2009年高考物理经典题型及其解题基本思路专题辅导(三)
- 格式:doc
- 大小:1.48 MB
- 文档页数:8
高考物理考前指导一、正确认识高考,保持心态平和:(一)总体认识:“考试就是做题”,高考就是做高中生应该做的题(它既不是大学生做的题,也不是初中生做的题)。
——我们能完成但会重视它。
高考是高三这一年中全国最规范、最漂亮的一套题(它就是我们又一次作业)。
——能和平时一样平静、细心、耐心地完成它。
(二)真切感受:1.五年考点分布概况:(1)考题共13个小题,5力4电3道热、光、原;(另一道多半为力学试题)(2)力学5道必考题:振动和波;万有引力和天体运动;力与运动(2道);动量和能量;(可能为力学实验)(3)电学4道必考题:电磁感应与电路;带电粒子运动2道(电场磁场);电学实验2.五年考点具体分布:(1)热学(2)光学(3)原子和原子核(4)振动和波(7)动量和能量(8)带电粒子的运动(9)电磁感应与电路3.试题发展趋势分析:(1)选择题计算量可能略减从题型的考查功能来看(选择题注意对物理概念、物理规律的理解,着重考查学生的理解能力和逻辑推能力)选择题的计算量不应该太大,但理综试卷中题量的限制以及命题者对试题的理解又使得选择题的计算量不会太小。
可能比04-06年的大,比07-08年的小。
(2)实验题会进一步按“大容量、设计性、开放性、实践性”方向命题实验题是物理学科的特色试题,从近几年试题的情况来看,坚持考查实验基础(如基本仪器的使用、和学生分组实验)的同时坚持考查学生的独立设计能力和对实验方案的改进、比较等能力是物理实验自身特点的要求,也有较好认同感,同时也符合新课程要求。
两个实验都不小也是理综试卷题量限制和命题者对实验的重视所造成的,未来两方面的情况不会有变化,两个都不小是趋势。
(3)计算题的三道试题可能分别在新情景、复杂过程、较高数学要求上着力从题型的考查功能来看计算题注重独立、灵活地分析解决新情境下的物理问题,着重考查学生对物理过程的分析、建立物理模型及运用数学解决物理问题的综合能力。
其难度与三个要素相关,他们分别是:知识,情景,数学要求。
高考物理经典专题:时间与空间力与运动思想方法提炼一、对力的几点认识1.关于力的概念.力是物体对物体的相互作用.这一定义体现了力的物质性和相互性.力是矢量.2.力的效果(1)力的静力学效应:力能使物体发生形变.(2)力的动力学效应:a.瞬时效应:使物体产生加速度F=mab.时间积累效应:产生冲量I=Ft,使物体的动量发生变化Ft=△pc.空间积累效应:做功W=Fs,使物体的动能发生变化△E k=W3.物体受力分析的基本方法(1)确定研究对象(隔离体、整体).(2)按照次序画受力图,先主动力、后被动力,先场力、后接触力.(3)只分析性质力,不分析效果力,合力与分力不能同时分析.(4)结合物体的运动状态:是静止还是运动,是直线运动还是曲线运动.如物体做曲线运动时,在某点所受合外力的方向一定指向轨迹弧线内侧的某个方向.二、中学物理中常见的几种力三、力和运动的关系1.F=0时,加速度a =0.静止或匀速直线运动F=恒量:F与v在一条直线上——匀变速直线运动F与v不在一条直线上——曲线运动(如平抛运动)2.特殊力:F大小恒定,方向与v始终垂直——匀速圆周运动F=-kx——简谐振动四、基本理论与应用解题常用的理论主要有:力的合成与分解、牛顿运动定律、匀变速直线运动规律、平抛运动的规律、圆周运动的规律等.力与运动的关系研究的是宏观低速下物体的运动,如各种交通运输工具、天体的运行、带电物体在电磁场中的运动等都属于其研究范畴,是中学物理的重要内容,是高考的重点和热点,在高考试题中所占的比重非常大.选择题、填空题、计算题等各种类型的试题都有,且常与电场、磁场、动量守恒、功能部分等知识相结合.