几何校正
- 格式:ppt
- 大小:183.00 KB
- 文档页数:15
几何校正实验报告几何校正实验报告概述:几何校正是数字图像处理中的一项重要技术,它通过对图像进行几何变换,使得图像中的对象与实际场景中的对象保持一致。
本实验旨在通过对不同图像进行几何校正,探究几何校正对图像质量和几何形状的影响。
实验方法:本实验采用了一种常见的几何校正方法——相机标定法。
首先,我们使用了一台高分辨率的数码相机进行拍摄,拍摄目标是一张平面上的标定板。
标定板上有一些已知尺寸的特征点,通过测量相机与特征点之间的关系,我们可以得到相机的内外参数。
接下来,我们选取了几张不同场景的图像,利用相机的内外参数进行几何校正。
实验结果:经过几何校正,我们发现图像的质量得到了显著提升。
首先,图像的畸变现象得到了有效纠正。
在进行几何校正之前,由于相机镜头的畸变,图像中的直线可能会出现弯曲的情况。
而经过几何校正后,图像中的直线变得更加直观、准确。
其次,图像的尺度得到了恢复。
在进行几何校正之前,由于相机的投影变换,图像中的物体可能会出现形变,使得物体的尺寸无法准确测量。
而经过几何校正后,图像中的物体形状得到了恢复,尺寸测量的准确性得到了提高。
讨论与分析:几何校正在数字图像处理中具有广泛的应用价值。
首先,几何校正可以提高图像的测量精度。
在很多科学研究和工程应用中,对图像中物体的尺寸进行准确测量是非常重要的。
通过几何校正,可以消除相机系统带来的误差,提高测量的准确性。
其次,几何校正可以提高图像的可视化效果。
在很多图像处理任务中,如目标检测、目标跟踪等,图像的质量直接影响算法的性能。
几何校正可以消除图像中的畸变,使得图像更加直观、准确,提高算法的准确性和鲁棒性。
不过,几何校正也存在一些挑战和局限性。
首先,几何校正需要相机的内外参数,而相机的标定过程相对复杂,需要专业的设备和技术支持。
其次,几何校正可能会引入一定的误差。
在实际应用中,由于标定误差、图像噪声等因素的影响,几何校正的效果可能会有所降低。
因此,在进行几何校正时,需要综合考虑实际需求和误差容忍度。
如何进行卫星图像的几何校正和辐射校正卫星图像是现代遥感技术中的重要组成部分,它可以提供大范围地表信息,对于城市规划、农业调查、环境监测等方面具有重要意义。
但是,卫星图像的几何形态和辐射反射率在拍摄过程中往往受到多种因素的影响,导致图像出现形变和色彩失真。
因此,进行卫星图像的几何校正和辐射校正是必不可少的。
几何校正是指将卫星图像中的像素位置和地理位置进行一一对应的过程。
由于卫星图像是以像素矩阵的形式记录的,像素的尺寸和形状会受到多种因素的影响,比如地球的曲率、仪器的误差等。
为了将图像与真实地理空间对应起来,需要对图像进行几何校正。
校正的方法有多种,常用的是地面控制点法和模型拟合法。
地面控制点法是指通过已知地理位置的地面控制点与图像中对应的像素点之间的对应关系,将像素点的坐标转换为地理位置坐标。
这种方法要求事先在卫星图像所覆盖的区域内选取一定数量的地面控制点,并测量它们的地理位置。
然后,通过像素点和地理位置之间的对应关系,推导出其他像素点的地理位置坐标。
这种方法的好处是精度较高,但是需要较多的地面控制点和较复杂的计算。
模型拟合法是较为常用的几何校正方法之一,它主要通过拟合数学模型将像素点的坐标与地理位置坐标建立起来。
在这种方法中,机器学习算法和数学模型扮演了重要角色。
通过机器学习算法,可以对卫星图像进行特征提取,并建立起像素点和地理位置之间的数学模型。
然后,通过该数学模型对其他像素点进行坐标转换。
这种方法的优点是计算简单、速度较快,同时对于控制点数量的要求较低。
辐射校正是指将卫星图像中的辐射反射率进行校正,以消除光照条件对图像色彩的影响。
辐射校正的目的是使图像的亮度和色彩能够更好地反映地表特征。
辐射校正主要包括大气校正和地表反射校正两个过程。
大气校正是指对卫星图像中的大气干扰进行修正。
大气干扰是指在图像拍摄过程中,大气中的气溶胶、水汽和其他颗粒物质对光波的散射和吸收作用所导致的影响。
这些影响会使图像的亮度和色调发生变化,造成图像信息的失真。
几何校正的常用方法有哪几种几何校正是指通过对图像进行几何变换,使得图像中的几何结构满足某种规则或满足一定的几何要求。
常用的几何校正方法主要有:几何变换、图像扭曲校正、相机标定和校正。
1. 几何变换:几何变换是校正图像中的几何结构的一种常用方法。
通过对图像进行旋转、平移、缩放、翻转等变换操作,可以调整图像中的几何形状和位置。
常见的几何变换方法包括仿射变换、透视变换和二维码矫正。
仿射变换是一种能够保持直线平行和保持直线比例的变换方法,它由平移、旋转和缩放组成。
在图像校正中,可以使用仿射变换来调整图像的倾斜和旋转角度,使得图像中的几何结构恢复正常。
透视变换是一种能够调整图像中物体的空间形状和位置的变换方法。
它在处理有投影效果的图像时非常有效,可以用来校正图像中的透视畸变或者从巴比伦塔中恢复草地的直线。
