定当x=0和当x=﹣1时函数值的取值范围是解答此题的关键.三.解答题(共10小题,共96分)19.(10分)考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:(1)原式第一项利用乘方的意义化简,第二项利用立方根定义计算,第三项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)原式=4﹣4+1﹣9=﹣8;(2)去分母得:x+5=6x,解得:x=1,经检验x=1是分式方程的解.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)考点:解直角三角形的应用-方向角问题.专题:计算题.分析:过P作PC垂直于AB,在直角三角形ACP中,利用锐角三角函数定义求出AC与PC 的长,在直角三角形BCP中,利用锐角三角函数定义求出CB的长,由AC+CB求出AB的长即可.解答:解:过P作PC⊥AB于点C,在Rt△ACP中,PA=40海里,∠APC=45°,sin∠APC=,cos∠APC=,∴AC=AP•sin45°=40×=40(海里),PC=AP•cos45°=40×=40(海里),在Rt△BCP中,∠BPC=60°,tan∠BPC=,∴BC=PC•tan60°=40(海里),则AB=AC+BC=(40+40)海里.点评:此题考查了解直角三角形的应用﹣方向角问题,熟练掌握锐角三角函数定义是解本题的关键.21.(10分)考点:列表法与树状图法;用样本估计总体;频数(率)分布直方图;扇形统计图.分析:(1)由第三组(79.5~89.5)的人数即可求出其扇形的圆心角;(2)首先求出50人中成绩在90分以上(含90分)的同学可以获奖的百分比,进而可估计该校约有多少名同学获奖;(3)列表得出所有等可能的情况数,找出选出的两名主持人“恰好为一男一女”的情况数,即可求出所求的概率.解答:解:(1)由直方图可知第三组(79.5~89.5)所占的人数为20人,所以“第三组(79.5~89.5)”的扇形的圆心角==144°,故答案为:144;(2)估计该校获奖的学生数=×2000=640(人);(3)列表如下:男男女女男﹣﹣﹣(男,男)(女,男)(女,男)男(男,男)﹣﹣﹣﹣(女,男)(女,男)女(男,女)(男,女)﹣﹣﹣(女,女)女(男,女)(男,女)(女,女)﹣﹣﹣所有等可能的情况有12种,其中选出的两名主持人“恰好为一男一女”的情况有8种,则P(选出的两名主持人“恰好为一男一女”)==.故答案为:.点评:本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图、列表法与树状图法.22.(8分)考点:二元一次方程组的应用.分析:1辆大车与1辆小车一次可以运货多少吨?根据题意可知,本题中的等量关系是“3辆大车与4辆小车一次可以运货22吨”和“2辆大车与6辆小车一次可以运货23吨”,列方程组求解即可.解答:解:本题的答案不唯一.问题:1辆大车与1辆小车一次可以运货多少吨?设1辆大车一次运货x吨,1辆小车一次运货y吨.根据题意,得,解得.则x+y=4+2.5=6.5(吨).答:1辆大车与1辆小车一次可以运货6.5吨.点评:本题考查了二元一次方程组的应用.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.23.(8分)考点:反比例函数与一次函数的交点问题.分析:(1)由题意,将A坐标代入一次函数与反比例函数解析式,即可求出m与n的值;(2)得出点C和点D的坐标,根据三角形面积公式计算即可.解答:解:(1)把x=﹣1,y=2;x=2,y=b代入y=,解得:k=﹣2,b=﹣1;把x=﹣1,y=2;x=2,y=﹣1代入y=mx+n,解得:m=﹣1,n=1;(2)直线y=﹣x+1与y轴交点C的坐标为(0,1),所以点D的坐标为(0,﹣1),点B的坐标为(2,﹣1),所以△ABD的面积=.点评:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了反比例函数图象的性质.24.(8分)考点:切线的性质;扇形面积的计算.分析:(1)由PA与PB都为圆O的切线,利用切线的性质得到OA垂直于AP,OB垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C 的度数求出∠AOB的度数,在四边形PABO中,根据四边形的内角和定理即可求出∠P的度数.(2)由S阴影=2×(S△PAO﹣S扇形)则可求得结果.解答:解:连接OA、OB,∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=120°,∴∠P=360°﹣(90°+90°+120°)=60°.∴∠P=60°.(2)连接OP,∵PA、PB是⊙O的切线,∴APB=30°,在RT△APO中,tan30°=,∴AP===4cm,∴S阴影=2S△AOP﹣S扇形=2×(×4×﹣)=(16﹣)(cm2).点评:此题考查了切线的性质,解直角三角函数,扇形面积公式等知识.此题难度不大,注意数形结合思想的应用.25.(8分)考点:平行四边形的判定与性质;全等三角形的判定与性质;含30度角的直角三角形.专题:证明题.分析:(1)由四边形ABCD为平行四边形,利用平行四边形的性质得到对边平行且相等,对角相等,再由垂直的定义得到一对直角相等,利用等式的性质得到一对角相等,利用ASA即可得证;(2)过D作DH垂直于AB,在直角三角形ADH中,利用30度所对的直角边等于斜边的一半得到AD=2DH,在直角三角形DEB中,利用斜边上的中线等于斜边的一半得到EB=2DH,易得四边形EBFD为平行四边形,利用平行四边形的对边相等得到EB=DF,等量代换即可得证.解答:证明:(1)∵平行四边形ABCD,∴AD=CB,∠A=∠C,AD∥CB,∴∠ADB=∠CBD,∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,在△AED和△CFB中,,∴△AED≌△CFB(ASA);(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,∴AD=2DH,在Rt△DEB中,∠DEB=45°,∴EB=2DH,∴四边形EBFD为平行四边形,∴FD=EB,∴DA=DF.点评:此题考查了平行四边形的判定与性质,全等三角形的判定与性质,以及含30度直角三角形的性质,熟练掌握平行四边形的判定与性质是解本题的关键.26.(10分)考点:二次函数的应用.分析:(1)根据题意可得出销量乘以每台利润进而得出总利润,进而得出答案;(2)根据销量乘以每台利润进而得出总利润,即可求出即可.解答:解:(1)y=,(2)在0≤x≤10时,y=100x,当x=10时,y有最大值1000;在10<x≤30时,y=﹣3x2+130x,当x=21时,y取得最大值,∵x为整数,根据抛物线的对称性得x=22时,y有最大值1408.∵1408>1000,∴顾客一次购买22件时,该网站从中获利最多.点评:此题主要考查了二次函数的应用,根据题意得出y与x的函数关系是解题关键.27.(13分)考点:几何变换综合题.分析:(1)先根据勾股定理求出AC的长,再由相似三角形的判定定理得出△PQC∽△BAC,由相似三角形的性质得出∠CPQ=∠B,由此可得出结论;(2)连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=12﹣4x,故可得出x的值,进而得出结论;(3)当点E在AB上时,根据等腰三角形的性质求出x的值,再分0<x≤;<x<3两种情况进行分类讨论.解答:(1)证明:∵在Rt△ABC中,AB=15,BC=9,∴AC===12.∵==,==,∴=.∵∠C=∠C,∴△PQC∽△BAC,∴∠CPQ=∠B,∴PQ∥AB;(2)解:连接AD,∵PQ∥AB,∴∠ADQ=∠DAB.∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ.在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=2x.∵AQ=12﹣4x,∴12﹣4x=2x,解得x=2,∴CP=3x=6.(3)解:当点E在AB上时,∵PQ∥AB,∴∠DPE=∠PEB.∵∠CPQ=∠DPE,∠CPQ=∠B,∴∠B=∠PEB,∴PB=PE=5x,∴3x+5x=9,解得x=.①当0<x≤时,T=PD+DE+PE=3x+4x+5x=12x,此时0<T≤;②当<x<3时,设PE交AB于点G,DE交AB于F,作GH⊥FQ,垂足为H,∴HG=DF,FG=DH,Rt△PHG∽Rt△PDE,∴==.∵PG=PB=9﹣3x,∴==,∴GH=(9﹣3x),PH=(9﹣3x),∴FG=DH=3x﹣(9﹣3x),∴T=PG+PD+DF+FG=(9﹣3x)+3x+(9﹣3x)+[3x﹣(9﹣3x)]=x+,此时,<T<18.∴当0<x<3时,T随x的增大而增大,∴T=12时,即12x=12,解得x=1;TA=16时,即x+=16,解得x=.∵12≤T≤16,∴x的取值范围是1≤x≤.点评:本题考查的是几何变换综合题,涉及到勾股定理、相似三角形的判定与性质等知识,在解答(3)时要注意进行分类讨论.28.(13分)考点:二次函数综合题.专题:综合题.分析:(1)利用配方法得到y=(x﹣m)2+m﹣1,点P(m,m﹣1),然后根据一次函数图象上点的坐标特征判断点P在直线l上;(2)当m=﹣3时,抛物线解析式为y=x2+6x+5,根据抛物线与x轴的交点问题求出A(﹣5,0),易得C(0,5),通过解方程组得P(﹣3,﹣4),Q(﹣2,﹣3),作ME⊥y轴于E,PF⊥x轴于F,QG⊥x轴于G,如图,证明Rt△CME∽Rt△PAF,利用相似得=,设M(x,x2+6x+5),则=,解得x1=0(舍去),x2=﹣4,于是得到点M的坐标为(﹣4,﹣3);(3)通过解方程组得P(m,m﹣1),Q(m+1,m),利用两点间的距离公式得到PQ2=2,OQ2=2m2+2m+1,OP2=2m2﹣2m+1,然后分类讨论:当PQ=OQ时,2m2+2m+1=2;当PQ=OP时,2m2﹣2m+1=2;当OP=OQ时,2m2+2m+1=2m2﹣2m+1,再分别解关于m的方程求出m即可.