感悟 · 渗透 · 应用 一、力与运动的关系力与运动关系的习题通常分为两大类:一类是已知物体的受力情况,求解其运动情况;另一类是已知物体的运动情况,求解物体所受的未知力或与力有关的未知量.在这两类问题中,加速度a 都起着桥梁的作用.而对物体进行正确的受力分析和运动状态及运动过程分析是解决这类问题的突破口和关键.【例1】如图所示,质量M=10kg 的木楔 静止于粗糙水平地面上,木楔与地面间的 动摩擦因数μ=0.2,在木楔的倾角为θ=30° 的斜面上,有一质量m=1.0kg 的物块由静止 开始沿斜面下滑,当滑行路程s=1.4m 时,其速度v=1.4m/s.在这个过程中木楔处于静止状态.求地面对木楔的摩擦力的大小和方向(取g=10m/s 2).【解析】由于木楔没有动,不能用公式f=μN 计算木楔受到的摩擦力,题中所给出动摩擦因数的已知条件是多余的。
2009年浙江省高考物理试卷一、选择题(本题共4小题.每题6分,满分24分。
在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(6分)如图所示,质量为m 的等边三棱柱静止在水平放置的斜面上.已知三棱柱与斜面之的动摩擦因数为μ,斜面的倾角为30°,则斜面对三棱柱的支持力与摩擦力的大小分别为(为( )A .mg 和mgB .mg 和mgC .mg 和μmgD .mg 和μmg 2.(6分)氢原子核由两个质子与两个中子组成,这两个质子之间存在着万有引力、库仑力和核力,则3种从大到小的排列顺序是(种从大到小的排列顺序是( )A .核力、万有引力、库仑力B .万有引力、库仑力、核力C .库仑力、核力、万有引力D .核力、库仑力、万有引力3.(6分)如图所示,在光滑绝缘水平面上放置3个电荷量均为q (q >0)的相同小球,小球之间用劲度系数均为k 0的轻质弹簧绝缘连接.当3个小球处在静止状态时,每根弹簧长度为l .已知静电力常量为k ,若不考虑弹簧的静电感应,则每根弹簧的原长为(,若不考虑弹簧的静电感应,则每根弹簧的原长为( )A .l +B .l ﹣C .l ﹣D .l ﹣4.(6分)如图所示,在磁感应强度大小为B 、方向竖直向上的匀强磁场中,有一质量为m 、阻值为R 的闭合矩形金属线框abcd 用绝缘轻质细杆悬挂在O 点,并可绕O 点摆动.金属线框从右侧某一位置静止开始释放,在摆动到左侧最高点的过程中,细杆和金属框平面始终处于同一平面,且垂直纸面.则线框中应电流的方向是(终处于同一平面,且垂直纸面.则线框中应电流的方向是( )A .a→b→c→dB .d→c→b→a→dC .先是d→c→b→a→d ,后是a→b→c→d→aD .先是a→b→c→d→a ,后是d→c→b→a→d二、选择题(本题共4小题.在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错的得0分.)5.(6分)如图所示,有一束平行于等边三棱镜截面ABC 的单色光从空气射向E 点,并偏折到F 点.已知入射方向与边AB 的夹角为θ=30°,E 、F 分别为边AB 、BC 的中点,则( )A .该棱镜的折射率为B .光在F 点发生全反射C .光从空气进入棱镜,波长变小D .从F 点出射的光束与入射到E 点的光束平行6.(6分)在讨论地球潮汐成因时,地球绕太阳运行轨道与月球绕地球运行轨道可视为圆轨道.已知太阳质量约为月球质量的2.7×107倍,地球绕太阳运行的轨道半径约为月球绕地球运行的轨道半径的400倍.关于太阳和月球对地球上相同质量海水的引力,以下说法正确的是(确的是( )A .太阳引力远大于月球引力B .太阳引力与月球引力相差不大C .月球对不同区域海水的吸引力大小相等D .月球对不同区域海水的吸引力大小有差异7.(6分)空间存在匀强电场,有一电荷量q (q >0),质量m 的点电荷从O 点以速率v 0射入电场,运动到A 点时速率为2v 0.现有另一电荷为﹣q 、质量m 的粒子以速率2v 0仍从O 点射入该电场,运动到B 点时速率为3v 0.若忽略重力的影响,则(.若忽略重力的影响,则() A .在O 、A 、B 三点中,B 点电势最高B .在O 、A 、B 三点中,A 点电势最高C .OA 间的电势差比BO 间的电势差大D .OA 间的电势差比BA 间的电势差小8.(6分)一列波长大于lm 的横波沿着x 轴正方向的播处x 1=lm 和x 2=2m 的两质点A 、B的振动图象如图所示。
