2016年高考新课标丙卷全国Ⅲ理科数学试题(附答案)
- 格式:doc
- 大小:1.64 MB
- 文档页数:13
考纲解读明方向分析解读 本节内容是高考的重点考查内容之一,最近几年的高考有以下特点:1.古典概型主要考查等可能性事件发生的概率,也常与对立事件、互斥事件的概率及统计知识综合起来考查;2.几何概型试题也有所体现,可能考查会有所增加,以选择题、填空题为主.本节内容在高考中分值为5分左右,属容易题.分析解读从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.1.【2018年浙江卷】设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.点睛:2.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】B【解析】分析:由公式计算可得详解:设设事件A为只用现金支付,事件B为只用非现金支付,则,因为,所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题。
3.【2018年全国卷II文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.4.【2018年江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.5.【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.6.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样,故答案为:分层抽样。
2016年普通高等学校招生全统一考试全国卷一理科数学一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}2430A x x x =-+<,{}032>-=x x B ,则=B A (A )(3-,23-) (B )(3-,23) (C )(1,23) (D )(23-,3) 2.设yi x i +=+1)1(,其中x ,y 是实数,则=+yi x (A )1 (B )2 (C )3 (D )23.已知等差数列{}n a 前9项的和为27,810=a ,则=100a(A )100 (B )99 (C )98 (D )974.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(A )31 (B )21 (C )32 (D )43 5.已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则m 的取值范围是 (A )(1-,3) (B )(1-,3) (C )(0,3) (D )(0,3) 6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是328π,则它的表面积是 (A )17π (B )18π (C )20π (D )28π7.函数x e x y -=22在[]22,-的图象大致为 (A ) (B ) (C ) (D )8.若1>>b a ,10<<c ,则(A )c c b a < (B )c c ba ab <(C )c b c a a b log log < (D )c c b a log log <9.执行右图的程序框图,如果输入的0=x ,1=y ,1=n ,则输出y x ,的值满足(A )x y 2= (B )x y 3= (C )x y 4= (D )x y 5=10.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知24=AB ,52=DE ,则C 的焦点到准线的距离为(A )2 (B )4 (C )6 (D )811.平面α过正方体1111D C B A ABCD -的顶点A ,α∥平面11D CB ,α∩平面m ABCD =,α∩平面n A ABB =11,则n m ,所成角的正弦值为(A )23 (B )22 (C )33 (D )31 12.已知函数)sin()(ϕω+=x x f )2,0(πϕω≤>,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图象的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )5二、填空题:本题共4小题,每小题5分。
启封前★绝密试题类型:A2016年普通高等学校招生全国统一考试理科数学(试题及答案详解)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B = (A )3(3,)2--(B )3(3,)2-(C )3(1,)2(D )3(,3)2(2)设(1i)1i x y +=+,其中x ,y 是实数,则i =x y + (A )1(B )2(C )3(D )2(3)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a(A )100(B )99(C )98(D )97(4)某公司的班车在7:00,8:00,8:30发车,学.科网小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(A )31(B )21(C )32(D )43(5)已知方程132222=--+n m y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )(–1,3) (B )(–1,3) (C )(0,3) (D )(0,3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是(A )17π(B )18π(C )20π(D )28π(7)函数y=2x2–e|x|在[–2,2]的图像大致为(A )(B )(C )(D )(8)若101a b c >><<,,则 (A )c c a b <(B )c c ab ba <(C )log log b a a c b c <(D )log log a b c c <(9)执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足 (A )2y x =(B )3y x =(C )4y x =(D )5y x =(10)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的标准线于D 、E 两点.已知|AB|=2,|DE|=25则C 的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8(11)平面a 过正方体ABCD-A1B1C1D1的顶点A ,a//平面CB1D1,a ⋂平面ABCD=m ,a ⋂平面ABA1B1=n ,则m 、n 所成角的正弦值为 (A)3 (B)2 (C)3(D)1312.已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫ ⎪⎝⎭,单调,则ω的最大值为(A )11 (B )9 (C )7 (D )5第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设向量a=(m ,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=__________. (14)5(2)x x +的展开式中,x3的系数是_________.(用数字填写答案)(15)设等比数列满足a1+a3=10,a2+a4=5,则a1a2…an 的最大值为____________。
2017年普通高等学校统一招生考试·丙卷(新课标Ⅲ)理科数学1.B 【解析】集合A 、B 为点集,易知圆221x y +=与直线y x =有两个交点,所以AB 中元素的个数为2.选B .2.C 【解析】由(1i)2z i +=,得2i1i 1iz ==++,所以||z ==C . 3.A 【解析】由折线图,7月份后月接待游客量减少,A 错误;选A .4.C 【解析】5(2)x y -的展开式的通项公式为:515C (2)()r r r r T x y -+=-,当3r =时,5(2)x x y -展开式中33x y 的系数为3235C 2(1)40⨯⨯-=-, 当2r =时,5(2)y x y -展开式中33x y 的系数为2325C 2(1)80⨯⨯-=,所以33x y 的系数为804040-=.选C .5.B 【解析】由题意可得:b a =,3c =,又222a b c +=,解得24a =,25b =, 则C 的方程为2145x y 2-=.选B . 6.D 【解析】∵()cos()3f x x π=+的周期为2k π,k ∈Z ,所以A 正确;∵8()cos313f ππ==-,所以B 正确; 设4()()cos()3g x f x x ππ=+=+,而3()cos 062g ππ==,C 正确;选D .7.D 【解析】若2N =,第一次循环,12≤成立,100S =,10M =-,22i =≤成立,第二次循环,此时90S =,1M =,32i =≤不成立,所以输出9091S =<成立,所以输入的正整数N 的最小值是2,故选D .8.B 【解析】圆柱的轴截面如图,1AC =,12AB =,所以圆柱底面半径r BC ==,那么圆柱的体积是22314V r h πππ==⨯⨯=,故选B . 