解答:(1)证明:∵y=x2﹣2mx+m2+m﹣1=(x﹣m)2+m﹣1,∴点P的坐标为(m,m﹣1),∵当x=m时,y=x﹣1=m﹣1,∴点P在直线l上;(2)解:当m=﹣3时,抛物线解析式为y=x2+6x+5,当y=0时,x2+6x+5=0,解得x1=﹣1,x2=﹣5,则A(﹣5,0),当x=0时,y=x2+6x+5=5,则C(0,5),可得解方程组,解得或,则P(﹣3,﹣4),Q(﹣2,﹣3),作ME⊥y轴于E,PF⊥x轴于F,QG⊥x轴于G,如图,∵OA=OC=5,∴△OAC为等腰直角三角形,∴∠ACO=45°,∴∠MCE=45°﹣∠ACM,∵QG=3,OG=2,∴AG=OA﹣OG=3=QG,∴△AQG为等腰直角三角形,∴∠QAG=45°,∵∠APF=90°﹣∠PAF=90°﹣(∠PAQ+45°)=45°﹣∠PAQ,∵∠ACM=∠PAQ,∴∠APF=∠MCE,∴Rt△CME∽Rt△PAF,∴=,设M(x,x2+6x+5),∴ME=﹣x,CE=5﹣(x2+6x+5)=﹣x2﹣6x,∴=,整理得x2+4x=0,解得x1=0(舍去),x2=﹣4,∴点M的坐标为(﹣4,﹣3);(3)解:解方程组得或,则P(m,m﹣1),Q(m+1,m),∴PQ2=(m+1﹣m)2+(m﹣m+1)2=2,OQ2=(m+1)2+m2=2m2+2m+1,OP2=m2+(m﹣1)2=2m2﹣2m+1,当PQ=OQ时,2m2+2m+1=2,解得m1=,m2=;当PQ=OP时,2m2﹣2m+1=2,解得m1=,m2=;当OP=OQ时,2m2+2m+1=2m2﹣2m+1,解得m=0,综上所述,m的值为0,,,,.b点评:本题考查了二次函数的综合题:熟练掌握二次函数图象和一次函数图象上点的坐标特征、二次函数的性质,会求抛物线与直线的交点坐标;理解坐标与图形性质,会利用两点间的距离公式计算线段的长;会运用相似比计算线段的长;能运用分类讨论的思想解决数学问题.b。
南通市2015年中考数学试卷(满分:150分时间:120分钟)一、选择题(本大题共10小题,每小题3分,共30分)1. 如果水位升高6 m时水位变化记作+6 m,那么水位下降6 m时水位变化记作()A. -3 mB. 3 mC. 6 mD. -6 m2. 下面四个几何体中,俯视图是圆的几何体共有()A. 1个B. 2个C. 3个D. 4个第2题第6题3. 据统计:2014年南通市在籍人口总数为7 700 000人,将7 700 000用科学记数法表示为()A. 0.77×107B. 7.7×107C. 0.77×106D. 7.7×1064. 下列图形中既是轴对称图形又是中心对称图形的是()A B C D5. 下列长度的三条线段能组成三角形的是()A. 5,6,10B. 5,6,11C. 3,4,8D. 4a,4a,8a(a>0)6. 如图,在平面直角坐标系中,直线OA过点(2,1),则tan α的值是()A.55 B. 5 C.12 D. 27. 在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为()A. 12B. 15C. 18D. 218. 关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是()A. -3<b<-2B. -3<b≤-2C. -3≤b ≤-2D. -3≤b<-29. 在20 km 越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:① 两人相遇前,甲的速度小于乙的速度;② 出发后1小时,两人行程均为10 km ;③ 出发后1.5小时,甲的行程比乙多3 km ;④ 甲比乙先到达终点.其中正确的有( )A. 1个B. 2个C. 3个D. 4个第9题 第10题10. 如图,AB 为⊙O 的直径,C 为⊙O 上一点,弦AD 平分∠BAC ,交BC 于点E ,AB =6,AD =5,则AE 的长为( )A. 2.5B. 2.8C. 3D. 3.2二、 填空题(本大题共8小题,每小题3分,共24分)11. 因式分解4m 2-n 2=____________.12. 已知方程2x 2+4x -3=0的两根分别为x 1和x 2,则x 1+x 2的值等于________. 13. 计算(x -y)2-x(x -2y)=________.14. 甲乙两人8次射击的成绩如图所示(单位:环).根据图中的信息判断,这8次射击中成绩比较稳定的是________(填“甲”或“乙”).第14题 第15题15. 如图,在⊙O 中,半径OD 垂直于弦AB ,垂足为C ,OD =13 cm ,AB =24 cm ,则CD =________cm.16. 如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠BAC =102°,则∠ADC =________度.第16题 第17题17. 如图,矩形ABCD 中,F 是DC 上一点,BF ⊥AC ,垂足为E ,AD AB =12,△CEF 的面积为S 1,△AEB 的面积为S 2,则S 1S 2的值等于________.18. 关于x 的一元二次方程ax 2-3x -1=0的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是________.三、解答题(本大题共10小题,共96分)19. (本小题满分10分)(1) 计算(-2)2-364+(-3)0-⎝⎛⎭⎫13-2;(2) 解方程12x=3x+5.20. (本小题满分8分)如图,一海轮位于灯塔P的西南方向,距离灯塔402海里的A处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60°方向上的B处,求航程AB的值(结果保留根号).第20题21. (本小题满分10分)为增强学生环保意识,某中学组织全校2 000名学生参加环保知识大赛,比赛成绩均为整数.从中抽取部分同学的成绩进行统计,并绘制成如下统计图.第21题请根据图中提供的信息,解答下列问题:(1) 若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为________度;(2) 若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3) 某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为________.22. (本小题满分8分)有大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.23. (本小题满分8分)如图,直线y=mx+n与双曲线y=kx相交于A(-1,2),B(2,b)两点,与y轴相交于点C.(1) 求m,n的值;(2) 若点D与点C关于x轴对称,求△ABD的面积.第23题24. (本小题满分8分)如图,PA,PB分别与⊙O相切于A,B两点,∠ACB=60°.(1) 求∠P的度数;(2) 若⊙O的半径长为4 cm,求图中阴影部分的面积.第24题25. (本小题满分8分)如图,在▱ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥BD.(1) 求证△AED≌△CFB;(2) 若∠A=30°,∠DEB=45°,求证DA=DF.第25题26. (本小题满分10分)某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元.设顾客一次性购买服装x件时,该网店从中获利y元.(1) 求y与x的函数关系式,并写出自变量x的取值范围;(2) 顾客一次性购买多少件时,该网店从中获利最多?27. (本小题满分13分)如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC上,CP=3x,CQ=4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.(1) 求证PQ∥AB;(2) 若点D在∠BAC的平分线上,求CP的长;(3) 若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围.第27题28. (本小题满分13分)已知抛物线y=x2-2mx+m2+m-1(m是常数)的顶点为P,直线l:y=x-1.(1) 求证点P在直线l上;(2) 当m=-3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M是x轴下方抛物线上的一点,∠ACM=∠PAQ(如图),求点M的坐标;(3) 若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值.第28题南通市2015年中考数学试卷1. D [解析]本题考查了具有相反意义的量,水位下降6 m 时水位变化记作-6 m.2. B [解析]本题考查了几何体的三视图,解题的关键是从三视图中获取物体的形状.俯视图是圆的有圆柱、球.3. D [解析]本题考查了科学记数法,解题的关键是看小数点移动的方向和位数.把7 700 000的小数点向左移动6位,得7.7,于是7 700 000用科学记数法可表示为7.7×106.4. A [解析]本题考查了轴对称图形、中心对称图形的概念.四个图案中只有选项A 符合要求.选项B 、C 、D 都只是轴对称图形,而不是中心对称图形.5. A [解析]本题考查了三角形三边关系,由任意两边之和大于第三边可知只有选项A 符合要求.6. C [解析]本题考查了锐角三角函数的概念,一次函数图象及其性质.由直线OA 过点(2,1),可以以该点向x 轴引垂线段,构造直角三角形思考,得出tan α=12.7. B [解析]本题考查了概率、频率的概念与求法.由频率稳定在20%可得3a =20%,解得a =15.8. D [解析]本题考查了不等式的解集、负整数解.先变形为x>b ,由于恰有两个负整数解,则负整数解应该为-1、-2,则b 在-3与-2之间,而b 不能等于-2,可以为-3,即-3≤b<-2.9. C [解析]本题考查了函数的图象,理解图象与实际的意义是解题的关键.从图象看出,前0.5小时,甲的速度要慢于乙的速度,但在0.5~1小时时,甲的速度又快于乙的速度,故①错误;出发后1小时,甲乙两人相遇,路程恰为10 km ,故②正确;可以算出甲所对应的函数关系式为y =10x ,所以x =1.5时,y =15;而乙在0.5~1.5小时时,每小时能走4 km ,所以1.5小时时对应的路程是12 km ,故③正确;从图象直接看出甲先到达终点,故④正确.所以共有3个正确.10. B [解析]本题考查了勾股定理,圆周角定理,相似三角形的判定与性质等几何概念.连接BD ,在Rt △ABD 中,由勾股定理,得BD 2=11.