2009年高考理综(物理部分)解析麓山国际实验学校———郑学鉴2009年高考理综(全国Ⅰ卷·物理部分)总体来说还是紧扣了考试说明与考试大纲的要求,考试内容覆盖了教材的大部分内容。
达到了主干知识、重点知识重点考的命题要求,同时试题也体现一个主导,两个考察和两个重视的特点,即以能力测试为主导、考察双基,考察能力,重视联系实际,重视科学素养的培养。
从考试的性质来讲,强调了选拔性考试,所以试卷有一定的难度和区分度,考试能力要求的个五个部分:理解能力、推理能力、分析综合能力,应用数学知识解决物理学问题的能力,物理实验能力都得到了充分的体现。
一、考点知识覆盖情况:A.气体对器壁的压强就是大量气体分子作用在器壁单位面积上的平均作用力B.气体对器壁的压强就是大量气体分子单位时间作用在器壁上的平均冲量C.气体分子热运动的平均动能减小,气体的压强一定减小D.单位体积的气体分子数增加,气体的压强一定增大重点考查对气体压强的理解,包括气体压强的产生、及其气体压强的决定因素。
A选项就是学生应该理解并要牢记的基本概念。
气体分子热运动的平均动能减小,说明温度降低,但不能说明压强也一定减小,C错.单位体积的气体分子增加,但温度降低有可能气体的压强减小,D错.15.某物体左右两侧各有一竖直放置的平面镜,两平面镜相互平行,物体距离左镜4m,右镜8m,如图所示。
物体在左镜所成的像中从右向左数的第三个像与物体的距离是A.24m B.32m C.40m D.48m这是一道考查学生基础知识和学生严谨科学精神的好题,其知识层面仅限初中,运用平面镜成像的对称法则很容易选择B,但学生如果省题不仔细,作图不严谨很容易出错。
此题也可作为初中竞赛的一道好题。
16、氦氖激光器能产生三种波长的激光,其中两种波长分别为12m m λμλμ=0.6328,=3.39。
已知波长为1λ的激光是氖原子在能级间隔为△E 1=1.96eV两个能级之间跃迁产生的。
2009年普通高等学校招生全国统一考试(江苏卷)物理试题一、单项选择题:本题共5小题,每小题3分,共计15分,每小题只有一个....选项符合题意。
1.两个分别带有电荷量Q -和+3Q 的相同金属小球(均可视为点电荷),固定在相距为r 的两处,它们间库仑力的大小为F 。
两小球相互接触后将其固定距离变为2r ,则两球间库仑力的大小为A .112FB .34FC .43F D .12F C 【解析】本题考查库仑定律及带电体电量的转移问题。
接触前两个点电荷之间的库仑力大小为23r Q Q k F ⋅=,两个相同的金属球各自带电,接触后再分开,其所带电量先中和后均分,所以两球分开后各自带点为+Q ,距离又变为原来的21,库仑力为22⎪⎭⎫ ⎝⎛⋅='r Q Q k F ,所以两球间库仑力的大小为43F ,C 项正确。
如两球原来带正电,则接触各自带电均为+2Q 。
2.用一根长1m 的轻质细绳将一副质量为1kg 的画框对称悬挂在墙壁上,已知绳能承受的最大张力为10N ,为使绳不断裂,画框上两个挂钉的间距最大为(g 取210m/s ) A .3m 2 B .2m 2C .1m 2 D .3m 4 A 【解析】熟练应用力的合成和分解以及合成与分解中的一些规律,是解决本题的根本;一个大小方向确定的力分解为两个等大的力时,合力在分力的角平分线上,且两分力的夹角越大,分力越大。