9.A 【解析】设{}n a 的公差为d (0d ≠),由2326a a a =,得2(12)(1)(15)d d d +=++,所以2d =-,66561(2)242S ⨯=⨯+⨯-=-.选A . 10.A 【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a =,c e a ==,故选A .11.C 【解析】令()0f x =,则方程112()2x x a ee x x --++=-+有唯一解,设2()2h x x x =-+,11()x x g x e e --+=+,则()h x 与()g x 有唯一交点,又11111()2x x x x g x ee e e --+--=+=+≥,当且仅当1x =时取得最小值2.而2()(1)11h x x =--+≤,此时1x =时取得最大值1,()()ag x h x =有唯一的交点,则12a =.选C . 12.A 【解析】如图建立直角坐标系,x则(0,1)A ,(0,0)B ,(2,1)D ,(,)P x y 所以圆的方程为224(2)5x y -+=, 所以(,1)AP x y =-,(0,1)AB =-,(2,0)AD =,由AP AB AD λμ=+,得21x y μλ=⎧⎨-=-⎩,所以λμ+=12xy -+,设12x z y =-+,即102xy z -+-=,点(,)P x y 在圆上,所以圆心到直线102xy z -+-=的距离小于半径,≤,解得13z ≤≤,所以z 的最大值为3, 即λμ+的最大值为3,选A .13.1-【解析】不等式组的可行域如图阴影部分.x目标函数34z x y =-在点(1,1)A 取得最小值31411z =⨯-⨯=-.14.8-【解析】设{}n a 的首项为1a ,公比为q ,所以1121113a a q a a q +=-⎧⎨-=-⎩, 解得112a q =⎧⎨=-⎩ ,则3418a a q ==-.15.1(,)4-+∞【解析】当12x >时,不等式为12221x x-+>恒成立;当102x <≤,不等式12112xx +-+>恒成立; 当0x ≤时,不等式为11112x x ++-+>,解得14x >-,即104x -<≤;综上,x 的取值范围为1(,)4-+∞.16.②③【解析】如图BDEF 为底面圆的内接正方形,设1AC BC ==,则AB AD AE AF FB FE ED BD ========,即侧面均为等边三角形,∵AC ⊥底面BDEF ,FEDCBA假设a FB ∥,由题意b BD ∥,当直线AB 与a 成60°角时,由图可知AB 与b 成60°角,所以①错,②正确;假设a EB ∥,可知③正确,④错.所以正确为②③. 17.【解析】(1)由已知得tan A =,所以23A π=. 在ABC ∆中,由余弦定理得222844cos 3c c π=+-,即2+224=0c c -.解得6c =-(舍去),4c = (2)有题设可得2CAD π∠=,所以6BAD BAC CAD π∠=∠-∠=.故ABD ∆面积与ACD ∆面积的比值为1sin26112AB AD AC AD π⋅⋅=⋅. 又ABC ∆的面积为142sin 2BAC ⨯⨯∠=ABD ∆18.【解析】(1)由题意知,X 所有的可能取值为200,300,500,由表格数据知()2162000.290P X +===,()363000.490P X ===,()25745000.490P X ++===. 因此X 的分布列为(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑200500n ≤≤当300500n ≤≤时,若最高气温不低于25,则642Y n n n =-=;若最高气温位于区间[20,25),则63002(200)412002Y n n n =⨯+--=-; 若最高气温低于20,则62002(200)48002Y n n n =⨯+--=-;因此20.4(12002)0.4(8002)0.26400.4EY n n n n =⨯+-⨯+-⨯=-. 当200300n <≤时,若最高气温不低于20,则642Y n n n =-=;若最高气温低于20,则62002(200)48002Y n n n =⨯+--=-; 因此2(0.40.4)(8002)0.2160 1.2EY n n n =⨯++-⨯=+. 所以300n =时,Y 的数学期望达到最大值,最大值为520元. 19.【解析】(1)由题设可得,ABD CBD ∆≅∆,从而AD DC =.又ACD ∆是直角三角形,所以0=90ACD ∠取AC 的中点O ,连接DO ,BO ,则DO AC ⊥,DO AO =. 又由于ABC ∆是正三角形,故BO AC ⊥. 所以DOB ∠为二面角D AC B --的平面角. 在Rt AOB ∆中,222BO AO AB +=.又AB BD =,所以222222BO DO BO AO AB BD +=+==,故90DOB ∠=. 所以平面ACD ⊥平面ABC .(2)由题设及(1)知,OA,OB,OD 两两垂直,以O 为坐标原点,OA 的方向为x 轴正方向,OA 为单位长,建立如图所示的空间直角坐标系O xyz -,则(1,0,0)A,B ,(1,0,0)C -,(0,0,1)D .由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB的中点,得1)2E .故 (1,0,1)AD =-,(2,0,0)AC =-,1()2AE =- 设()=x,y,z n 是平面DAE 的法向量,则AD AE ⎧=⎪⎨=⎪⎩0,0,n n即x z x y z -+=⎧⎪⎨-++=⎪⎩01022可取=n 设m 是平面AEC 的法向量,则0,0,AC AE ⎧=⎪⎨=⎪⎩m m同理可得(0,=-m则cos ,==77n m n m n m 所以二面角D AE C --的余弦值为7. 20.【解析】(1)设()A x ,y 11,()B x ,y 22,l :2x ym =+由222x my y x=+⎧⎨=⎩可得y my --=2240,则y y =-124 又y x 211=2,y x 222=2,故()y y x x 21212=4=4 因此OA 的斜率与OB 的斜率之积为y y x x ⋅1212-4==-14,所以OA OB ⊥. 故坐标原点O 在圆M 上.(2)由(1)可得y y m 12+=2,()x x m y y m +21212+=++4=24故圆心M 的坐标为()2+2,m m ,圆M 的半径r =由于圆M 过点(4,2)P -,因此0AP BP =, 故()()()()121244++2+2=0x x y y --即()()121212124+2200x x x x y y y y -++++= 由(1)可得y y 12=-4,x x 12=4. 所以2m m --=210,解得m =1或m =-12. 当1m =时,直线l 的方程为20x y --=,圆心M 的坐标为(3,1),圆M 的半径为M 的方程为()()223110x y -+-=当12m =-时,直线l 的方程为240x y +-=,圆心M 的坐标为91(,)42-,圆M 的半径为4,圆M 的方程为229185()()4216x y -++=. 21.【解析】(1)()f x 的定义域为(0,)+∞.①若a 0≤,因为11()ln 2022f a =-+<,所以不满足题意; ②若>0a ,由()1a x a f 'x x x-=-=知,当()0x ,a ∈时,()<0f 'x ;当(),+x a ∈∞时,()>0f 'x ,所以()f x 在(0,)a 单调递减,在(,)a +∞单调递增,故x a =是()f x 在(0,)+∞的唯一最小值点.由于()10f =,所以当且仅当a =1时,()0f x ≥. 故a =1.(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->令112n x =+得11ln(1)22n n +<,从而 221111111ln(1)ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<故2111(1)(1)(1)222n e ++⋅⋅⋅+<而23111(1)(1)(1)2222+++>,所以m 的最小值为3.22.【解析】(1)消去参数t 得1l 的普通方程():l y k x =-12;消去参数m 得2l 的普通方程():l y x k=+212. 设(,)P x y ,由题设得()()212y k x y x k ⎧=-⎪⎨=+⎪⎩,消去k 得()2240x y y -=≠. 所以C 的普通方程为()2240x y y -=≠ (2)C 的极坐标方程为()cos sin -=2224rq q (),≠0<<2q p q p 联立()()cos sin cossin ⎧-=⎪⎨⎪⎩2224+r q q r q q 得()cos sin cos sin -=2+q q q q .故tan=-13q ,从而cos sin 2291=,=1010q q 代入()cos sin 222-=4rq q 得2=5r,所以交点M23.【解析】(1)3,1()21,123,2x f x x x x -<-⎧⎪=--⎨⎪>⎩≤≤,当1x <-时,()f x 1≥无解;当x -12≤≤时,由()f x 1≥得,x -211≥,解得x 12≤≤ 当>2x 时,由()f x 1≥解得>2x . 所以()f x 1≥的解集为{}x x 1≥.(2)由()f x x x m -+2≥得m x x x x +---+212≤,而x x x x x x x x +---+--+2212+1+2≤x ⎛⎫ ⎪⎝⎭2355=--+244≤且当32x =时,2512=4x x x x +---+. 故m 的取值范围为5-,4⎛⎤∞ ⎥⎝⎦.。