透视变换可以通过计算图像中的对应点关系,进行透视矩阵的计算和图像的透视变换。
二维码矫正是一种通过对二维码进行几何变换,使得二维码图像中的条码恢复正常的方法。
二维码由若干个小模块组成,当二维码被拉伸或旋转时,这些小模块会变形,导致二维码无法被正常解码。
通过对二维码图像进行几何变换,可以使得二维码中的条码恢复正常,从而能够被正常解码。
2. 图像扭曲校正:图像扭曲校正是指通过调整图像的畸变变形,从而使得图像中的几何结构恢复正常。
图像扭曲校正方法主要应用在图像矫正、图像拼接和图像匹配等领域。
常见的图像扭曲校正方法包括球面校正、鱼眼校正、柱面校正等。
球面校正是一种通过将图像映射到球体上,从而消除球面畸变的方法。
球面校正适用于由鱼眼镜头拍摄的图像或者全景图像,它可以将图像中的直线变为直线,从而实现图像的几何校正。
鱼眼校正是一种通过将鱼眼图像进行逆畸变,从而消除鱼眼图像的畸变的方法。
鱼眼镜头的主要特点是中心变形,鱼眼校正可以通过对鱼眼图像进行几何变换,来实现鱼眼图像的几何校正。
柱面校正是一种通过将图像映射到柱面上,从而消除图像中的畸变的方法。
几何校正
几何校正=几何粗校正+几何精校正.
遥感成像的时候,由于飞行器的姿态、高度、速度以及地球自转等因素的影响,造成图像相对于地面目标发生几何畸变,这种畸变表现为像元相对于地面目标的实际位置发生挤压、扭曲、拉伸和偏移等,针对几何畸变进行的误差校正就叫几何校正。
几何校正是遥感中的专业名词。
一般是指通过一系列的数学模型来改正和消除遥感影像成像时因摄影材料变形、物镜畸变、大气折光、地球曲率、地球自转、地形起伏等因素导致的原始图像上各地物的几何位置、形状、尺寸、方位等特征与在参照系统中的表达要求不一致时产生的变形。
几何纠正就是要校正成像过程中所造成的各种几何畸变.几何纠正分为两种:几何粗校正和几何精校正.几何粗校正是针对引起畸变的原因而进行的校正.进行校正时只需将传感器的标准数据、RS平台的位置以及卫星运行姿态等一系列测量数据代入理论校正公式即可.几何精校正是利用地面控制点GCP(Ground Control Point)进行的,即用一种数学模型来近似描述RS遥感影像的几何畸变过程,并利用畸变RS遥感影像与标准地图之间的一些对应点(即控制点数据对)求得这个几何畸变模型,然后利用此模型进行几何畸变的校正。
控制点数量
主要与纠正多项式的次数有关,但也与纠正范围和纠正精度有关.最少控制点数计算公式为(t+1)*(t+2)/2,式中t为多项式模型的次数,即2次方需要6个控制点,3次方需要10个控制点,依次类推.。
摄影测量中的影像几何校正与几何校正摄影测量是一门通过拍摄图像来获取地物信息的测绘技术。
在这个过程中,影像的几何校正是一项至关重要的工作。
影像几何校正的目的是消除影像中的畸变,使之与真实世界一致,并提供准确的地理空间信息。
在摄影测量中,影像的几何校正主要分为内部几何校正和外部几何校正两个方面。
内部几何校正是指针对相机成像过程中的畸变进行校正。
相机成像过程中会产生径向畸变和切向畸变两种类型的畸变。
径向畸变是由于光线在透镜中传播过程中的非线性引起的,它使得图像中心和边缘部分的比例尺不一致。
切向畸变是由于透镜与成像平面不平行引起的,它使得图像中的线条不再垂直或水平。
内部几何校正通过对相机的标定以及畸变模型的建立,可以将畸变进行矫正,使得图像的比例尺和线条方向与真实世界一致。
外部几何校正是指针对相机拍摄的影像进行地理坐标转换。
在摄影测量中,通常会以物方坐标系(地理坐标系)和像方坐标系(相机坐标系)进行描述。
而外部几何校正就是将相机坐标系中的像素坐标转换为地理坐标系中的真实坐标。
外部几何校正需要通过相机的外方位元素(相机在空间中的位置和朝向)以及摄影地面点的三维坐标来实现。
通过解算相机的外方位元素和三维点的坐标,可以建立像地坐标的转换关系,从而将影像中的像素坐标转换为真实坐标。
影像几何校正的核心是畸变校正和坐标转换两个过程。
畸变校正消除了影像中的畸变,提高了图像的几何精度;坐标转换则将像素坐标转换为地理坐标,实现了影像与真实地物之间的对应关系。
在实际的影像几何校正过程中,会用到不同的校正方法和工具。
例如,内部几何校正中常用的方法有:透镜径向畸变模型、多项式畸变模型等;而外部几何校正中则常用的方法有:相对定向、绝对定向、影像匹配等。
这些方法和工具能够有效地对影像进行几何校正,提高图像的质量和准确性。
总结一下,影像几何校正是摄影测量中不可或缺的一步。
通过内部几何校正和外部几何校正,可以对影像中的畸变进行校正,实现像素坐标到真实坐标的转换。
几何精校正的步骤几何精校正是一种用于校正图片中的几何畸变的技术,通常用于计算机视觉和计算机图形学领域。
下面将介绍几何精校正的一般步骤。
1.畸变模型选择:几何精校正的第一步是根据图像的畸变情况选择合适的畸变模型。
常见的畸变模型包括径向畸变模型和切向畸变模型。
径向畸变模型假设图像中心点为畸变中心,将畸变以径向逐渐递减的方式表示;切向畸变模型则假设图像中心点为畸变中心,将畸变以切向方式表示。