题中当绳子拉力达到F =10N 的时候,绳子间的张角最大,即两个挂钉间的距离最大;画框受到重力和绳子的拉力,三个力为共点力,受力如图。
绳子与竖直方向的夹角为θ,绳子长为L 0=1m,则有θcos 2F mg =,两个挂钉的间距离θsin 220L L ⋅=,解得23=L m ,A 项正确。
3.英国《新科学家(New Scientist )》杂志评选出了2008年度世界8项科学之最,在XTEJ1650-500双星系统中发现的最小黑洞位列其中,若某黑洞的半径R 约45km ,质量M 和半径R 的关系满足22M c R G=(其中c 为光速,G 为引力常量),则该黑洞表面重力加速度的数量级为A .8210m/sB .10210m/sC .12210m/sD .14210m/sC 【解析】处理本题要从所给的材料中,提炼出有用信息,构建好物理模型,选择合适的物理方法求解。
2009年高考物理考点分析一、选择题1、热学[备考要点]热学部分常见的命题热点有:分子理论、有关分子的计算、分子力与分子势能、分子动能与分子平均动能、气体压强的微观意义及PVT 的关系,内能及其改变、热力学第一定律及热力学第二定律等;另外,涉及能量守恒与能源开发与利用的考题应引起重视。
其中特别注意分子动理论,微观量与宏观量的联系、有关气体的内能改变和热力学定律和能量守恒定律等几个内容。
[猜想分析]热学知识作为高中物理的重要内容,已成为每年高考的必考内容,所占高考物理总分5%左右。
多以选择题形式出现。
虽然热学部分知识点较分散,大多属于定性了解的内容,并非重点内容,不必搞得过难,但要全面落实基础知识和基本技能,强调对基本概念、基本规律的理解,思想上引起重视,保证考试时得到这一知识点的分。
[例题示例]例1、(09南京大学附中)下列说法正确的是A 、物体吸收热量,其温度一定升高B 、热量只能从高温物体向低温物体传递C 、遵守热力学第一定律的过程一定能实现D 、做功和热传递是改变物体内能的两种方式例2、(09南昌二模)如图所示,一水平放置的绝热气缸,由截面积不同的两圆筒连接而成,绝热活塞A 、B 用一刚性细杆连接,它们只能在各自的筒内无摩擦地沿水平方向左右滑动A 、B 之间封闭着一定质量的理想气体,现用力F 拉活塞A ,使它们向左缓慢移动在这个过程中( )A 、气体分子的平均动能减小B 、气体的压强增大C 、单位体积内气体分子数增多D 、气体对外做功[猜想训练]1、(09北京朝阳二模)下列说法正确的是( )A 、气体总是充满容器,说明分子间存在斥力B 、对于一定质量的气体,温度升高,气体压强一定增大C 、温度越高,布朗运动越剧烈,说明水分子热运动的剧烈程度与温度有关D 、物体内能增加,温度一定升高2、(09桂林一中)如图所示电路与一绝热密闭汽缸相连,R a 为电热丝,汽缸内有一定质量的理想气体,闭合电键后,汽缸里的气体( )A 、内能增大B 、分子平均动能减小C 、分子无规则热运动增强D 、单位时间内分子对单位面积器壁的撞击次数减少[说明]关于热学应熟练以下内容①分子数N =nN A 其中物质的量n =m 物/μ对理想气体物质的量:PV =nRT 或标准状况时有22.4L /mol气体: V 占=V 气/N ,V 占=d 3 可得气体分子平均间距d =3V 占 固体和液体:V 分=V 物/N ,V 分=πD 3/6 可得分子直径D =3/6V分 ②布朗运动:是悬浮在液体(或气体)里的微粒不停地无规则运动,不是分子的运动,显著程度与微粒大小、液体(或气体)温度有关,它间接反映了液体(或气体)分子在运动③分子力④气体:PV=mRT/μ(PV/T=C,ρ=m/V=Pμ/RT)气体实验定律:PV=C1(等温),V/T=C2(等压),P/T=C3(等容)⑤理想气体内能(PV/T=C,ΔU=Q+W,U、W分别只与T、V有关)2、光学[备考要点]结合光学中以光的直线传播为基础,利用几何知识,研究光传播到两种介质的界面发生的反射、折射、全反射、色散等现象和它们表现的规律,难点是光的全反射及其应用。