2016年云南省高考理科数学试题及答案2016年云南省高考理科数学试题及答案。
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,满分150分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知 $Z=(m+3)+(m-1)i$ 在复平面内对应的点在第四象限,则实数 $m$ 的取值范围是()A。
$(-3,1)$B。
$(-1,3)$C。
$(1,+\infty)$D。
$(-\infty,-3)$2.已知集合$A=\{1,2,3\}$,$B=\{x|(x+1)(x-2)<0,x\in Z\}$,则 $A\cup B=$()A。
$\{1\}$B。
$\{1,2\}$C。
$\{0,1,2,3\}$D。
$\{-1,0,1,2,3\}$3.已知向量 $a=(1,m)$,$b=(3,-2)$,且 $(a+b)\perp b$,则$m=$()A。
$-8$B。
$-6$C。
$6$D。
$8$4.圆 $x+y-2x-8y+13=0$ 的圆心到直线 $ax+y-1=0$ 的距离为1,则 $a=$()A。
$-\frac{22}{43}$B。
$-\frac{3}{4}$C。
$3$D。
$\frac{2}{3}$5.如图,XXX从街道的 $E$ 处出发,先到 $F$ 处与XXX 会合,再一起到位于 $G$ 处的老年公寓参加志愿者活动,则XXX到老年公寓可以选择的最短路径条数为()A。
$24$B。
$18$XXXD。
$9$6.右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A。
$20\pi$B。
$24\pi$C。
$28\pi$D。
$32\pi$7.若将函数 $y=2\sin^2 x$ 的图像向左平移 $\pi$ 个单位长度,则平移后的图像对称轴为()A。
$x=-\frac{1}{2}+\frac{k\pi}{6}$,$k\in Z$B。
1.【答案】A【解析】本题主要考查复数的几何意义及解不等式组,考查考生的运算求解能力.由已知可得复数z在复平面内对应的点的坐标为(m+3,m-1),所以,解得-3<m<1,故选A.【备注】无2.【答案】C【解析】本题主要考查一元二次不等式的解法、集合的并运算,属于基础题.由已知可得B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1},∴A∪B={0,1,2,3},故选C.【备注】容易遗忘代表元素x的限制条件“x∈Z”.3.【答案】D【解析】本题主要考查平面向量的坐标运算、数量积和向量垂直的条件,考查考生的运算求解能力.由向量的坐标运算得a+b=(4,m-2),由(a+b)⊥b,得(a+b)·b=12-2(m-2)=0,解得m=8,故选D.【备注】无4.【答案】A【解析】本题主要考查圆的标准方程、点到直线的距离公式等,考查考生的运算求解能力. 由已知可得圆的标准方程为(x-1)2+(y-4)2=4,故该圆的圆心为(1,4),由点到直线的距离公式得d==1,解得a=-,故选A.【备注】无5.【答案】B【解析】本题以实际生活为背景,考查乘法计数原理.由题意可知E→F共有6种走法,F→G共有3种走法,由乘法计数原理知,共有6×3=18种走法,故选B.【备注】无6.【答案】C【解析】本题主要考查三视图、组合体的表面积计算,考查考生的空间想象能力和运算求解能力.该几何体是圆锥与圆柱的组合体,由三视图可知圆柱底面圆的半径r=2,底面圆的周长c=2πr=4π,圆锥的母线长l==4,圆柱的高h=4,r2+ch+cl=4π+16π+8π=28π,故选C.所以该几何体的表面积S表=π【备注】无7.【答案】B【解析】本题主要考查三角函数的图像变换和三角函数的性质,考查考生对基础知识的掌握情况.函数y=2sin 2x的图像向左平移个单位长度,得到的图像对应的函数表达式为y=2sin 2(x+),令2(x+)=kπ+(k∈Z),解得x=+(k∈Z),所以所求对称轴的方程为x=+(k∈Z),故选B.【备注】无8.【答案】C【解析】本题考查程序框图的相关知识及考生的识图能力.由程序框图知,第一次循环:x=2,n=2,a=2,s=0×2+2=2,k=1;第二次循环:a=2,s=2×2+2=6,k=2;第三次循环:a=5,s=6×2+5=17,k=3.结束循环,输出s的值为17,故选C.【备注】无9.【答案】D【解析】本题考查了两角差的三角函数公式、二倍角公式以及同角三角函数的关系.因为cos(-α)=cos cosα+sin sinα=(sinα+cosα)=,所以sinα+cosα=,所以1+sin 2α=,所以sin 2α=-,故选D.【备注】无10.【答案】C【解析】本题考查几何概型的知识,考查利用随机模拟法计算圆周率的方法.设由构成的正方形的面积为S,+<1构成的图形的面积为S',所以,所以π=,故选C.【备注】无11.【答案】A【解析】本题考查双曲线的方程、几何性质及同角三角函数的关系,考查考生综合运用相关知识解决问题的能力及考生的运算求解能力.设F1(-c,0),将x=-c代入双曲线方程,得-=1,所以-1=,所以y=±.因为sin∠MF2F1=,所以tan∠MF2F1=--,所以e2-e-1=0,所以e=.故选A.【备注】无12.【答案】B【解析】本题考查了函数的对称性以及借助图像解决问题的能力.因为f (x )+f (-x )=2,y ==1+ ,所以函数y =f (x )与y =的图像都关于点(0,1)对称,所以x i =0,y i =×2=m ,故选B.【备注】无 13.【答案】【解析】本题考查同角三角函数的关系、正(余)弦定理的应用,对考生的基本运算能力有一定的要求,需要考生能根据条件灵活选择相关公式进行解题.解法一 因为cos A =,cos C =,所以sin A =,sin C =,从而sin B =sin(A+C )=sin A cos C+cos A sin C =+.由正弦定理,得b =.解法二 因为cos A =,cos C =,所以sin A =,sin C =,从而cos B =-cos(A+C )=-cos A cos C+sin A sin C =-+.由正弦定理,得c =.由余弦定理b 2=a 2+c 2- 2ac cos B ,得b = .解法三 因为cos A =,cos C =,所以sin A =,sin C =, 由正弦定理,得c =. 从而b =a cos C+c cos A =. 解法四 如图,作BD ⊥AC 于点D ,由cos C = ,a =BC =1,知CD = ,BD =. 又cos A =,所以tan A =,从而AD =.故b=AD+DC=.【备注】正、余弦定理在解三角形中的基本应用主要体现在以下三种常见问题中:(1)已知两角和其中一个角的对边,求解三角形;(2)已知两边及其中一边所对的角,求解三角形;(3)已知三边求解三角形.本题属于第(1)种,求解时应充分考虑条件的内在联系,直观运用图形,合理选择公式.14.【答案】②③④【解析】本题考查空间中直线与直线、直线与平面、平面与平面的位置关系,主要涉及判定定理和性质定理,考查考生的空间想象能力和逻辑推理能力.对于命题①,可运用长方体举反例证明其错误:如图,不妨设AA'为直线m,CD为直线n,ABCD所在的平面为α,ABC'D'所在的平面为β,显然这些直线和平面满足题目条件,但α⊥β不成立.命题②正确,证明如下:设过直线n的某平面与平面α相交于直线l,则l∥n,由m⊥α知m⊥l,从而m⊥n,结论正确.由平面与平面平行的定义知命题③正确.由平行的传递性及线面角的定义知命题④正确.【备注】空间中直线与直线、直线与平面、平面与平面的位置关系是空间立体几何的基石,是进行有关逻辑推理和论证的基础,在学习过程中要认真梳理直线与直线、直线与平面、平面与平面之间平行、垂直的相互转化,会运用长方体模型进行直观观察和判断.15.【答案】1和3【解析】本题考查推理与证明的有关知识,考查考生的推理论证能力.为方便说明,不妨将分别写有1和2,1和3,2和3的卡片记为A,B,C.从丙出发,由于丙的卡片上的数字之和不是5,则丙只可能是卡片A或B,无论是哪一张,均含有数字1,再由乙与丙的卡片上相同的数字不是1可知,乙所拿的卡片必然是C,最后由甲与乙的卡片上相同的数字不是2,知甲所拿的卡片为B,此时丙所拿的卡片为A.【备注】在这类问题中,要善于从所给的诸多信息中抓住问题的关键信息,以此为起点逐一推理分析,直到获得结论.16.【答案】1-ln 2【解析】本题考查导数在研究函数图像(曲线)的切线中的应用及方程思想,对考生的基本运算能力有较高要求.设y=kx+b与y=ln x+2和y=ln(x+1)的切点分别为(x1,ln x1+2)和(x2,ln(x2+1)).则切线分别为y-ln x1-2=(x-x1),y-ln(x2+1)=(x-x2),化简得y=x+ln x1+1,y=x-+ln(x2+1),依题意,,解得x1=,从而b=ln x1+1=1-ln 2.