∵ 弦AD 平分∠BAC ,∴ ∠CAD =∠BAD.又∵ ∠CAD =∠CBD ,∴ ∠BAD =∠CBD.又∵ ∠BDE =∠ADB ,∴ △DBE ∽△DAB.∴DE DB =DBDA.∴ DE ·AD =BD 2,解得DE =2.2.∴ AE =2.8. 11. (2m +n)(2m -n) [解析]本题考查了整式的因式分解,解题的关键是按因式分解的步骤进行分解.原式=(2m +n)(2m -n).12. -2 [解析]本题考查了一元二次方程根与系数的关系.当Δ≥0时,x 1+x 2=-ba =-2.13. y 2 [解析]本题考查了整式的计算,原式展开得x 2-2xy +y 2-x 2+2xy =y 2.14. 甲 [解析]本题考查了数据的波动指标——方差.从统计图中可以直观发现乙的波动较大,甲的波动较小,所以成绩比较稳定的是甲.15. 8 [解析]本题考查了垂径定理、勾股定理等几何性质.由垂径定理,得AC =12AB=12 cm.连接OA ,在Rt △AOC 中,由勾股定理,得OC =OA 2-AC 2=5 cm ,∴ CD =8 cm.16. 52 [解析]本题考查了等腰三角形的等边对等角性质、三角形内角和定理.∵ DB =DA ,∴ 可设∠B =∠BAD =x.又∵ AD =AC ,∴ ∠ADC =∠C =2x.在△ADC 中,∠DAC=180°-4x ,则∠BAC =x +180°-4x =102°,解得x =26°.∴ ∠ADC =2x =52°.17. 116 [解析]本题考查了矩形的性质、相似三角形相似比与面积比的关系.∵ AD AB =12,∴BC AB =12.在Rt △ABC 中,BE ⊥AC ,∴ ∠BEC =∠ABC =90°.又∵ ∠BCE =∠ACB ,∴ △BCE ∽△ACB.∴BC AC =CECB.∴ BC 2=CE·AC ,同理可证AB 2=AE·AC ,这两个乘积式的比为CE AE =⎝⎛⎭⎫BC AB 2,即CE AE =14.又∵ △CEF ∽△AEB ,∴ 它们的面积比是相似比的平方,即116. 18. -94<a<-2 [解析]本题考查了一元二次方程根的判别式,也可从二次函数图象的角度进行直观思考.比如构造y =ax 2-3x -1的图象(如图):当x =-1时,对应着抛物线上的点A ,∵ 方程两根都在-1和0之间(不包括-1和0),∴ 点A 一定在x 轴下方.∴ 此时点A 的纵坐标应该是负数,则a +3-1<0,即a<-2.再由一元二次方程根的判别式可得a>-94,从而确定-94<a<-2. 第18题 第20题19. [解析](1) 根据乘方、零指数幂、负指数幂、立方根等概念先化简,再计算;(2) 根据解分式方程的步骤解答,注意要验根.解:(1) 原式=4-4+1-9=-8;(2) 方程两边同乘2x(x +5),得x +5=6x.解得x =1.经检验,x =1是原方程的解.∴ 原方程的解为x =1.20. [解析]设过点P 的南北方向线交AB 于点C ,则分别在Rt △APC ,Rt △BPC 中思考,可求出AC 、BC 的长,从而确定AB 的长.解:如图,在Rt △ACP 中,PA =402海里,∠APC =45°,sin ∠APC =AC AP ,cos ∠APC =PC AP ,∴ AC =AP·sin 45°=402×22=40(海里),PC =AP·cos 45°=402×22=40(海里).在Rt △BCP 中,∠BPC =60°,tan ∠BPC =BC PC ,∴ BC =PC·tan 60°=40×3=403(海里).∴ AB =AC +BC =(40+403)海里.∴ 航程AB 为(40+403)海里.21. [解析](1) 先求出第三组所占的百分比,再乘以360°即可;(2) 首先求出样本中90分以上(含90分)的同学所占的百分比,再根据样本估计总体;(3) 列举所有等可能的情况,记两男两女分别为A1、A2、B1、B2,则随机抽取的2名同学可能是(A1,A2),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(B1,B2),则1男1女有4种情形,即概率是23.解:(1)204+10+20+16×100%=40%,360°×40%=144°;(2)164+10+20+16×100%=32%,32%×2 000=640(名),∴ 估计该校约有640名同学获奖;(3) 23.22. [解析]由于是开放性问题,答案不唯一.比如可以提问“1辆大车一次可以运货多少吨,1辆小车一次可以运货多少吨?”这时需要用二元一次方程组求解.解:本题答案不唯一,如问题①:1辆大车一次可以运货多少吨,1辆小车一次可以运货多少吨?解:设1辆大车一次可以运货x 吨,1辆小车一次可以运货y 吨.根据题意,得⎩⎪⎨⎪⎧3x +4y =22,2x +6y =23.解得⎩⎪⎨⎪⎧x =4,y =2.5.∴ 1辆大车一次可以运货4吨,1辆小车一次可以运货2.5吨.问题②:1辆大车一次可以运货多少吨?解:设1辆大车一次可以运货x 吨,则1辆小车一次可以运货22-3x 4吨.根据题意,得2x +6×22-3x 4=23.解得 x =4.∴ 1辆大车一次可以运货4吨.问题③:5辆大车与10辆小车一次可以运货多少吨?解:设1辆大车一次可以运货x 吨,1辆小车一次可以运货y 吨.根据题意,得⎩⎪⎨⎪⎧3x +4y =22,2x +6y =23.①②①+②,得5x +10y =45.∴ 5辆大车与10辆小车一次可以运货45吨.23. [解析](1) 先把点A(-1,2)代入双曲线关系式可确定k =-2,再把点B(2,b)代入关系式可得b =-1,然后利用待定系数法求出直线关系式;(2) 先求出直线与y 轴交点C 的坐标(0,1),从而可得点D 的坐标为(0,-1).再结合点B 的坐标(2,-1),即可求出△ABD的面积.解:(1) 把x =-1,y =2;x =2,y =b 分别代入y =k x,解得k =-2,b =-1.把x =-1,y =2;x =2,y =-1代入y =mx +n ,解得m =-1,n =1;(2) ∵ 直线y =-x +1与y 轴交点C 的坐标为(0,1),∴ 点D 的坐标为(0,-1).又∵ 点B 的坐标为(2,-1),∴ BD ⊥y 轴于点D.∴ △ABD 的面积为12×2×(1+2)=3. 24. [解析](1) 连接OA 、OB ,根据圆周角、圆心角关系,得∠AOB =120°,再由切线性质可得∠OAP =∠OBP =90°,易得∠APB =60°;(2) 先求出四边形OAPB 的面积,再减去扇形AOB 的面积即可得到阴影部分的面积.解:(1) 如图,连接OA 、OB.∵ PA 、PB 分别与⊙O 相切于A 、B 两点,∴ ∠PAO =90°,∠PBO =90°.∴ ∠AOB +∠APB =360°-90°-90°=180°.∵ ∠AOB =2∠C =120°,∴ ∠APB =60°;(2) 如图,连接OP.∵ PA 、PB 分别与⊙O 相切于A 、B 两点,∴ ∠APO =12∠APB =30°,S △AOP =S △BOP =12S 四边形OAPB .在Rt △APO 中,tan 30°=OA AP ,∴ AP =OA tan 30°.∵ OA =4 cm ,∴ AP =4 3 cm.∴ 阴影部分的面积为S 四边形OAPB -S 扇形AOB =2×12×4×43-120×π×42360=⎝⎛⎭⎫163-16π3cm 2.第24题25. [解析](1) 由平行四边形的性质可得AD =CB ,∠A =∠C ,AD ∥BC ,再结合两个垂直条件,可得出两个三角形全等;(2) 作DH ⊥AB ,垂足为H ,分别在Rt △ADH 中,求出AD =2DH ,再在Rt △DEB 中求出EB =2DH.再证得四边形EBFD 是平行四边形,从而使问题获证.证明:(1) ∵ 四边形ABCD 是平行四边形,∴ AD =CB ,∠A =∠C ,AD ∥BC.∴ ∠ADB =∠CBD.∵ ED ⊥DB ,FB ⊥BD ,∴ ∠EDB =∠FBD =90°.∴ ∠ADE =∠CBF.∴ △AED ≌△CFB(ASA);(2) 如图,作DH ⊥AB ,垂足为H.在Rt △ADH 中,∠A =30°,∴ AD =2DH.在Rt △DEB 中,∠1=45°,∴ △DEB 是等腰直角三角形.∴ EB =2DH.∴ AD =EB.由(1)可知△AED ≌△CFB ,∴ ∠AED =∠CFB.∴ ∠1=∠2.∵ AB ∥CD ,∴ ∠1+∠EDC =180°.∴ ∠2+∠EDC =180°.∴ DE ∥BF.∴ 四边形EBFD 是平行四边形.∴ DF =EB.∴ DA =DF.第25题26. [解析](1) 由题意,分两个区间讨论,即当0≤x ≤10和10<x ≤30时,可得两种不同的函数关系式,分别为一次函数关系式和二次函数关系式;(2) 在第(1)问获得的两个关系式中可以得出一次函数的最大值,二次函数的最值在图象顶点处获得,根据实际情况检验比较.解:(1) 当0≤x ≤10时,y =300x -200x =100x ;当10<x ≤30时,y =[300-3(x -10)-200]x =-3x 2+130x.∴ y =⎩⎪⎨⎪⎧100x (0≤x ≤10,且x 为整数),-3x 2+130x (10<x ≤30,且x 为整数);(2) 当0≤x ≤10时,y =100x ,当x =10时,y 有最大值1 000;当10<x ≤30时,y =-3x 2+130x ,当x =2123时,y 取得最大值.∵ x 为整数,∴ 根据抛物线的对称性,得x =22时,y 有最大值1 408.∵ 1 408>1 000,∴ 顾客一次性购买22件时,该网店从中获利最多.27. [解析](1) 由勾股定理在Rt △ABC 中求出AC =12,再证△PQC ∽△BAC ,可得∠CPQ =∠B ,即可证出PQ ∥AB ;(2) 连接AD ,结合PQ ∥AB ,以及点D 在∠BAC 的平分线上,可得∠DAQ =∠ADQ ,从而有AQ =DQ.再到 Rt △CPQ 中,求出PQ =5x ,再得出DQ =2x ,最后根据AQ =12-4x ,可列方程12-4x =2x 求出x 的值,即可求出CP ;(3) 需要分两种情形讨论,第一种当点E 在△ABC 内部或AB 上时;第二种当点E 在△ABC 外部时.解:(1) 在Rt △BAC 中,AB =15,BC =9,∴ AC =AB 2-BC 2=152-92=12.∵ PC BC =3x 9=x 3,QC AC =4x 12=x 3,∴ PC BC =QC AC.又∵ ∠C =∠C ,∴ △PQC ∽△BAC.