2009年高考物理经典题型及其解题基本思路专题辅导(三)专题三动量与能量思想方法提炼牛顿运动定律与动量观点和能量观点通常称作解决问题的三把金钥匙.其实它们是从三个不同的角度来研究力与运动的关系.解决力学问题时,选用不同的方法,处理问题的难易、繁简程度可能有很大差别,但在很多情况下,要三把钥匙结合起来使用,就能快速有效地解决问题.一、能量1.概述能量是状态量,不同的状态有不同的数值的能量,能量的变化是通过做功或热传递两种方式来实现的,力学中功是能量转化的量度,热学中功和热量是内能变化的量度.高中物理在力学、热学、电磁学、光学和原子物理等各分支学科中涉及到许多形式的能,如动能、势能、电能、内能、核能,这些形式的能可以相互转化,并且遵循能量转化和守恒定律,能量是贯穿于中学物理教材的一条主线,是分析和解决物理问题的主要依据。
在每年的高考物理试卷中都会出现考查能量的问题。
并时常发现“压轴题”就是能量试题。
2.能的转化和守恒定律在各分支学科中表达式(1)W合=△E k包括重力、弹簧弹力、电场力等各种力在内的所有外力对物体做的总功,等于物体动能的变化。
(动能定理)(2)W F=△E除重力以外有其它外力对物体做功等于物体机械能的变化。
(功能原理)注:(1)物体的内能(所有分子热运动动能和分子势能的总和)、电势能不属于机械能(2)W F=0时,机械能守恒,通过重力做功实现动能和重力势能的相互转化。
(3)W G=-△E P重力做正功,重力势能减小;重力做负功,重力势能增加。
重力势能变化只与重力做功有关,与其他做功情况无关。
(4)W电=-△E P 电场力做正功,电势能减小;电场力做负功,电势能增加。
在只有重力、电场力做功的系统内,系统的动能、重力势能、电势能间发生相互转化,但总和保持不变。
注:在电磁感应现象中,克服安培力做功等于回路中产生的电能,电能再通过电路转化为其他形式的能。
(5)W+Q=△E物体内能的变化等于物体与外界之间功和热传递的和(热力学第一定律)。
(6)mv02/2=hν-W 光电子的最大初动能等于入射光子的能量和该金属的逸出功之差。
(7)△E=△mc2在核反应中,发生质量亏损,即有能量释放出来。
(可以以粒子的动能、光子等形式向外释放)动量与能量的关系1.动量与动能动量和能量都与物体的某一运动状态相对应,都与物体的质量和速度有关.但它们存在明显的不同:动量的大小与速度成正比p=mv;动能的大小与速度的平方成正比Ek=mv2/2 两者的关系:p2=2mE k动量是矢量而动能是标量.物体的动量发生变化时,动能不一定变化;但物体的动能一旦发生变化,则动量必发生变化.2.动量定理与动能定理动量定理:物体动量的变化量等于物体所受合外力的冲量.△p=I ,冲量I=Ft 是力对时间的积累效应动能定理:物体动能的变化量等于外力对物体所做的功.△E k =W ,功W=Fs 是力对空间的积累效应.3.动量守恒定律与机械能守恒定律动量守恒定律与机械能守恒定律所研究的对象都是相互作用的物体系统,(在研究某个物体与地球组成的系统的机械能守恒时,通常不考虑地球的影响),且研究的都是某一物理过程.动量守恒定律的内容是:一个系统不受外力或者所受外力之和为0,这个系统的总动量保持不变;机械能守恒定律的内容是:在只有重力和弹簧弹力做功的情形下,系统机械能的总量保持不变运用动量守恒定律值得注意的两点是:(1)严格符合动量守恒条件的系统是难以找到的.如:在空中爆炸或碰撞的物体受重力作用,在地面上碰撞的物体受摩擦力作用,但由于系统间相互作用的内力远大于外界对系统的作用,所以在作用前后的瞬间系统的动量可认为基本上是守恒的.(2)即使系统所受的外力不为0,但沿某个方向的合外力为0,则系统沿该方向的动量是守恒的.动量守恒定律的适应范围广,不但适应常见物体的碰撞、爆炸等现象,也适应天体碰撞、原子的裂变,动量守恒与机械能守恒相结合的综合的试题在高考中多次出现,是高考的热点内容.【例1】如图所示,滑块A 、B 的质量分别为m 1与m 2,m 1<m 2,由轻质弹簧相连接置于水平的气垫导轨上,用一轻绳把两滑块拉至最近,使弹簧处于最大压缩状态后绑紧。