【备注】无17.【答案】(Ⅰ)设{a n}的公差为d,据已知有7+21d=28,解得d=1.所以{a n}的通项公式为a n=n.b1=[lg 1]=0,b11=[lg 11]=1,b101=[lg 101]=2.(Ⅱ)因为b n=所以数列{b n}的前1 000项和为1×90+2×900+3×1=1 893.【解析】本题考查等差数列的通项公式以及前n项和的求解,考查考生对新定义的理解以及运用能力. (Ⅰ)根据已知条件求出a n,从而可求出b1,b11,b101的值;(Ⅱ)根据b n的特征分类求和.【备注】正确求出{a n}的通项公式是关键,结合取整函数的特点求和是难点,需要考生有较强的运算能力.18.【答案】(Ⅰ)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故P(A)=0.20+0.20+0.10+0.05=0.55. (Ⅱ)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.10+0.05=0.15.又P(AB)=P(B),故P(B|A)=.因此所求概率为.(Ⅲ)记续保人本年度的保费为X,则X的分布列为EX=0.85a×0.30+a×0.15+1.25a×0.20+1.5a×0.20+1.75a×0.10+2a×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.【解析】本题是与现实生活密切联系的实际问题,考查了考生利用概率与统计知识解决实际问题的能力. (Ⅰ)利用互斥事件的概率计算公式求解;(Ⅱ)利用条件概率的计算公式进行求解;(Ⅲ)列出续保人本年度的保费的分布列,求出平均保费,即可得平均保费与基本保费的比值.【备注】概率与统计知识相交汇是高考中比较常见的考查方式,通过对数据的分析与处理,综合考查统计中的相关知识,并设置相应的问题求解对应的概率,是命题者比较青睐的命题方向之一.此类问题的难度不大,但知识点比较多,要注意问题间的联系与区别.19.【答案】(Ⅰ)由已知得AC⊥BD,AD=CD.又由AE=CF得,故AC∥EF.因此EF⊥HD,从而EF⊥D'H.由AB=5,AC=6得DO=BO==4.由EF∥AC得.所以OH=1,D'H=DH=3.于是D'H2+OH2=32+12=10=D'O2,故D'H⊥OH.又D'H⊥EF,而OH∩EF=H,所以D'H⊥平面ABCD.(Ⅱ)如图,以H为坐标原点,的方向为x轴正方向,的方向为y轴正方向,的方向为z轴正方向,建立空间直角坐标系H-xyz.则H(0,0,0),A(-3,-1,0),B(0,-5,0),C(3,-1,0),D'(0,0,3),=(3,-4,0),=(6,0,0),=(3,1,3).设m=(x1,y1,z1)是平面ABD'的法向量,则即所以可取m=(4,3,-5).设n=(x2,y2,z2)是平面ACD'的法向量,则即所以可取n=(0,-3,1).于是cos<=-,sin<,>=.因此二面角B-D'A-C的正弦值是.【解析】本题是一道图形的翻折试题,考查线面垂直的证明以及二面角的求解,考查考生的空间想象能力以及推理论证能力.(Ⅰ)利用线面垂直的判定定理进行证明;(Ⅱ)建立空间直角坐标系,利用向量法求解.【备注】立体几何解答题一般设置两问,第(Ⅰ)问是空间线面位置关系的证明,主要是证明平行和垂直关系,求解这类问题的主要依据是相关的判定定理和性质定理;第(Ⅱ)问是空间角的计算,求解这类问题有两种方法,一种是依据公理、定理以及性质等进行推理论证,作出所求几何量并求解,另一种是建立空间直角坐标系,借助点的坐标求出平面的法向量和直线的方向向量,利用向量知识求解.20.【答案】(Ⅰ)设M(x1,y1),则由题意知y1>0.当t=4时,E的方程为+=1,A(-2,0).由已知及椭圆的对称性知,直线AM的倾斜角为.因此直线AM的方程为y=x+2.将x=y-2代入+=1得7y2-12y=0.解得y=0或y=,所以y1=.因此△AMN的面积S△AMN=2×.(Ⅱ)由题意知t>3,k>0,A(-,0).将直线AM的方程y=k(x+)代入+=1得(3+tk2)x2+2 ·tk2x+t2k2-3t=0.由x1·(-)=得x1=,故|AM|=|x1+|.由题设知,直线AN的方程为y=-(x+),故同理可得|AN|=.由2|AM|=|AN|得,即(k3-2)t=3k(2k-1).当k=时上式不成立,因此t=.t>3等价于<0,即<0.由此得或解得<k<2.因此k的取值范围是(,2).【解析】本题考查椭圆的几何性质以及直线与椭圆的位置关系,考查考生综合分析、解决问题的能力.(Ⅰ)根据|AM|=|AN|和椭圆的对称性求出k的值,进而可得△AMN的面积;(Ⅱ)根据已知条件求出t和k之间的关系,利用t>3求k的取值范围. 【备注】圆锥曲线试题的计算量较大,对考生的运算能力要求较高,寻求简捷、合理的运算途径显得尤为重要.因此,在解答圆锥曲线的综合问题时应根据圆锥曲线的几何特征,将所求问题代数化,再结合其他知识解答.解题时,要充分利用设而不求法、弦长公式及根与系数的关系等知识,重视函数与方程思想、数形结合思想、对称思想、等价转化思想等的应用.21.【答案】(Ⅰ)f(x)的定义域为(-∞,-2)∪(-2,+∞).f'(x)=≥0,且仅当x=0时,f'(x)=0,所以f (x)在(-∞,-2),(-2,+∞)上单调递增.因此当x∈(0,+∞)时,f(x)>f(0)=-1.所以(x-2)e x>-(x+2),(x-2)e x+x+2>0.(Ⅱ)g'(x)=(f(x)+a).由(Ⅰ)知,f(x)+a单调递增.对任意的a∈[0,1), f(0)+a=a-1<0, f(2)+a=a≥0.因此,存在唯一x a∈(0,2],使得f(x a)+a=0,即g'(x a)=0.当0<x<x a时, f(x)+a<0,g'(x)<0,g(x)单调递减;当x>x a时,f(x)+a>0,g'(x)>0,g(x)单调递增.因此g(x)在x=x a处取得最小值,最小值为g(x a)=.于是h(a)=,由()'=>0,得单调递增.所以,由x a∈(0,2],得<h(a)=≤.因为单调递增,对任意的λ∈(,],存在唯一的x a∈(0,2],a=-f(x a)∈[0,1),使得h(a)=λ,所以h(a)的值域是(,].综上,当a∈[0,1)时,g(x)有最小值h(a),h(a)的值域是(,].【解析】本题考查了利用导数判断函数的单调性、证明不等式、求函数的最值等,考查考生的计算能力以及借助导数解决问题的能力. (Ⅰ)先求f'(x),然后求f(x)的单调性,从而证明不等式;(Ⅱ)先根据题意求出函数g(x)的最小值h(a),再利用导数求解函数h(a)的值域.【备注】导数作为一种工具,可以处理与函数有关的很多问题,如确定函数的单调性、极值与最值等,往往会和函数的相关知识、不等式的证明等综合,其实质是利用导数判断函数的单调性,再转化为相应的问题进行求解.22.【答案】(Ⅰ)因为DF⊥EC,所以△DEF∽△CDF,则有∠GDF=∠DEF=∠FCB,,所以△DGF∽△CBF,由此可得∠DGF=∠CBF.因此∠CGF+∠CBF=180°,所以B,C,G,F四点共圆.(Ⅱ)由B,C,G,F四点共圆,CG⊥CB知FG⊥FB,连接GB.由G为Rt△DFC斜边CD的中点,知GF=GC,故Rt△BCG≌Rt△BFG,因此,四边形BCGF的面积S是△GCB面积S△GCB的2倍, 即S=2S△GCB=2××1=.【解析】本题考查了四点共圆的条件以及四边形面积的计算,考查考生的推理论证能力和运算求解能力.(Ⅰ)根据四点共圆的判定进行证明;(Ⅱ)利用已知条件将四边形BCGF的面积转化为△BCG面积的2倍即可求解.【备注】解决有关三角形与圆的试题,关键是正确处理角与边之间的关系,通过相应的条件与定理建立有关角之间或边之间的关系式,进而达到求解的目的.解题时要注意深入分析已知条件和待证结论之间的关系,寻找合理的解题思路.23.【答案】(Ⅰ)由x=ρcos θ,y=ρsin θ可得圆C的极坐标方程为ρ2+12ρcos θ+11=0. (Ⅱ)在(Ⅰ)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R).设A,B所对应的极径分别为ρ1,ρ2,将l的极坐标方程代入C的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB|=|ρ1-ρ2|=.由|AB|=得cos2α=,tan α=±.所以l的斜率为或-.【解析】本题考查了直角坐标方程与极坐标方程的互化等,考查考生分析问题与解决问题的能力. (Ⅰ)根据x=ρcos θ,y=ρsin θ,将圆C的直角坐标方程转化为极坐标方程;(Ⅱ)将直线l的参数方程转化为极坐标方程,利用已知条件求解l的斜率.【备注】考生由于对极坐标方程与参数方程比较陌生,因此对极坐标方程与参数方程下的有关问题的解决,通常是转化为直角坐标方程与普通方程进行的24.【答案】(Ⅰ)f(x)=当x≤-时,由f(x)<2得-2x<2,解得x>-1;当-<x<时,f(x)<2;当x≥时,由f(x)<2得2x<2,解得x<1.所以f(x)<2的解集M={x|-1<x<1}.(Ⅱ)由(Ⅰ)知,当a,b∈M时,-1<a<1,-1<b<1,从而(a+b)2-(1+ab)2=a2+b2-a2b2-1=(a2-1)(1-b2)<0.因此|a+b|<|1+ab|.【解析】本题考查了绝对值不等式的求解、绝对值不等式的证明及分类讨论的数学思想. (Ⅰ)去绝对值符号,通过解不等式得到不等式的解集;(Ⅱ)结合(Ⅰ),将要证明的不等式两边同时平方并作差,化简即可证明.【备注】理解与掌握绝对值的几何意义、求解绝对值不等式的方法及分段函数的特征是解决此类问题的关键.特别在含有绝对值的函数中,往往通过函数、方程的相关知识,把问题转化为分段函数形式,利用函数的图象,通过数形结合来解决问题.。