∴ ∠CPQ =∠B.∴ PQ ∥AB ;(2) 如图,连接AD.∵ PQ ∥AB ,∴ ∠ADQ =∠DAB.∵ 点D 在∠BAC 的平分线上,∴ ∠DAQ =∠DAB.∴ ∠ADQ =∠DAQ.∴ AQ =DQ.在 Rt △CPQ 中,PQ =5x ,∵ PD =PC =3x ,∴ DQ =AQ =2x.又∵ AQ =12-4x ,∴ 12-4x =2x.解得x =2.∴ CP =3x =6;(3) 当点E 落在AB 上时,∵ PQ ∥AB ,∴ ∠DPE =∠PEB.∵ ∠CPQ =∠DPE ,∠CPQ =∠B ,∴ ∠B =∠PEB.∴ PB =PE =5x.∴ 3x +5x =9.解得x =98.① 当0<x ≤98时,点E 在△ABC 内部或AB 上,T =PD +DE +PE =3x +4x +5x =12x.此时,0<T ≤272;② 当98<x<3时,点E 在△ABC 外部,如图,设PE 交AB 于点G ,DE 交AB 于点F ,过点G 作GH ⊥PQ ,垂足为H.∴ HG =DF ,FG =DH ,Rt △PHG ∽Rt △PDE.∴ GH ED =PG PE =PH PD.∵ PG =PB =9-3x ,∴ GH 4x =9-3x 5x =PH 3x .∴ GH =DF =45(9-3x),PH =35(9-3x).∴ FG =DH =3x -35(9-3x).∴ T =PG +PD +DF +FG =(9-3x)+3x +45(9-3x)+⎣⎡⎦⎤3x -35(9-3x )=125x +545.此时,272<T<18.∴ 当0<x<3时,T 随x 的增大而增大.∴ T =12时,即12x =12,解得x =1;T =16时,即125x +545=16,解得x =136.∵ 12≤T ≤16,∴ x 的取值范围是1≤x ≤136. 第27题28. [解析](1) 将抛物线配方成顶点式y =(x -m)2+m -1,可发现顶点P 的坐标为(m ,m -1),恰好满足直线y =x -1;(2) 作ME ⊥y 轴,PF ⊥x 轴,QG ⊥x 轴,垂足分别为E 、F 、G.可根据线段和角之间的相等关系证Rt △CME ∽Rt △PAF.设点M 的坐标为(x ,x 2+6x +5),则可得关于x 的方程,解方程即可;(3) 连接OP 、OQ ,用含m 的式子分别表示出OP 、OQ 、PQ ,再分类讨论它们分别相等,即可得出符合条件的m 的值.解:(1) ∵ y =x 2-2mx +m 2+m -1=(x -m)2+m -1,∴ 顶点P(m ,m -1).将x =m 代入y =x -1,得y =m -1,∴ 点P 在直线y =x -1上;(2) 当m =-3时,抛物线关系式为y =x 2+6x +5,点P 的坐标为(-3,-4),解方程组⎩⎪⎨⎪⎧y =x 2+6x +5,y =x -1,得⎩⎪⎨⎪⎧x =-3,y =-4或⎩⎪⎨⎪⎧x =-2,y =-3,∴ 点Q 的坐标为(-2,-3).令y =x 2+6x +5=0,则x 1=-5,x 2=-1.∴ A(-5,0),B(-1,0).令x =0,则y =5.∴ 点C 的坐标为(0,5).如图,作ME ⊥y 轴,PF ⊥x 轴,QG ⊥x 轴,垂足分别为E 、F 、G.∴ OG =2,AG =5-2=3.∴ GA =GQ.∴ ∠OAQ =45°.∵ OA =OC ,∴ ∠CAO =∠ACO =45°.∵ ∠APF =90°-(∠PAQ +45°)=45°-∠PAQ ,∠MCE =45°-∠ACM ,∠ACM =∠PAQ ,∴ ∠APF =∠MCE.∴ Rt △CME ∽Rt △PAF.∴ CE PF =ME AF.设点M 的坐标为(x ,x 2+6x +5),则ME =-x ,CE =-x 2-6x.又∵ PF =4,AF =5-3=2,∴ -x 2-6x 4=-x 2.解得x 1=-4,x 2=0(不合题意,舍去).则x 2+6x +5=-3.故点M(-4,-3);(3) 符合条件的m 的值为0,1+32,1-32,-1+32,-1-32.第28题。
江苏省南通市2015年中考数学试卷一.选择题(每小题3分,共30分,四个选项只有一个是符合题意的)1.(3分)(2015•南通)如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作()A.﹣3m B.3m C.6m D.﹣6m2.(3分)(2015•南通)下面四个几何体中,俯视图是圆的几何体共有()A.1个B.2个C.3个D.4个3.(3分)(2015•南通)据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为()A.0.77×107B.7.7×107C.0.77×106D.7.7×1064.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(3分)(2015•南通)下列长度的三条线段能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a(a>0)6.(3分)(2015•南通)如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是()A.B.C.D.27.(3分)(2015•南通)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12 B.15 C.18 D.218.(3分)(2015•南通)关于的不等式﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2二.填空题(每小题3分,共24分)11.(3分)(2015•南通)因式分解4m2﹣n2=(2m+n)(2m﹣n).12.(3分)(2015•南通)已知方程22+4﹣3=0的两根分别为1和2,则1+2的值等于﹣2.13.(3分)(2015•南通)计算(﹣y)2﹣(﹣2y)=y2.14.(3分)(2015•南通)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是甲(填“甲”或“乙”)15.(3分)(2015•南通)如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD=8cm.16.(3分)(2015•南通)如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=52度..三.解答题(共10小题,共96分)19.(10分)(2015•南通)(1)计算:(﹣2)2﹣+(﹣3)0﹣()﹣2(2)解方程:=.20.(8分)(2015•南通)如图,一海伦位于灯塔P的西南方向,距离灯塔40海里的A处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60°方向上的B处,求航程AB的值(结果保留根号).21.(10分)(2015•南通)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为144度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.22.(8分)(2015•南通)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.23.(8分)(2015•南通)如图,直线y=m+n与双曲线y=相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C.(1)求m,n的值;(2)若点D与点C关于轴对称,求△ABD的面积.。
江苏省南通市2015年中考数学试卷一.选择题(每小题3分,共30分,四个选项只有一个是符合题意的)1.(3分)(2015•南通)如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作()A.﹣3m B.3m C.6m D.﹣6m2.(3分)(2015•南通)下面四个几何体中,俯视图是圆的几何体共有()A.1个B.2个C.3个D.4个3.(3分)(2015•南通)据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为()A.0.77×107B.7.7×107C.0.77×106D.7.7×1064.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(3分)(2015•南通)下列长度的三条线段能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a(a>0)6.(3分)(2015•南通)如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是()A.B.C.D.27.(3分)(2015•南通)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12 B.15 C.18 D.218.(3分)(2015•南通)关于的不等式﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2二.填空题(每小题3分,共24分)11.(3分)(2015•南通)因式分解4m2﹣n2=(2m+n)(2m﹣n).12.(3分)(2015•南通)已知方程22+4﹣3=0的两根分别为1和2,则1+2的值等于﹣2.13.(3分)(2015•南通)计算(﹣y)2﹣(﹣2y)=y2.14.(3分)(2015•南通)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是甲(填“甲”或“乙”)15.(3分)(2015•南通)如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD=8cm.16.(3分)(2015•南通)如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=52度..三.解答题(共10小题,共96分)19.(10分)(2015•南通)(1)计算:(﹣2)2﹣+(﹣3)0﹣()﹣2(2)解方程:=.20.(8分)(2015•南通)如图,一海伦位于灯塔P的西南方向,距离灯塔40海里的A处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60°方向上的B处,求航程AB的值(结果保留根号).21.(10分)(2015•南通)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为144度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.22.(8分)(2015•南通)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.23.(8分)(2015•南通)如图,直线y=m+n与双曲线y=相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C.(1)求m,n的值;(2)若点D与点C关于轴对称,求△ABD的面积.。