两滑块一起以恒定的 速率v 0向右滑动.突然轻绳断开.当弹簧 伸至本身的自然长度时,滑块A 的速度正好为0.求:(1)绳断开到第一次恢复自然长度的过程中弹簧释放的弹性势能Ep ;(2)在以后的运动过程中,滑块B 是否会有速度为0的时刻?试通过定量分析证明你的结论.【解析】(1)当弹簧处压缩状态时,系统的机械能等于两滑块的动能和弹簧的弹性势能之和,当弹簧伸长到自然长度时,弹性势能为0,因这时滑块A 的速度为0,故系统的机械能等于滑块B 的动能.设这时滑块B 的速度为v ,则有E=m 2v 2/2.因系统所受外力为0,由动量守恒定律(m 1+m 2)v 0=m 2v.解得E=(m 1+m 2)2v 02/(2m 2).由于只有弹簧的弹力做功,系统的机械能守恒(m 1+m 2)v 02/2+E p =E.解得E p =(m 1-m 2)(m 1+m 2)v 02/2m 2.(2)假设在以后的运动中滑块B 可以出现速度为0的时刻,并设此时A 的速度为v 1,弹簧的弹性势能为E ′p ,由机械能守恒定律得m 1v 12/2+E ′p =(m 1+m 2)2v 02/2m 2.根据动量守恒得(m 1+m 2)v 0=m 1v 1,求出v 1代入上式得:(m 1+m 2)2v 02/2m 1+E ′p=(m 1+m 2)2v 02/2m 2.因为E ′p ≥0,故得:(m 1+m 2)2v 02/2m 1≤(m 1+m 2)2v 02/2m 2即m 1≥m 2,这与已知条件中m 1<m 2不符.可见在以后的运动中不可能出现滑块B 的速度为0的情况.【解题回顾】“假设法”解题的特点是:先对某个结论提出可能的假设.再利用已知的规律知识对该假设进行剖析,其结论若符合题意的要求,则原假设成立.“假设法”是科学探索常用的方法之一.在当前,高考突出能力考察的形势下,加强证明题的训练很有必要.【例2】如图所示,质量为m 的有孔物体A套在光滑的水平杆上,在A 下面用细绳挂一质量为M 的物体B ,若A固定不动,给B 一水平冲量I ,B 恰能上升到使绳水平的位置.当A 不固定时,要使B 物体上升到使绳水平的位置,则给它的水平冲量至少多大? 【解析】当A 固定不动时,B 受到冲量后以A 为圆心做圆周运动,只有重力做功,机械能守恒.在水平位置时B 的重力势能应等于其在最低位置时获得的动能Mgh=E k =p 2/2M=I 2/2M.若A 不固定,B 向上摆动时A 也要向右运动,当B 恰能摆到水平位置时,它们具有相同的水平速度,把A 、B 看成一个系统,此系统除重力外,其他力不做功,机械能守恒.又在水平方向上系统不受外力作用,所以系统在水平方向上动量守恒,设M 在最低点得到的速度为v 0,到水平位置时的速度为v.Mv 0=(M+m)v.Mv 02/2=(M+m)v 2/2+Mgh.I ′=Mv 0.I ′= 【解题回顾】此题重要的是在理解A 不固定,B 恰能上升到使绳水平的位置时,其竖直方向的分速度为0,只有水平速度这个临界点.另外B 上升时也不再是做圆周运动,此时绳的拉力对B 做功(请同学们思考一下,绳的拉力对B 做正功还是负功),有兴趣的同学还可以分析一下系统以后的运动情况. 【例3】下面是一个物理演示实验,它显示:图中下落的物体A 、B 经反弹后,B 能上升到比初始位置高的地方.A 是某种材料做成的实心球,质量m 1=0.28kg ,在其顶部的凹坑中插着质量m 2=0.1kg 的木棍B.B 只是松松地插在凹坑中,其下端与坑底之间有小间隙. 