一、选择题(本大题共12小题,共60.0分)1.已知z=(m+3)+(m-1)i在复平面内对应的点在第四象限,则实数m的取值范围是()A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)2.已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=()A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}3.已知向量=(1,m),=(3,-2),且(+)⊥,则m=()A.-8B.-6C.6D.84.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-B.-C.D.25.如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.96.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π7.若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=-(k∈Z)B.x=+(k∈Z)C.x=-(k∈Z)D.x=+(k∈Z)8.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A.7B.12C.17D.349.若cos(-α)=,则sin2α=()A. B. C.- D.-10.从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n构成n个数对(x1,y1),(x2,y2)…(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A. B. C. D.11.已知F1,F2是双曲线E:-=1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为()A. B. C. D.212.已知函数f(x)(x∈R)满足f(-x)=2-f(x),若函数y=与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则(x i+y i)=()A.0B.mC.2mD.4m二、填空题(本大题共4小题,共20.0分)13.△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b= ______ .14.α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题是 ______ (填序号)15.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 ______ .16.若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b= ______ .三、解答题(本大题共8小题,共94.0分)17.S n为等差数列{a n}的前n项和,且a1=1,S7=28,记b n=[lga n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.(Ⅰ)求b1,b11,b101;(Ⅱ)求数列{b n}的前1000项和.18.某保险的基本保费为a(单位:元),继续购买该保险的投保人成为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险0 1 2 3 4 ≥5次数保费0.85a a 1.25a 1.5a 1.75a 2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险0 1 2 3 4 ≥5次数概率0.30 0.15 0.20 0.20 0.10 0.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.19.如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交于BD于点M,将△DEF沿EF折到△D′EF的位置,OD′=.(Ⅰ)证明:D′H⊥平面ABCD;(Ⅱ)求二面角B-D′A-C的正弦值.20.已知椭圆E:+=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,|AM|=|AN|时,求△AMN的面积;(Ⅱ)当2|AM|=|AN|时,求k的取值范围.21.(Ⅰ)讨论函数f(x)=e x的单调性,并证明当x>0时,(x-2)e x+x+2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.22.如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.(Ⅰ)证明:B,C,G,F四点共圆;(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.23.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是(t为参数),l与C交与A,B两点,|AB|=,求l的斜率.24.已知函数f(x)=|x-|+|x+|,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.2016年全国统一高考数学试卷(新课标Ⅱ)(理科)答案和解析【答案】1.A2.C3.D4.A5.B6.C7.B8.C9.D 10.C 11.A 12.B13.14.②③④15.1和316.1-ln217.解:(Ⅰ)S n为等差数列{a n}的前n项和,且a1=1,S7=28,7a4=28.可得a4=4,则公差d=1.a n=n,b n=[lgn],则b1=[lg1]=0,b11=[lg11]=1,b101=[lg101]=2.(Ⅱ)由(Ⅰ)可知:b1=b2=b3=…=b9=0,b10=b11=b12=…=b99=1.b100=b101=b102=b103=…=b999=2,b10,00=3.数列{b n}的前1000项和为:9×0+90×1+900×2+3=1893.18.解:(Ⅰ)∵某保险的基本保费为a(单位:元),上年度出险次数大于等于2时,续保人本年度的保费高于基本保费,∴由该险种一续保人一年内出险次数与相应概率统计表得:一续保人本年度的保费高于基本保费的概率:p1=1-0.30-0.15=0.55.(Ⅱ)设事件A表示“一续保人本年度的保费高于基本保费”,事件B表示“一续保人本年度的保费比基本保费高出60%”,由题意P(A)=0.55,P(AB)=0.10+0.05=0.15,由题意得若一续保人本年度的保费高于基本保费,则其保费比基本保费高出60%的概率:p2=P(B|A)===.(Ⅲ)由题意,续保人本年度的平均保费与基本保费的比值为:=1.23,∴续保人本年度的平均保费与基本保费的比值为1.23.19.(Ⅰ)证明:∵ABCD是菱形,∴AD=DC,又AE=CF=,∴,则EF∥AC,又由ABCD是菱形,得AC⊥BD,则EF⊥BD,∴EF⊥DH,则EF⊥D′H,∵AC=6,∴AO=3,又AB=5,AO⊥OB,∴OB=4,∴OH=,则DH=D′H=3,∴|OD′|2=|OH|2+|D′H|2,则D′H⊥OH,又OH∩EF=H,∴D′H⊥平面ABCD;(Ⅱ)解:以H为坐标原点,建立如图所示空间直角坐标系,∵AB=5,AC=6,∴B(5,0,0),C(1,3,0),D′(0,0,3),A(1,-3,0),,,设平面ABD′的一个法向量为,由,得,取x=3,得y=-4,z=5.∴.同理可求得平面A D′C的一个法向量,设二面角二面角B-D′A-C的平面角为θ,则|cosθ|=.∴二面角B-D′A-C的正弦值为sinθ=.20.解:(Ⅰ)t=4时,椭圆E的方程为+=1,A(-2,0),直线AM的方程为y=k(x+2),代入椭圆方程,整理可得(3+4k2)x2+16k2x+16k2-12=0,解得x=-2或x=-,则|AM|=•|2-|=•,由AN⊥AM,可得|AN|=•=•,由|AM|=|AN|,k>0,可得•=•,整理可得(k-1)(4k2-k+4)=0,由4k2-k+4=0无实根,可得k=1,即有△AMN的面积为|AM|2=(•)2=;(Ⅱ)直线AM的方程为y=k(x+),代入椭圆方程,可得(3+tk2)x2+2t k2x+t2k2-3t=0,解得x=-或x=-,即有|AM|=•|-|=•,|AN|═•=•,由2|AM|=|AN|,可得2•=•,整理得t=,由椭圆的焦点在x轴上,则t>3,即有>3,即有<0,可得<k<2,即k的取值范围是(,2).21.