2.畸变参数估计:根据选定的畸变模型,需要估计畸变模型的参数。
常见的畸变参数包括径向畸变系数和切向畸变系数。
径向畸变系数用于描述径向畸变的程度,而切向畸变系数用于描述切向畸变的程度。
3.畸变矫正:在获得畸变参数后,可以使用这些参数对图像进行畸变校正。
畸变校正的基本思想是通过对图像中的每个像素点进行坐标变换来消除畸变。
对于径向畸变,可以使用径向畸变系数对图像中的每个像素点进行坐标变换,以消除径向畸变;对于切向畸变,可以使用切向畸变系数对图像中的每个像素点进行坐标变换,以消除切向畸变。
4.生成校正图像:在畸变校正的过程中,可以选择将校正结果保存为校正图像。
校正图像是经过畸变校正处理后的图像,通过校正图像可以更直观地观察图像中的畸变情况。
5.校正效果评估:为了评估校正效果,可以使用一些评估指标,如反投影误差等。
反投影误差是指通过将校正后的图像重新投影到原始图像上,并计算重新投影像素与原始像素之间的欧氏距离。
较小的反投影误差表示校正效果较好。
6.重复调整:在校正效果评估的基础上,可以根据需要调整畸变参数,并重新进行畸变校正和评估,直到满足校正要求为止。
总之,几何精校正是一种通过选择适当的畸变模型、估计畸变参数、进行畸变矫正,最终生成校正图像的一系列步骤。
通过这些步骤,人们可以更好地消除图像中的几何畸变,从而获得更准确和真实的图像信息。
遥感影像几何校正名词解释
遥感影像几何校正是指通过对遥感影像进行处理和调整,使其符合地
理坐标系统和地球表面的几何特征的过程。
校正过程中主要涉及以下
几个名词的解释:
1. 遥感影像:利用航空或卫星等遥感技术获取的地球表面的图像数据,包括可见光、红外、微波等不同波段的图像。
2. 几何校正:通过对遥感影像进行几何处理,消除影像中的畸变和误差,使其能够与现实世界相对应。
3. 地理坐标系统:一种用于描述地球上点的位置的坐标系统,常用的
有经纬度坐标系统、UTM坐标系统等。
4. 地球表面的几何特征:指地球表面具有的形状、大小、高程等几何
属性,如山脉、河流、湖泊等。
综上所述,遥感影像几何校正是将遥感影像调整到与地球表面几何特
征相符合的过程,以便进行地理分析和其他应用。
几何校正的流程Geometry correction, also known as geometric correction or rectification, is a process used in remote sensing to correct distortions in satellite imagery or aerial photographs caused by factors such as camera tilt, terrain relief, or lens distortion.几何校正,也称为几何矫正或矫正,是遥感中用来纠正由相机倾斜、地形起伏或镜头畸变等因素引起的卫星影像或航空摄影图像失真的过程。
One of the key steps in the geometric correction process is the selection of ground control points (GCPs), which are identifiable features on the Earth's surface with known coordinates. GCPs serve as reference points to accurately transform the raw image data into a georeferenced image that aligns with a specific coordinate system.在几何校正过程中的关键步骤之一是选择地面控制点(GCPs),它们是地球表面上具有已知坐标的可识别特征。
GCPs作为参考点,将原始图像数据准确转换为与特定坐标系对齐的带有地理参考的图像。
Another important aspect of geometric correction is the use of transformation models, which are mathematical algorithms that govern the process of warping and resampling the image to correct distortions. Common transformation models include polynomial, affine, and projective transformations, each with its own set of parameters that need to be determined based on the characteristics of the imagery.几何校正的另一个重要方面是使用变换模型,这些是控制图像变形和重采样的数学算法,以纠正失真。