将此装置从A 的下端离地板的高度H=1.25m处由静止释放.实验中,A 触地后在极短的时间内反弹, 且其速度大小不变;接着木棍B 脱离球A 开始上升,而球A 恰好停留在地板上,求木棍B 上升的高度.重力加速度(g=10m/s 2)【解析】根据题意,A 碰地板后,反弹速度的大小等于它下落到地面时的速度的大小,由机械能守恒得(m 1+m 2)gH=(m 1+m 2)v 2/2,v 1= . A 刚反弹时速度向上,立刻与下落的B 碰撞,碰前B 的速度v 2 由题意,碰后A 速度为0,以v 2表示B 上升的速度,根据动量守恒m 1v 1-m 2v 2=m 2v ′2.令h 表示B 上升的高度,有m 2v ′22/2=m 2gh ,由以上各式并代入数据得:h=4.05m.【例4】质量分别为m 1、m 2的小球在一m m M IgH 2直线上做弹性碰撞,它们在碰撞前后的位移—时间图像如图所示,若m1=1kg,m2的质量等于多少?【解析】从位移—时间图像上可看出:m1和m2于t=2s时在位移等于8m处碰撞,碰前m2的速度为0,m1的速度v0=△s/△t=4m/s碰撞后,m1的速度v1=-2m/s,m2的速度v2=2m/s,由动量守恒定律得m1v0=m1v1+m2v2,m2=3kg.【解题回顾】这是一道有关图像应用的题型,关键是理解每段图线所对应的两个物理量:位移随时间的变化规律,求出各物体碰撞前后的速度.不要把运动图像同运动轨迹混为一谈.【例5】云室处在磁感应强度为B的匀强磁场中,一质量为M的静止的原子核在云室中发生一次α衰变,α粒子的质量为m,电量为q,其运动轨迹在与磁场垂直的平面内.现测得α粒子运动的轨道半径为R,试求在衰变过程中的质量亏损.(注:涉及动量问题时,亏损的质量可忽略不计)【解析】α粒子在磁场中做圆周运动的向心力是洛伦兹力,设α粒子的运动速度为v,由牛顿第二定律得qvB=mv2/R.衰变过程中,粒子与剩余核发生相互作用,设衰变后剩余核的速度为v′,衰变过程中动量守恒(M-m)v′=mv.α粒子与剩余核的动能来源于衰变过程中亏损的质量,有△m·c2=(M-m)v′2/2+mv2/2.解得:△m=M(qBR)2/[2c2m(M-m)].【解题回顾】此题知识跨度大,综合性强,将基础理论与现代物理相结合.考查了圆周运动、洛伦兹力、动量守恒、核裂变、能量守恒等知识.这类题型需注意加强.【例6】如图所示,一轻绳穿过光滑的定滑轮,两端各拴有一小物块.它们的质量分别为m1、m2,已知m2=3m1,起始时m1放在地上,m2离地面的高度h=1.0m,绳子处于拉直状态,然后放手.设物块与地面相碰时完全没有弹起(地面为水平沙地),绳不可伸长,绳中各处拉力均相同,在突然提起物块时绳的速度与物块的速度相同,试求m2所走的全部路程(取3位有效数字)【解析】因m2>m1,放手后m2将下降,直至落地.由机械能守恒定律得m2gh-m1gh=(m1+m2)v2/2.m2与地面碰后静止,绳松弛,m1以速度v上升至最高点处再下降.当降至h时绳被绷紧.根据动量守恒定律可得:m1v=(m1+m2)v1由于m1通过绳子与m2作用及m2与地面碰撞的过程中都损失了能量,故m2不可能再升到h 处,m1也不可能落回地面.设m2再次达到的高度为h1,m1则从开始绷紧时的高度h处下降了h1.由机械能守恒(m1+m2)v12/2+m1gh1=m2gh1由以上3式联立可解得h1=m12h/(m1+m2)2=[m1/(m1+m2)]2h此后m2又从h1高处落下,类似前面的过程.设m2第二次达到的最高点为h2,仿照上一过程可推得h 2=m 12h 1/(m 1+m 2)2=m 14h/(m 1+m 2)4=[m 1/(m 1+m 2)]4h由此类推,得:h 3=m 16h/(m 1+m 2)6=[m 1/(m 1+m 2)]6h所以通过的总路程s=h+2h 1+2h 2+2h 3+……【解题回顾】这是一道难度较大的习题.