解:(1)证明:f(x)=f'(x)=e x()=∵当x∈(-∞,-2)∪(-2,+∞)时,f'(x)>0∴f(x)在(-∞,-2)和(-2,+∞)上单调递增∴x>0时,>f(0)=-1即(x-2)e x+x+2>0(2)g'(x)==a∈[0,1]由(1)知,当x>0时,f(x)=的值域为(-1,+∞),只有一解使得,t∈[0,2]当x∈(0,t)时,g'(x)<0,g(x)单调减;当x∈(t,+∞),g'(x)>0,g(x)单调增;h(a)===记k(t)=,在t∈(0,2]时,k'(t)=>0,故k(t)单调递增,所以h(a)=k(t)∈(,].22.(Ⅰ)证明:∵DF⊥CE,∴Rt△DFC∽Rt△EDC,∴=,∵DE=DG,CD=BC,∴=,又∵∠GDF=∠DEF=∠BCF,∴△GDF∽△BCF,∴∠CFB=∠DFG,∴∠GFB=∠GFC+∠CFB=∠GFC+∠DFG=∠DFC=90°,∴∠GFB+∠GCB=180°,∴B,C,G,F四点共圆.(Ⅱ)∵E为AD中点,AB=1,∴DG=CG=DE=,∴在Rt△DFC中,GF=CD=GC,连接GB,Rt△BCG≌Rt△BFG,∴S四边形BCGF=2S△BCG=2××1×=.23.解:(Ⅰ)∵圆C的方程为(x+6)2+y2=25,∴x2+y2+12x+11=0,∵ρ2=x2+y2,x=ρcosα,y=ρsinα,∴C的极坐标方程为ρ2+12ρcosα+11=0.(Ⅱ)∵直线l的参数方程是(t为参数),∴直线l的一般方程y=tanα•x,∵l与C交与A,B两点,|AB|=,圆C的圆心C(-6,0),半径r=5,∴圆心C(-6,0)到直线距离d==,解得tan2α=,∴tanα=±=±.∴l的斜率k=±.24.解:(I)当x<时,不等式f(x)<2可化为:-x-x-<2,解得:x>-1,∴-1<x<,当≤x≤时,不等式f(x)<2可化为:-x+x+=1<2,此时不等式恒成立,∴≤x≤,当x>时,不等式f(x)<2可化为:-+x+x+<2,解得:x<1,∴<x<1,综上可得:M=(-1,1);证明:(Ⅱ)当a,b∈M时,(a2-1)(b2-1)>0,即a2b2+1>a2+b2,即a2b2+1+2ab>a2+b2+2ab,即(ab+1)2>(a+b)2,即|a+b|<|1+ab|.【解析】1. 解:z=(m+3)+(m-1)i在复平面内对应的点在第四象限,可得:,解得-3<m<1.故选:A.利用复数对应点所在象限,列出不等式组求解即可.本题考查复数的几何意义,考查计算能力.2. 解:∵集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z}={0,1},∴A∪B={0,1,2,3}.故选:C.先求出集合A,B,由此利用并集的定义能求出A∪B的值.本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用.3. 解:∵向量=(1,m),=(3,-2),∴+=(4,m-2),又∵(+)⊥,∴12-2(m-2)=0,解得:m=8,故选:D.求出向量+的坐标,根据向量垂直的充要条件,构造关于m的方程,解得答案.本题考查的知识点是向量垂直的充要条件,难度不大,属于基础题.4. 解:圆x2+y2-2x-8y+13=0的圆心坐标为:(1,4),故圆心到直线ax+y-1=0的距离d==1,解得:a=,故选:A.求出圆心坐标,代入点到直线距离方程,解得答案.本题考查的知识点是圆的一般方程,点到直线的距离公式,难度中档.5. 解:从E到F,每条东西向的街道被分成2段,每条南北向的街道被分成2段,从E到F最短的走法,无论怎样走,一定包括4段,其中2段方向相同,另2段方向相同,每种最短走法,即是从4段中选出2段走东向的,选出2段走北向的,故共有C42=6种走法.同理从F到G,最短的走法,有C31=3种走法.∴小明到老年公寓可以选择的最短路径条数为6×3=18种走法.故选:B.从E到F最短的走法,无论怎样走,一定包括4段,其中2段方向相同,另2段方向相同,每种最短走法,即是从4段中选出2段走东向的,选出2段走北向的,由组合数可得最短的走法,同理从F到G,最短的走法,有C31=3种走法,利用乘法原理可得结论.本题考查排列组合的简单应用,得出组成矩形的条件和最短走法是解决问题的关键,属基础题6. 解:由三视图知,空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,∴在轴截面中圆锥的母线长是=4,∴圆锥的侧面积是π×2×4=8π,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,∴圆柱表现出来的表面积是π×22+2π×2×4=20π∴空间组合体的表面积是28π,故选:C.空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,在轴截面中圆锥的母线长使用勾股定理做出的,写出表面积,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,做出圆柱的表面积,注意不包括重合的平面.本题考查由三视图求表面积,本题的图形结构比较简单,易错点可能是两个几何体重叠的部分忘记去掉,求表面积就有这样的弊端.7. 解:将函数y=2sin2x的图象向左平移个单位长度,得到y=2sin2(x+)=2sin(2x+),由2x+=kπ+(k∈Z)得:x=+(k∈Z),即平移后的图象的对称轴方程为x=+(k∈Z),故选:B.利用函数y= A sin(ωx+ φ)(A>0,ω>0)的图象的变换及正弦函数的对称性可得答案.本题考查函数yy= A sin(ωx+ φ)(A>0,ω>0)的图象的变换规律的应用及正弦函数的对称性质,属于中档题.8. 解:∵输入的x=2,n=2,当输入的a为2时,S=2,k=1,不满足退出循环的条件;当再次输入的a为2时,S=6,k=2,不满足退出循环的条件;当输入的a为5时,S=17,k=3,满足退出循环的条件;故输出的S值为17,故选:C根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.9. 解:∵cos(-α)=,∴sin2α=cos(-2α)=cos2(-α)=2cos2(-α)-1=2×-1=-,故选:D.利用诱导公式化sin2α=cos(-2α),再利用二倍角的余弦可得答案.本题考查三角函数的恒等变换及化简求值,熟练掌握诱导公式化与二倍角的余弦是关键,属于中档题.10. 解:由题意,,∴π=.故选:C.以面积为测度,建立方程,即可求出圆周率π的近似值.古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.11.解:设|MF1|=x,则|MF2|=2a+x,∵MF1与x轴垂直,∴(2a+x)2=x2+4c2,∴x=∵sin∠MF2F1=,∴3x=2a+x,∴x=a,∴=a,∴a=b,∴c=a,∴e==.故选:A.设|MF1|=x,则|MF2|=2a+x,利用勾股定理,求出x=,利用sin∠MF2F1=,求得x=a,可得=a,求出a=b,即可得出结论.本题考查双曲线的定义与方程,考查双曲线的性质,考查学生分析解决问题的能力,比较基础.12. 解:函数f(x)(x∈R)满足f(-x)=2-f(x),即为f(x)+f(-x)=2,可得f(x)关于点(0,1)对称,函数y=,即y=1+的图象关于点(0,1)对称,即有(x1,y1)为交点,即有(-x1,2-y1)也为交点,(x2,y2)为交点,即有(-x2,2-y2)也为交点,…则有(x i+y i)=(x1+y1)+(x2+y2)+…+(x m+y m)=[(x1+y1)+(-x1+2-y1)+(x2+y2)+(-x2+2-y2)+…+(x m+y m)+(-x m+2-y m)]=m.故选B.由条件可得f(x)+f(-x)=2,即有f(x)关于点(0,1)对称,又函数y=,即y=1+的图象关于点(0,1)对称,即有(x1,y1)为交点,即有(-x1,2-y1)也为交点,计算即可得到所求和.本题考查抽象函数的运用:求和,考查函数的对称性的运用,以及化简整理的运算能力,属于中档题.13. 解:由cosA=,cosC=,可得sinA===,sinC===,sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,由正弦定理可得b===.故答案为:.运用同角的平方关系可得sinA,sinC,再由诱导公式和两角和的正弦公式,可得sinB,运用正弦定理可得b=,代入计算即可得到所求值.本题考查正弦定理的运用,同时考查两角和的正弦公式和诱导公式,以及同角的平方关系的运用,考查运算能力,属于中档题.14. 解:①如果m⊥n,m⊥α,n∥β,那么α∥β,故错误;②如果n∥α,则存在直线l⊂α,使n∥l,由m⊥α,可得m⊥l,那么m⊥n.故正确;③如果α∥β,m⊂α,那么m与β无公共点,则m∥β.故正确④如果m∥n,α∥β,那么m,n与α所成的角和m,n与β所成的角均相等.故正确;故答案为:②③④根据空间直线与平面的位置关系的判定方法及几何特征,分析判断各个结论的真假,可得答案.本题以命题的真假判断与应用为载体,考查了空间直线与平面的位置关系,难度中档.15. 解:根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;∴根据甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又甲说,“我与乙的卡片上相同的数字不是2”;∴甲的卡片上写的数字不是1和2,这与已知矛盾;∴甲的卡片上的数字是1和3.故答案为:1和3.