南通市2015年初中毕业、升学考试试卷数 学一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答.题卡相应位置......上) 1. 如果水位升高6m 时水位变化记作+6m ,那么水位下降6m 时水位变化记作A .-3mB .3mC .6mD .-6m2. 下面四个几何体中,俯视图是圆的几何体共有A .1个B .2个C .3个D .4个3. 据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为A .0.77×107B .7.7×107C .0.77×106D .7.7×1064. 下列图形中既是轴对称图形又是中心对称图形的是5. 下列长度的三条线段能组成三角形的是A .5,6,10B .5,6,11C .3,4,8D .4a ,4a ,8a (a >0)A .B .C .D .三棱柱圆柱 四棱锥 球 ★绝密材料 开考启封6. 如图,在平面直角坐标系中,直线OA 过点(2,1),则tan αA B C .12D .27. 在一个不透明的盒子中装有a 个除颜色外完全相同的球,这a 个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a 的值大约为 A .12B .15C .18D .218. 关于x 的不等式x -b >0恰有两个负整数解,则b 的取值范围是A .―3<b <―2B .―3<b ≤―2C .―3≤b ≤―2D .―3≤b <―29. 在20km 越野赛中,甲乙两选手的行程y (单位:km )随时间x (单位:h )变化的图象如图所示,根据图中提供的信息,有下列说法: ①两人相遇前,甲的速度小于乙的速度; ②出发后1小时,两人行程均为10km ; ③出发后1.5小时,甲的行程比乙多3km ; ④甲比乙先到达终点.其中正确的有 A .1个B .2个C .3个D .4个10.如图,AB 为⊙O 的直径,C 为⊙O 上一点,弦AD 平分∠BAC ,交BC 于点E ,AB =6,AD =5,则AE 的长为 A .2.5 B .2.8 C .3 D .3.2二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答.题卡相应位置......上) 11.因式分解4m 2-n 2= ▲ .12.已知方程2x 2+4x ―3=0的两根分别为x 1和x 2,则x 1+x 2的值等于 ▲ . 13.计算(x -y )2-x (x -2y )= ▲ .y (第9题)B(第10题)14.甲乙两人8次射击的成绩如图所示(单位:环).根据图中的信息判断,这8次射击中成绩比较稳定 的是 ▲ (填“甲”或“乙”).15.如图,在⊙O 中,半径OD 垂直于弦AB ,垂足为C ,OD =13 cm ,AB =24 cm ,则CD = ▲ cm . 16.如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠BAC =102︒,则∠ADC = ▲ 度.17.如图,矩形ABCD 中,F 是DC 上一点,BF ⊥AC ,垂足为E ,12AD AB =,△CEF 的面积为S 1,△AEB 的面积为S 2,则12S S 的值等于 ▲ .18.关于x 的一元二次方程ax 2―3x ―1=0的两个不相等的实数根都在―1和0之间(不包括―1和0),则a 的取值范围是 ▲ .三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分)(1)计算(-2)2(-3)0-21()3-;(2)解方程12x =35x +. 20.(本小题满分8分)如图,一海轮位于灯塔P 的西南方向,距离灯塔A 处,它沿正东方向航行一段时间后,到达位于灯塔P 的南偏东60°方向上的B 处,求航程AB 的值(结果保留根号).(第16题)BDCAP BA60°45° (第20题)BCDF (第17题)AE(第15题)(第14题)成绩/环为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数.从中抽取部分同学的成绩进行统计,并绘制成如下统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为 ▲ 度; (2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖? (3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为 ▲ .22.(本小题满分8分)有大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.23.(本小题满分8分)如图,直线y =mx +n 与双曲线y =kx相交于A (-1,2),B (2,b )两点,与y 轴相交于点C . (1)求m ,n 的值;(2)若点D 与点C 关于x 轴对称,求△ABD 的面积.(第23题)频数(第21题)如图,P A ,PB 分别与⊙O 相切于A ,B 两点,∠ACB =60°. (1)求∠P 的度数;(2)若⊙O 的半径长为4cm ,求图中阴影部分的面积.25.(本小题满分8分)如图,在□ABCD 中,点E ,F 分别在AB ,DC 上,且ED ⊥DB ,FB ⊥BD . (1)求证△AED ≌△CFB ;(2)若∠A =30°,∠DEB =45°,求证DA =DF .26.(本小题满分10分)某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元.设顾客一次性购买服装x 件时,该网店从中获利y 元. (1)求y 与x 的函数关系式,并写出自变量x 的取值范围; (2)顾客一次性购买多少件时,该网店从中获利最多?(第25题)ED CBAF(第24题)如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC上,CP=3x,CQ =4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.(1)求证PQ∥AB;(2)若点D在∠BAC的平分线上,求CP的长;(3)若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围.AEQDC B(第27题)28.(本小题满分13分)已知抛物线y=x2-2mx+m2+m-1(m是常数)的顶点为P,直线l:y=x-1.(1)求证点P在直线l上;(2)当m=-3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M是x轴下方抛物线上的一点,∠ACM=∠P AQ(如图),求点M的坐标;(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值.(第28题)南通市2015年初中毕业、升学考试数学试题参考答案与评分标准说明:本评分标准每题给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题二、填空题(本大题共8小题,每小题,共2)11.(2m +n )(2m -n ) 12.-2 13.y 214.甲 15.816.5217.11618.-94<a <-2 三、解答题(本大题共10小题,共9) 19.(本小题满分)解:(1)原式=4-4+1-9=-8.(2)方程两边乘2x (x +5),得x +5=6x .解得x =1.检验:当x =1时,2x (x +5)≠0. 所以,原分式方程的解为x =1.20.(本小题满分)解:过点P 作PC⊥AB 于点C .在Rt △ACP 中,P A =APC =45°,sin ∠APC=AC AP ,cos ∠APC =PCAP.∴AC =AP ·sin45°=240,PC =AP ·cos45°=40. 在Rt △BCP 中,∠BPC =60°,tan ∠BPC =BCPC. ∴BC =PC ·tan60°=∴AB =AC +BC =40+答:航程AB 的值为(40+ 21.(本小题满分)解:(1)144; (2)16÷50=0.32,0.32×2000=640.答:估计全校约有640名同学获奖; (3)23.★保密材料 阅卷使用P BAC60°45° (第20题)解:本题答案不惟一,下列解法供参考.解法一问题:1辆大车一次运货多少吨,1辆小车一次运货多少吨?解:设1辆大车一次运货x吨,1辆小车一次运货y吨.根据题意,得3422,2623.x yx y+=⎧⎨+=⎩解得4,2.5.xy=⎧⎨=⎩答:1辆大车一次运货4吨,1辆小车一次运货2.5吨.解法二问题:1辆大车一次运货多少吨?解:设1辆大车一次运货x吨,则1辆小车一次运货2234x-吨.根据题意,得2x+6×2234x-=23.解得x=4.答:1辆大车一次运货4吨.解法三问题:5辆大车与10辆小车一次可以运货多少吨?解:设1辆大车一次运货x吨,1辆小车一次运货y吨.根据题意,得3422,2623.x yx y+=⎧⎨+=⎩解得5x+10y=45.答:5辆大车与10辆小车一次可以运货45吨.23.(本小题满分)解:(1)把x=-1,y=2;x=2,y=b代入kyx=,解得k=-2,b=-1.把x=-1,y=2;x=2,y=-1代入y mx n=+,解得m=-1,n=1.(2)直线y=-x+1与y轴交点C的坐标为(0,1),所以点D的坐标为(0,-1).点B的坐标为(2,-1),所以△ABD的面积=1(11)(12)2⨯+⨯+=3.24.(本小题满分)解:(1)连接OA,OB.∵P A,PB分别与⊙O相切于A,B两点,∴∠P AO=90°,∠PBO=90°.∴∠AOB+∠P=180°.∵∠AOB=2∠C=120°,∴∠P=60°.