除了在数学处理方面遇到困难外,主要的原因还是出在对两个物块运动的情况没有分析清楚.本题作为动量守恒与机械能守恒定律应用的一种特例,应加强记忆和理解.【例7】如图所示,金属杆a 从 离地h 高处由静止开始沿光滑平行的弧形轨道下滑,轨道的水平部分有竖直向上的匀强磁场B ,水平轨道上原来放有一金属杆b ,已知a 杆的质量为m a ,且与杆b 的质量之比为m a ∶m b =3∶4,水平轨道足够长,不计摩擦,求: (1)a 和b 的最终速度分别是多大?(2)整个过程中回路释放的电能是多少?(3)若已知a 、b 杆的电阻之比R a ∶R b =3∶4,其余部分的电阻不计,整个过程中杆a 、b 上产生的热量分别是多少?【解析】(1)a 下滑过程中机械能守恒m a gh=m a v 02/2a 进入磁场后,回路中产生感应电流,a 、b 都受安培力作用,a 做减速运动,b 做加速运动,经过一段时间,a 、b 速度达到相同,之后回路的磁通量不发生变化,感应电流为0,安培力为0,二者匀速运动.匀速运动的速度即为a.b 的最终速度,设为v.由于所组成的系统所受合外力为0,故系统的动量守恒m a v 0=(m a +m b )v由以上两式解得最终速度v a =v b =v=(2)由能量守恒得知,回路中产生的电能应等于a 、b 系统机械能的损失,所以E=m a gh-(m a +m b )v 2/2=4m a gh/7(3)由能的守恒与转化定律,回路中产生的热量应等于回路中释放的电能等于系统损失的机械能,即Q a +Q b =E.在回路中产生电能的过程中,电流不恒定,但由于R a 与R b 串联,通过的电流总是相等的,所以应有所以 mh h m m m m m m m m m h 13.1567.02])41()41()41(21[2])()()(21[2642621142112211≈⨯=++++=+++++++= gh 2734322===b a b a b a R R t R I t R I Q Q gh m E Q gh m E Q a b a a 491674491273====【例8】连同装备质量M=100kg 的宇航员离飞船45m 处与飞船相对静止,他带有一个装有m=0.5kg 的氧气贮筒,其喷嘴可以使氧气以v=50m/s 的速度在极短的时间内相对宇航员自身喷出.他要返回时,必须向相反的方向释放氧气,同时还要留一部分氧气供返回途中呼吸.设他的耗氧率R 是2.5×10-4kg/s ,问:要最大限度地节省氧气,并安全返回飞船,所用掉的氧气是多少?【解析】设喷出氧气的质量为m ′后,飞船获得的速度为v ′,喷气的过程中满足动量守恒定律,有:0=(M-m ′)v ′+m ′(-v+v ′)得v ′=m ′v/M宇航员即以v ′匀速靠近飞船,到达飞船所需的时间t=s/v ′=Ms/m ′v这段时间内耗氧m ″=Rt故其用掉氧气m ′+m ″=2.25×10-2/m ′+m ′因为(2.25×10-2/m ′)×m ′=2.5×10-2为常数,所以当2.25×10-2/m ′=m ′,即m ′=0.15kg 时用掉氧气最少,共用掉氧气是m ′+m ″=0.3kg.【解题回顾】(1)动量守恒定律中的各个速度应统一对应于某一惯性参照系,在本题中,飞船沿圆轨道运动,不是惯性参照系.但是,在一段很短的圆弧上,可以视飞船做匀速直线运动,是惯性参照系.(2)此题中氧气的速度是相对宇航员而不是飞船,因此,列动量守恒的表达式时,要注意速度的相对性,这里很容易出错误.(3)要注意数学知识在物理上的运用.【例9】质量为m 的飞机以水平速度v 0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其它力的合力提供,不含重力)。