可先根据丙的说法推出丙的卡片上写着1和2,或1和3,分别讨论这两种情况,根据甲和乙的说法可分别推出甲和乙卡片上的数字,这样便可判断出甲卡片上的数字是多少.考查进行简单的合情推理的能力,以及分类讨论得到解题思想,做这类题注意找出解题的突破口.16. 解:设y=kx+b与y=lnx+2和y=ln(x+1)的切点分别为(x1,kx1+b)、(x2,kx2+b);由导数的几何意义可得k==,得x1=x2+1再由切点也在各自的曲线上,可得联立上述式子解得;从而kx1+b=lnx1+2得出b=1-ln2.先设切点,然后利用切点来寻找切线斜率的联系,以及对应的函数值,综合联立求解即可本题考查了导数的几何意义,体现了方程思想,对学生综合计算能力有一定要求,中档题17.(Ⅰ)利用已知条件求出等差数列的公差,求出通项公式,然后求解b1,b11,b101;(Ⅱ)找出数列的规律,然后求数列{b n}的前1000项和.本题考查数列的性质,数列求和,考查分析问题解决问题的能力,以及计算能力.18.(Ⅰ)上年度出险次数大于等于2时,续保人本年度的保费高于基本保费,由此利用该险种一续保人一年内出险次数与相应概率统计表根据对立事件概率计算公式能求出一续保人本年度的保费高于基本保费的概率.(Ⅱ)设事件A表示“一续保人本年度的保费高于基本保费”,事件B表示“一续保人本年度的保费比基本保费高出60%”,由题意求出P(A),P(AB),由此利用条件概率能求出若一续保人本年度的保费高于基本保费,则其保费比基本保费高出60%的概率.(Ⅲ)由题意,能求出续保人本年度的平均保费与基本保费的比值.本题考查概率的求法,是中档题,解题时要认真审题,注意对立事件概率计算公式、条件概率计算公式的合理运用.19.(Ⅰ)由底面ABCD为菱形,可得AD=CD,结合AE=CF可得EF∥AC,再由ABCD是菱形,得AC⊥BD,进一步得到EF⊥BD,由EF⊥DH,可得E F⊥D′H,然后求解直角三角形得D′H⊥OH,再由线面垂直的判定得D′H⊥平面ABCD;(Ⅱ)以H为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到的坐标,分别求出平面ABD′与平面AD′C的一个法向量,设二面角二面角B-D′A-C的平面角为θ,求出|cosθ|.则二面角B-D′A-C的正弦值可求.本题考查线面垂直的判定,考查了二面角的平面角的求法,训练了利用平面的法向量求解二面角问题,体现了数学转化思想方法,是中档题.20.(Ⅰ)求出t=4时,椭圆方程和顶点A,设出直线AM的方程,代入椭圆方程,求交点M,运用弦长公式求得|AM|,由垂直的条件可得|AN|,再由|AM|=|AN|,解得k=1,运用三角形的面积公式可得△AMN的面积;(Ⅱ)直线AM的方程为y=k(x+),代入椭圆方程,求得交点M,可得|AM|,|AN|,再由2|AM|=|AN|,求得t,再由椭圆的性质可得t>3,解不等式即可得到所求范围.本题考查椭圆的方程的运用,考查直线方程和椭圆方程联立,求交点,以及弦长公式的运用,考查化简整理的运算能力,属于中档题.21.从导数作为切入点探求函数的单调性,通过函数单调性来求得函数的值域,利用复合函数的求导公式进行求导,然后逐步分析即可该题考查了导数在函数单调性上的应用,重点是掌握复合函数的求导,以及导数代表的意义,计算量较大,中档题.22.(Ⅰ)证明B,C,G,F四点共圆可证明四边形BCGF对角互补,由已知条件可知∠BCD=90°,因此问题可转化为证明∠GFB=90°;(Ⅱ)在Rt△DFC中,GF=CD=GC,因此可得△GFB≌△GCB,则S四边形BCGF=2S△BCG,据此解答.本题考查四点共圆的判断,主要根据对角互补进行判断,注意三角形相似和全等性质的应用.23.(Ⅰ)把圆C的标准方程化为一般方程,由此利用ρ2=x2+y2,x=ρcosα,y=ρsinα,能求出圆C 的极坐标方程.(Ⅱ)由直线l的参数方程求出直线l的一般方程,再求出圆心到直线距离,由此能求出直线l的斜率.本题考查圆的极坐标方程的求法,考查直线的斜率的求法,是中档题,解题时要认真审题,注意点到直线公式、圆的性质的合理运用.24.(I)分当x<时,当≤x≤时,当x>时三种情况,分别求解不等式,综合可得答案;(Ⅱ)当a,b∈M时,(a2-1)(b2-1)>0,即a2b2+1>a2+b2,配方后,可证得结论.本题考查的知识点是绝对值不等式的解法,不等式的证明,难度中档.。
2017年普通高等学校统一招生考试·丙卷(新课标Ⅲ)理科数学1.B 【解析】集合A 、B 为点集,易知圆221x y +=与直线y x =有两个交点,所以AB 中元素的个数为2.选B .2.C 【解析】由(1i)2z i +=,得2i1i 1iz ==++,所以||z ==C . 3.A 【解析】由折线图,7月份后月接待游客量减少,A 错误;选A .4.C 【解析】5(2)x y -的展开式的通项公式为:515C (2)()rr r r T x y -+=-,当3r =时,5(2)x x y -展开式中33x y 的系数为3235C 2(1)40⨯⨯-=-, 当2r =时,5(2)y x y -展开式中33x y 的系数为2325C 2(1)80⨯⨯-=,所以33x y 的系数为804040-=.选C .5.B 【解析】由题意可得:b a =,3c =,又222a b c +=,解得24a =,25b =, 则C 的方程为2145x y 2-=.选B .6.D 【解析】∵()cos()3f x x π=+的周期为2k π,k ∈Z ,所以A 正确;∵8()cos313f ππ==-,所以B 正确; 设4()()cos()3g x f x x ππ=+=+,而3()cos 062g ππ==,C 正确;选D . 7.D 【解析】若2N =,第一次循环,12≤成立,100S =,10M =-,22i =≤成立,第二次循环,此时90S =,1M =,32i =≤不成立,所以输出9091S =<成立,所以输入的正整数N 的最小值是2,故选D .8.B 【解析】圆柱的轴截面如图,1AC =,12AB =,所以圆柱底面半径r BC ==,那么圆柱的体积是223(124V r h πππ==⨯⨯=,故选B . 9.A 【解析】设{}n a 的公差为d (0d ≠),由2326a a a =,得2(12)(1)(15)d d d +=++,所以2d =-,66561(2)242S ⨯=⨯+⨯-=-.选A . 10.A 【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a =,c e a ==,故选A .11.C 【解析】解法一由211()2()x x f x x x a e e --+=-++,得221(2)1(2)(2)2(2)()x x f x x x a e e ----+-=---++=2112()x x x x a e e --+-++,所以(2)()f x f x -=,即1x =为()f x 图象的对称轴.由题意,()f x 有唯一零点, 所以()f x 的零点只能为1x =,即21111(1)121()0f a e e --+=-⨯++=, 解得12a =.故选C . 解法二 令()0f x =,则方程112()2x x a e e x x --++=-+有唯一解, 设2()2h x x x =-+,11()x x g x e e --+=+,则()h x 与()g x 有唯一交点, 又11111()2x x x x g x ee e e --+--=+=+≥,当且仅当1x =时取得最小值2.而2()(1)11h x x =--+≤,此时1x =时取得最大值1,()()ag x h x =有唯一的交点,则12a =.选C . 12.A 【解析】如图建立直角坐标系,x则(0,1)A ,(0,0)B ,(2,1)D ,(,)P x y所以圆的方程为224(2)5x y -+=, 所以(,1)AP x y =-,(0,1)AB =-,(2,0)AD =, 由AP AB AD λμ=+,得21x y μλ=⎧⎨-=-⎩,所以λμ+=12xy -+,设12x z y =-+,即102xy z -+-=, 点(,)P x y 在圆上,所以圆心到直线102xy z -+-=的距离小于半径,,解得13z ≤≤,所以z 的最大值为3, 即λμ+的最大值为3,选A .13.1-【解析】不等式组的可行域如图阴影部分.x目标函数34z x y =-在点(1,1)A 取得最小值31411z =⨯-⨯=-.14.8-【解析】设{}n a 的首项为1a ,公比为q ,所以1121113a a q a a q +=-⎧⎨-=-⎩, 解得112a q =⎧⎨=-⎩ ,则3418a a q ==-.15.1(,)4-+∞【解析】当12x >时,不等式为12221x x-+>恒成立;当102x <≤,不等式12112xx +-+>恒成立; 当0x ≤时,不等式为11112x x ++-+>,解得14x >-,即104x -<≤;综上,x 的取值范围为1(,)4-+∞. 16.②③【解析】解法一 由题意知,a ,b ,AC 三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体的棱长为1,则AC =1,AB斜边AB 以直线AC 为旋转轴旋转,则A 点保持不变,B 点的运动轨迹是以C 为圆心,1为半径的圆.以C 为坐标原点,以CD 的方向为x 轴正方向,CB 的方向为y 轴正方向,CA 的方向为z 轴正方向建立空间直角坐标系.