(2)连接OP.∵P A,PB分别与⊙O相切于A,B两点,∴∠APO=12∠APB=30°.在Rt△APO中,tan30°=OAAP,∴AP=tan30OA︒.∵OA=4cm,∴AP=.∴阴影部分的面积为2×(12×4×2604360⨯π⨯)=(163π)(cm2).(第24题)证明:(1)∵□ABCD ,∴AD =CB ,∠A =∠C ,AD ∥BC .∴∠ADB =∠CBD .∵ED ⊥DB ,FB ⊥BD ,∴∠EDB =∠FBD =90°. ∴∠ADE =∠CBF .∴△AED ≌△CFB . (2)作DH ⊥AB ,垂足为H .在Rt △ADH 中,∠A =30°,∴AD =2DH . 在Rt △DEB 中,∠DEB =45°,∴EB =2DH .由题意易证四边形EBFD 是平行四边形,∴FD =EB .∴DA =DF . 26.(本小题满分)解:(1)2300200100(010[3003(10)200]3130(1030).x x x x y x x x x x -=⎧⎪=⎨---=-+⎪⎩<),≤≤≤ (2)在0≤x ≤10时,y =100x ,当x =10时,y 有最大值1000; 在10<x ≤30时,y =―3x 2+130x ,当x =2123时,y 取得最大值. 因为x 为整数,所以x =21时,y =1407;x =22时,y =1408,所以,当x =22时,y 有最大值1408. 因为1408>1000,所以顾客一次购买22件时,该网店从中获利最多. 27.(本小题满分1)解:(1)在Rt △BAC 中,AB =15,BC =9,∴AC12=.∵393PC x x BC ==,4123QC x xAC ==,∴PC QC BC AC =. 又∵∠C =∠C ,∴△PQC ∽△BAC . ∴∠CPQ =∠B .∴PQ ∥AB . (2)连接AD ,∵PQ ∥AB ,∴∠ADQ =∠DAB . ∵点D 在∠BAC 的平分线上,∴∠DAQ =∠DAB .∴∠ADQ =∠DAQ .∴AQ =DQ . 在Rt △CPQ 中,PQ =5x ,∵PD =PC =3x ,∴DQ =2x .∵AQ =12―4x ,∴12―4x =2x .解得x =2.∴CP =3x =6. (3)当点E 落在AB 上时, ∵PQ ∥AB ,∴∠DPE =∠PEB . ∵∠CPQ =∠DPE ,∠CPQ =∠B ,∴∠B =∠PEB .∴PB =PE =5x .∴3x +5x =9.解得x =98.以下分两种情况讨论:①当0<x ≤98时,T =PD +DE +PE =3x +4x +5x =12x .此时,0<T ≤272.(第25题)E D C B AF H②当98<x <3时,设PE 交AB 于G ,DE 交AB 于F .作GH ⊥PQ ,垂足为H .∴HG =DF ,FG =DH ,Rt △PHG ∽Rt △PDE . ∴GH PG PHED PE PD==. ∵PG =PB =9-3x ,∴93453GH x PHx x x-==. ∴GH =45(9-3x ),PH =35(9-3x ). ∴FG =DH =3x -35(9-3x ),∴T =PG +PD +DF +FG =(9-3x )+3x +45(9-3x )+[3x -35(9-3x )]=125x +545. 此时,272<T <18. ∴当0<x <3时,T 随x 的增大而增大.∴T =12时,即12x =12,解得x =1;T =16时,即125x +545=16,解得x =136. 1 ∵12≤T ≤16,∴x 的取值范围是1≤x ≤136. 1 28.(本小题满分)(1)证明:∵y =x 2-2mx +m 2+m -1=(x -m )2+m -1,∴顶点P (m ,m -1). 将x =m 代入y =x -1得y =m -1,∴点P 在直线y =x -1上.(2)解:当m =-3时,抛物线解析式为y =x 2+6x +5,点P 的坐标为(-3,-4),点Q 坐标为(-2,-3),点A 的坐标为(-5,0),点C 的坐标为(0,5).作ME ⊥y 轴,PF ⊥x 轴,QG ⊥x 轴,垂足分别为E ,F ,G .∴QG =3,AG =5-2=3,∠CAO =∠ACO =45°.∴∠OAQ =45°.∵∠APF =90°-(∠P AQ +45°)=45°-∠P AQ , ∠MCE =45°-∠ACM ,∠ACM =∠P AQ , ∴∠APF =∠MCE .∴Rt △CME ∽Rt △P AF . ∴CE MEPF AF=. 设点M 的坐标为(x ,x 2+6x +5),则ME =-x ,CE =-x 2-6x ,PF =4,AF =2. ∴2642x x x ---=.解得x 1=-4,x 2=0(舍去).则x 2+6x +5=-3. 故点M (-4,-3).(第27题)AQEDF(第28题)(3)m的值为0.。
2015年江苏省南通市中考数学试卷一.选择题(每小题3分,共30分,四个选项只有一个是符合题意的)1.(3分)如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作()A.﹣3m B.3m C.6m D.﹣6m2.(3分)下面四个几何体中,俯视图是圆的几何体共有()A.1个 B.2个 C.3个 D.4个3.(3分)据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为()A.0.77×107B.7.7×107C.0.77×106D.7.7×1064.(3分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(3分)下列长度的三条线段能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a(a>0)6.(3分)如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是()A.B.C.D.27.(3分)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12 B.15 C.18 D.218.(3分)关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2 9.(3分)在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个 B.2个 C.3个 D.4个10.(3分)如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC 于点E,AB=6,AD=5,则AE的长为()A.2.5 B.2.8 C.3 D.3.2二.填空题(每小题3分,共24分)11.(3分)因式分解4m2﹣n2=.12.(3分)已知方程2x2+4x﹣3=0的两根分别为x1和x2,则x1+x2的值等于.13.(3分)计算(x﹣y)2﹣x(x﹣2y)=.14.(3分)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是(填“甲”或“乙”)15.(3分)如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD=cm.16.(3分)如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=度.17.(3分)如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,=,△CEF的面积为S1,△AEB的面积为S2,则的值等于.18.(3分)关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是.三.解答题(共10小题,共96分)19.(10分)(1)计算:(﹣2)2﹣+(﹣3)0﹣()﹣2(2)解方程:=.20.(8分)如图,一海伦位于灯塔P的西南方向,距离灯塔40海里的A处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60°方向上的B处,求航程AB的值(结果保留根号).21.(10分)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.22.(8分)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.23.(8分)如图,直线y=mx+n与双曲线y=相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C.(1)求m,n的值;(2)若点D与点C关于x轴对称,求△ABD的面积.24.(8分)如图,PA,PB分别与⊙O相切于A,B两点,∠ACB=60°.(1)求∠P的度数;(2)若⊙O的半径长为4cm,求图中阴影部分的面积.25.(8分)如图,在▱ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.26.(10分)某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?27.(13分)如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC上,CP=3x,CQ=4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.(1)求证:PQ∥AB;(2)若点D在∠BAC的平分线上,求CP的长;(3)若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围.28.(13分)已知抛物线y=x2﹣2mx+m2+m﹣1(m是常数)的顶点为P,直线l:y=x﹣1.(1)求证:点P在直线l上;(2)当m=﹣3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M是x轴下方抛物线上的一点,∠ACM=∠PAQ(如图),求点M的坐标;(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值.2015年江苏省南通市中考数学试卷参考答案与试题解析一.选择题(每小题3分,共30分,四个选项只有一个是符合题意的)1.(3分)如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作()A.﹣3m B.3m C.6m D.﹣6m【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【解答】解:因为上升记为+,所以下降记为﹣,所以水位下降6m时水位变化记作﹣6m.故选:D.2.(3分)下面四个几何体中,俯视图是圆的几何体共有()A.1个 B.2个 C.3个 D.4个【分析】根据俯视图是从上面看所得到的图形判断即可.【解答】解:从上面看,三棱柱的俯视图为三角形;圆柱的俯视图为圆;四棱锥的俯视图是四边形;球的俯视图是圆;俯视图是圆的几何体共有2个.故选:B.3.(3分)据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为()A.0.77×107B.7.7×107C.0.77×106D.7.7×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7700000用科学记数法表示为7.7×106.故选:D.4.(3分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.5.(3分)下列长度的三条线段能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a(a>0)【分析】根据三角形的三边关系对各选项进行逐一分析即可.【解答】解:A、∵10﹣5<6<10+5,∴三条线段能构成三角形,故本选项正确;B、∵11﹣5=6,∴三条线段不能构成三角形,故本选项错误;C、∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误;D、∵4a+4a=8a,∴三条线段不能构成三角形,故本选项错误.故选:A.6.(3分)如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是()A.B.C.D.2【分析】设(2,1)点是B,作BC⊥x轴于点C,根据三角函数的定义即可求解.【解答】解:设(2,1)点是B,作BC⊥x轴于点C.则OC=2,BC=1,则tanα==.故选:C.7.(3分)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12 B.15 C.18 D.21【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,×100%=20%,解得,a=15.故选:B.8.(3分)关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2【分析】表示出已知不等式的解集,根据负整数解只有﹣1,﹣2,确定出b的范围即可.【解答】解:不等式x﹣b>0,解得:x>b,∵不等式的负整数解只有两个负整数解,∴﹣3≤b<﹣2故选:D.9.(3分)在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个 B.2个 C.3个 D.4个【分析】根据题目所给的图示可得,两人在1小时时相遇,行程均为10km,出发0.5小时之内,甲的速度大于乙的速度,0.5至1小时之间,乙的速度大于甲的速度,出发1.5小时之后,乙的路程为15千米,甲的路程为12千米,再利用函数图象横坐标,得出甲先到达终点.【解答】解:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km,故②正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故③正确;甲到达终点所用的时间较少,因此甲比乙先到达终点,故④正确.故选:C.10.(3分)如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC 于点E,AB=6,AD=5,则AE的长为()A.2.5 B.2.8 C.3 D.3.2【分析】连接BD、CD,由勾股定理先求出BD的长,再利用△ABD∽△BED,得出=,可解得DE的长,由AE=AD﹣DE求解即可得出答案.【解答】解:如图1,连接BD、CD,,∵AB为⊙O的直径,∴∠ADB=90°,∴BD=,∵弦AD平分∠BAC,∴CD=BD=,∴∠CBD=∠DAB,在△ABD和△BED中,∴△ABD∽△BED,∴=,即=,解得DE=,∴AE=AD﹣DE=5﹣=2.8.故选:B.二.填空题(每小题3分,共24分)11.(3分)因式分解4m2﹣n2=(2m+n)(2m﹣n).【分析】原式利用平方差公式分解即可.【解答】解:原式=(2m+n)(2m﹣n).故答案为:(2m+n)(2m﹣n)12.(3分)已知方程2x2+4x﹣3=0的两根分别为x1和x2,则x1+x2的值等于﹣2.【分析】根据两根之和等于一次项系数与二次项系数商的相反数作答即可.【解答】解:∵方程2x2+4x﹣3=0的两根分别为x1和x2,∴x1+x2=﹣=﹣2,故答案为:﹣2.13.(3分)计算(x﹣y)2﹣x(x﹣2y)=y2.【分析】根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:(x﹣y)2﹣x(x﹣2y)=x2﹣2xy+y2﹣x2+2xy=y214.(3分)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是甲(填“甲”或“乙”)【分析】根据方差的意义:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.观察图中的信息可知小华的方差较小,故甲的成绩更加稳定.【解答】解:由图表明乙这8次成绩偏离平均数大,即波动大,而甲这8次成绩,分布比较集中,各数据偏离平均小,方差小,则S甲2<S乙2,即两人的成绩更加稳定的是甲.故答案为:甲.15.(3分)如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD=8cm.【分析】根据垂径定理,可得AC的长,根据勾股定理,可得OC的长,根据线段的和差,可得答案.【解答】解:由垂径定理,AC=AB=12cm.由半径相等,得OA=OD=13cm.由勾股定理,得OC===5.由线段的和差,得CD=OD﹣OC=13﹣5=8cm,故答案为:8.16.(3分)如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=52度.【分析】设∠ADC=α,然后根据AC=AD=DB,∠BAC=102°,表示出∠B和∠BAD 的度数,最后根据三角形的内角和定理求出∠ADC的度数.【解答】解:∵AC=AD=DB,∴∠B=∠BAD,∠ADC=∠C,设∠ADC=α,∴∠B=∠BAD=,∵∠BAC=102°,∴∠DAC=102°﹣,在△ADC中,∵∠ADC+∠C+∠DAC=180°,∴2α+102°﹣=180°,解得:α=52°.故答案为:52.17.(3分)如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,=,△CEF的面积为S1,△AEB的面积为S2,则的值等于.【分析】首先根据=设AD=BC=a,则AB=CD=2a,然后利用勾股定理得到AC=a,然后根据射影定理得到BC2=CE•CA,AB2=AE•AC从而求得CE=,AE=,得到=,利用△CEF∽△AEB,求得=()2=.【解答】解:∵=,∴设AD=BC=a,则AB=CD=2a,∴AC=a,∵BF⊥AC,∴△CBE∽△CAB,△AEB∽△ABC,∴BC2=CE•CA,AB2=AE•AC∴a2=CE•a,2a2=AE•a,∴CE=,AE=,∴=,∵△CEF∽△AEB,∴=()2=,故答案为:.18.(3分)关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是<a<﹣2.【分析】首先根据根的情况利用根的判别式解得a的取值范围,然后根据根两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),结合函数图象确定其函数值的取值范围得a,易得a的取值范围.【解答】解:∵关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根∴△=(﹣3)2﹣4×a×(﹣1)>0,解得:a>设f(x)=ax2﹣3x﹣1,如图,∵实数根都在﹣1和0之间,∴﹣1,∴a,且有f(﹣1)<0,f(0)<0,即f(﹣1)=a×(﹣1)2﹣3×(﹣1)﹣1<0,f(0)=﹣1<0,解得:a<﹣2,∴<a<﹣2,故答案为:<a<﹣2.三.解答题(共10小题,共96分)19.(10分)(1)计算:(﹣2)2﹣+(﹣3)0﹣()﹣2(2)解方程:=.【分析】(1)原式第一项利用乘方的意义化简,第二项利用立方根定义计算,第三项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=4﹣4+1﹣9=﹣8;(2)去分母得:x+5=6x,解得:x=1,经检验x=1是分式方程的解.20.(8分)如图,一海伦位于灯塔P的西南方向,距离灯塔40海里的A处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60°方向上的B处,求航程AB的值(结果保留根号).【分析】过P作PC垂直于AB,在直角三角形ACP中,利用锐角三角函数定义求出AC与PC的长,在直角三角形BCP中,利用锐角三角函数定义求出CB的长,由AC+CB求出AB的长即可.【解答】解:过P作PC⊥AB于点C,在Rt△ACP中,PA=40海里,∠APC=45°,sin∠APC=,cos∠APC=,∴AC=AP•sin45°=40×=40(海里),PC=AP•cos45°=40×=40(海里),在Rt△BCP中,∠BPC=60°,tan∠BPC=,∴BC=PC•tan60°=40(海里),则AB=AC+BC=(40+40)海里.21.(10分)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为144度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.【分析】(1)由第三组(79.5~89.5)的人数即可求出其扇形的圆心角;(2)首先求出50人中成绩在90分以上(含90分)的同学可以获奖的百分比,进而可估计该校约有多少名同学获奖;(3)列表得出所有等可能的情况数,找出选出的两名主持人“恰好为一男一女”的情况数,即可求出所求的概率.【解答】解:(1)由直方图可知第三组(79.5~89.5)所占的人数为20人,所以“第三组(79.5~89.5)”的扇形的圆心角==144°,故答案为:144;(2)估计该校获奖的学生数=×2000=640(人);(3)列表如下:男男女女男﹣﹣﹣(男,男)(女,男)(女,男)男(男,男)﹣﹣﹣﹣(女,男)(女,男)女(男,女)(男,女)﹣﹣﹣(女,女)女(男,女)(男,女)(女,女)﹣﹣﹣所有等可能的情况有12种,其中选出的两名主持人“恰好为一男一女”的情况有8种,则P(选出的两名主持人“恰好为一男一女”)==.故答案为:.22.(8分)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.【分析】1辆大车与1辆小车一次可以运货多少吨?根据题意可知,本题中的等量关系是“3辆大车与4辆小车一次可以运货22吨”和“2辆大车与6辆小车一次可以运货23吨”,列方程组求解即可.【解答】解:本题的答案不唯一.问题:1辆大车与1辆小车一次可以运货多少吨?设1辆大车一次运货x吨,1辆小车一次运货y吨.根据题意,得,解得.则x+y=4+2.5=6.5(吨).答:1辆大车与1辆小车一次可以运货6.5吨.23.(8分)如图,直线y=mx+n与双曲线y=相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C.(1)求m,n的值;(2)若点D与点C关于x轴对称,求△ABD的面积.【分析】(1)由题意,将A坐标代入一次函数与反比例函数解析式,即可求出m 与n的值;(2)得出点C和点D的坐标,根据三角形面积公式计算即可.【解答】解:(1)把x=﹣1,y=2;x=2,y=b代入y=,解得:k=﹣2,b=﹣1;把x=﹣1,y=2;x=2,y=﹣1代入y=mx+n,解得:m=﹣1,n=1;(2)直线y=﹣x+1与y轴交点C的坐标为(0,1),所以点D的坐标为(0,﹣1),点B的坐标为(2,﹣1),所以△ABD的面积=.24.(8分)如图,PA,PB分别与⊙O相切于A,B两点,∠ACB=60°.(1)求∠P的度数;(2)若⊙O的半径长为4cm,求图中阴影部分的面积.【分析】(1)由PA与PB都为圆O的切线,利用切线的性质得到OA垂直于AP,OB垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C的度数求出∠AOB的度数,在四边形PAOB中,根据四边形的内角和定理即可求出∠P的度数.(2)由S阴影=2×(S△PAO﹣S扇形)则可求得结果.【解答】解:连接OA、OB,∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=120°,∴∠P=360°﹣(90°+90°+120°)=60°.∴∠P=60°.(2)连接OP,∵PA、PB是⊙O的切线,∴APB=30°,在Rt△APO中,tan30°=,∴AP===4cm,∴S阴影=2S△AOP﹣S扇形=2×(×4×﹣)=(16﹣)(cm2).25.(8分)如图,在▱ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.【分析】(1)由四边形ABCD为平行四边形,利用平行四边形的性质得到对边平行且相等,对角相等,再由垂直的定义得到一对直角相等,利用等式的性质得到一对角相等,利用ASA即可得证;(2)过D作DH垂直于AB,在直角三角形ADH中,利用30度所对的直角边等于斜边的一半得到AD=2DH,在直角三角形DEB中,利用斜边上的中线等于斜边的一半得到EB=2DH,易得四边形EBFD为平行四边形,利用平行四边形的对边相等得到EB=DF,等量代换即可得证.【解答】证明:(1)∵平行四边形ABCD,∴AD=CB,∠A=∠C,AD∥CB,AB∥CD,∴∠ADB=∠CBD,∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,在△AED和△CFB中,,∴△AED≌△CFB(ASA);(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,∴AD=2DH,在Rt△DEB中,∠DEB=45°,∴EB=2DH,∵ED⊥DB,FB⊥BD.∴DE∥BF,∵AB∥CD,∴四边形EBFD为平行四边形,∴FD=EB,∴DA=DF.26.(10分)某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?【分析】(1)根据题意可得出销量乘以每台利润进而得出总利润,进而得出答案;(2)根据销量乘以每台利润进而得出总利润,即可求出即可.【解答】解:(1)y=,(2)在0≤x≤10时,y=100x,当x=10时,y有最大值1000;在10<x≤30时,y=﹣3x2+130x,当x=21时,y取得最大值,∵x为整数,根据抛物线的对称性得x=22时,y有最大值1408.∵1408>1000,∴顾客一次购买22件时,该网站从中获利最多.27.(13分)如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC上,CP=3x,CQ=4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.(1)求证:PQ∥AB;(2)若点D在∠BAC的平分线上,求CP的长;(3)若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围.【分析】(1)先根据勾股定理求出AC的长,再由相似三角形的判定定理得出△PQC∽△BAC,由相似三角形的性质得出∠CPQ=∠B,由此可得出结论;(2)连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=12﹣4x,故可得出x的值,进而得出结论;(3)当点E在AB上时,根据等腰三角形的性质求出x的值,再分0<x≤;<x<3两种情况进行分类讨论.【解答】(1)证明:∵在Rt△ABC中,AB=15,BC=9,∴AC===12.∵==,==,∴=.∵∠C=∠C,∴△PQC∽△BAC,∴∠CPQ=∠B,∴PQ∥AB;(2)解:连接AD,∵PQ∥AB,∴∠ADQ=∠DAB.∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ.在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=2x.∵AQ=12﹣4x,∴12﹣4x=2x,解得x=2,∴CP=3x=6.(3)解:当点E在AB上时,∵PQ∥AB,∴∠DPE=∠PGB.∵∠CPQ=∠DPE,∠CPQ=∠B,∴∠B=∠PGB,∴PB=PG=5x,∴3x+5x=9,解得x=.①当0<x≤时,T=PD+DE+PE=3x+4x+5x=12x,此时0<T≤;②当<x<3时,设PE交AB于点G,DE交AB于F,作GH⊥PQ,垂足为H,∴HG=DF,FG=DH,Rt△PHG∽Rt△PDE,∴==.∵PG=PB=9﹣3x,∴==,∴GH=(9﹣3x),PH=(9﹣3x),∴FG=DH=3x﹣(9﹣3x),∴T=PG+PD+DF+FG=(9﹣3x)+3x+(9﹣3x)+[3x﹣(9﹣3x)]=x+,此时,<T<18.∴当0<x<3时,T随x的增大而增大,∴T=12时,即12x=12,解得x=1;T=16时,即x+=16,解得x=.∵12≤T≤16,∴x的取值范围是1≤x≤.28.(13分)已知抛物线y=x2﹣2mx+m2+m﹣1(m是常数)的顶点为P,直线l:y=x﹣1.(1)求证:点P在直线l上;(2)当m=﹣3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M是x轴下方抛物线上的一点,∠ACM=∠PAQ(如图),求点M的坐标;(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值.【分析】(1)利用配方法得到y=(x﹣m)2+m﹣1,点P(m,m﹣1),然后根据一次函数图象上点的坐标特征判断点P在直线l上;(2)当m=﹣3时,抛物线解析式为y=x2+6x+5,根据抛物线与x轴的交点问题求出A(﹣5,0),易得C(0,5),通过解方程组得P(﹣3,﹣4),Q(﹣2,﹣3),作ME⊥y轴于E,PF⊥x轴于F,QG⊥x轴于G,如图,证明Rt △CME∽Rt△PAF,利用相似得=,设M(x,x2+6x+5),则=,解得x1=0(舍去),x2=﹣4,于是得到点M的坐标为(﹣4,﹣3);(3)通过解方程组得P(m,m﹣1),Q(m+1,m),利用两点间的距离公式得到PQ2=2,OQ2=2m2+2m+1,OP2=2m2﹣2m+1,然后分类讨论:当PQ=OQ时,2m2+2m+1=2;当PQ=OP时,2m2﹣2m+1=2;当OP=OQ时,2m2+2m+1=2m2﹣2m+1,再分别解关于m的方程求出m即可.【解答】(1)证明:∵y=x2﹣2mx+m2+m﹣1=(x﹣m)2+m﹣1,∴点P的坐标为(m,m﹣1),∵当x=m时,y=x﹣1=m﹣1,∴点P在直线l上;(2)解:当m=﹣3时,抛物线解析式为y=x2+6x+5,当y=0时,x2+6x+5=0,解得x1=﹣1,x2=﹣5,则A(﹣5,0),当x=0时,y=x2+6x+5=5,则C(0,5),可得解方程组,解得或,则P(﹣3,﹣4),Q(﹣2,﹣3),作ME⊥y轴于E,PF⊥x轴于F,QG⊥x轴于G,如图,∵OA=OC=5,∴△OAC为等腰直角三角形,∴∠ACO=45°,∴∠MCE=45°﹣∠ACM,∵QG=3,OG=2,∴AG=OA﹣OG=3=QG,∴△AQG为等腰直角三角形,∴∠QAG=45°,∵∠APF=90°﹣∠PAF=90°﹣(∠PAQ+45°)=45°﹣∠PAQ,∵∠ACM=∠PAQ,∴∠APF=∠MCE,∴Rt△CME∽Rt△PAF,∴=,设M(x,x2+6x+5),∴ME=﹣x,CE=5﹣(x2+6x+5)=﹣x2﹣6x,∴=,整理得x2+4x=0,解得x1=0(舍去),x2=﹣4,∴点M的坐标为(﹣4,﹣3);(3)解:解方程组得或,则P(m,m﹣1),Q(m+1,m),∴PQ2=(m+1﹣m)2+(m﹣m+1)2=2,OQ2=(m+1)2+m2=2m2+2m+1,OP2=m2+(m﹣1)2=2m2﹣2m+1,当PQ=OQ时,2m2+2m+1=2,解得m1=,m2=;当PQ=OP时,2m2﹣2m+1=2,解得m1=,m2=;当OP=OQ时,2m2+2m+1=2m2﹣2m+1,解得m=0,综上所述,m的值为,,,,0.。