则D (1,0,0),A (0,0,1),直线a 的单位方向向量a =(0,1,0),|a |=1.B 点起始坐标为(0,1,0),直线b 的单位方向向量b =(1,0,0),|b | =1. 设B 点在运动过程中的坐标(cos ,sin ,0)B θθ', 其中θ为CB '与CD 的夹角,θ∈[0,2π).那么AB '在运动过程中的向量(cos ,sin ,1)AB θθ'=-,||AB ' 设直线AB '与a 所成的夹角为[0,]2πα∈,|(cos ,sin ,1)(0,1,0)|cos |sin |[0,]22||||AB θθαθ-⋅==∈'a . 故α∈[,]42ππ,所以③正确,④错误.设直线AB '与b 所成的夹角为β,则[0,]2πβ∈,|||(cos ,sin ,1)(1,0,0)|cos |cos |2||||||||AB AB AB θθβθ'⋅-⋅===''⋅⋅b b b .当AB '与a 成60°角时,3πα=,1|sin |322πθα====. 因为22cos sin 1θθ+=,所以|cos |2θ=所以1cos |cos |22βθ==. 因为[0,]2πβ∈,所以3πβ=,此时AB '与b 成60°角.所以②正确,①错误.解法二 由题意,AB 是以AC 为轴,BC 为底面半径的圆锥的母线,又AC ⊥a ,AC⊥b ,AC ⊥圆锥底面,∴在底面内可以过点B ,作BD ∥a ,交底面圆C 于点D ,如图所示,连接DE ,则DE ⊥BD ,∴DE ∥b ,连接AD ,设BC =1,在等腰ABD ∆中,AB =AD =AB 与a 成60°角时,∠ABD =60°,故BDRt BDE ∆中,BE =2,∴DE 过点B 作BF ∥DE ,交圆C 于点F ,连接AF ,EF ,∴BF =DE =,∴△ABF 为等边三角形,∴∠ABF =60°,即AB 与b 成60°角,故②正确,①错误.由最小角定理可知③正确;很明显,可以满足平面ABC ⊥直线a ,∴直线AB 与a 所成角的最大值为90°,④错误.∴正确的说法为②③.17.【解析】(1)由已知得 tan A =23A π=.在ABC ∆中,由余弦定理得222844cos 3c c π=+-,即2+224=0c c -. 解得6c =-(舍去),4c = (2)有题设可得2CAD π∠=,所以6BAD BAC CAD π∠=∠-∠=.故ABD ∆面积与ACD ∆面积的比值为1sin26112AB AD AC AD π⋅⋅=⋅. 又ABC ∆的面积为142sin 2BAC ⨯⨯∠=ABD ∆18.【解析】(1)由题意知,X 所有的可能取值为200,300,500,由表格数据知()2162000.290P X +===,()363000.490P X ===,()25745000.490P X ++===. 因此X 的分布列为(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑200500n ≤≤当300500n ≤≤时,若最高气温不低于25,则642Y n n n =-=;若最高气温位于区间[20,25),则63002(200)412002Y n n n =⨯+--=-; 若最高气温低于20,则62002(200)48002Y n n n =⨯+--=-; 因此20.4(12002)0.4(8002)0.26400.4EY n n n n =⨯+-⨯+-⨯=-. 当200300n <≤时,若最高气温不低于20,则642Y n n n =-=;若最高气温低于20,则62002(200)48002Y n n n =⨯+--=-; 因此2(0.40.4)(8002)0.2160 1.2EY n n n =⨯++-⨯=+. 所以300n =时,Y 的数学期望达到最大值,最大值为520元. 19.【解析】(1)由题设可得,ABD CBD ∆≅∆,从而AD DC =.又ACD ∆是直角三角形,所以0=90ACD ∠取AC 的中点O ,连接DO ,BO ,则DO AC ⊥,DO AO =. 又由于ABC ∆是正三角形,故BO AC ⊥. 所以DOB ∠为二面角D AC B --的平面角. 在Rt AOB ∆中,222BO AO AB +=.又AB BD =,所以222222BO DO BO AO AB BD +=+==,故90DOB ∠=. 所以平面ACD ⊥平面ABC .(2)由题设及(1)知,OA,OB,OD 两两垂直,以O 为坐标原点,OA 的方向为x 轴正方向,OA 为单位长,建立如图所示的空间直角坐标系O xyz -,则(1,0,0)A,B ,(1,0,0)C -,(0,0,1)D .由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB的中点,得1)2E .故 (1,0,1)AD =-,(2,0,0)AC =-,1(1,)22AE =- 设()=x,y,z n 是平面DAE 的法向量,则AD AE ⎧=⎪⎨=⎪⎩0,0,n n即x z x y z -+=⎧⎪⎨-++=⎪⎩01022可取=n设m 是平面AEC 的法向量,则0,0,AC AE ⎧=⎪⎨=⎪⎩m m同理可得(0,1=-m则cos ,==7n m n m n m 所以二面角D AE C --20.【解析】(1)设()A x ,y 11,()B x ,y 22,l :2x ym =+由222x my y x=+⎧⎨=⎩可得y my --=2240,则y y =-124 又y x 211=2,yx 222=2,故()y y x x 21212=4=4因此OA 的斜率与OB 的斜率之积为y y x x ⋅1212-4==-14,所以OA OB ⊥. 故坐标原点O 在圆M 上.(2)由(1)可得y y m 12+=2,()x x m y y m +21212+=++4=24 故圆心M 的坐标为()2+2,m m ,圆M 的半径r =由于圆M 过点(4,2)P -,因此0AP BP =, 故()()()()121244++2+2=0x x y y -- 即()()121212124+2200x x x x y y y y -++++= 由(1)可得y y 12=-4,x x 12=4. 所以2m m --=210,解得m =1或m =-12. 当1m =时,直线l 的方程为20x y --=,圆心M 的坐标为(3,1),圆M 的半径为M 的方程为()()223110x y -+-=当12m =-时,直线l 的方程为240x y +-=,圆心M 的坐标为91(,)42-,圆M 的半径为4,圆M 的方程为229185()()4216x y -++=.21.【解析】(1)()f x 的定义域为(0,)+∞.①若a 0≤,因为11()ln 2022f a =-+<,所以不满足题意; ②若>0a ,由()1a x a f 'x x x-=-=知,当()0x ,a ∈时,()<0f 'x ;当(),+x a ∈∞时,()>0f 'x ,所以()f x 在(0,)a 单调递减,在(,)a +∞单调递增,故x a =是()f x 在(0,)+∞的唯一最小值点.由于()10f =,所以当且仅当a =1时,()0f x ≥. 故a =1.(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->令112n x =+得11ln(1)22n n +<,从而 221111111ln(1)ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<故2111(1)(1)(1)222n e ++⋅⋅⋅+<而23111(1)(1)(1)2222+++>,所以m 的最小值为3.22.【解析】(1)消去参数t 得1l 的普通方程():l y k x =-12;消去参数m 得2l 的普通方程():l y x k=+212. 设(,)P x y ,由题设得()()212y k x y x k ⎧=-⎪⎨=+⎪⎩,消去k 得()2240x y y -=≠. 所以C 的普通方程为()2240x y y -=≠ (2)C 的极坐标方程为()cos sin ρθθ-=2224(),θπθπ<<≠02联立()()cos sin cos sin ρθθρθθ⎧-=⎪⎨⎪⎩2224+得()cos sin cos sin θθθθ-=2+.故tan θ=-13,从而cos sin θθ2291=,=1010代入()cos sin ρθθ222-=4得ρ2=5,所以交点M23.【解析】(1)3,1()21,123,2x f x x x x -<-⎧⎪=--⎨⎪>⎩≤≤,当1x <-时,()f x 1≥无解;当x -12≤≤时,由()f x 1≥得,x -211≥,解得x 12≤≤ 当>2x 时,由()f x 1≥解得>2x . 所以()f x 1≥的解集为{}x x 1≥.(2)由()f x x x m -+2≥得m x x x x +---+212≤,而x x x x x x x x +---+--+2212+1+2≤x ⎛⎫ ⎪⎝⎭2355=--+244≤且当32x =时,2512=4x x x x +---+. 故m 的取值范围为5-,4⎛⎤∞ ⎥⎝⎦.。
2016年高考使用新课标全国卷省份高考试题全国卷全国卷,简称全国卷,是教育部为未能自主命题的省份命题的高考试卷。
分为新课标Ⅰ卷和新课标Ⅱ卷。
据教育部高校学生司副司长王辉介绍,2016年26个省市区将使用全国卷、高考地方性加分项目缩减为35个。
为帮助广大同学科学备考,特将往年高考采用全国统一命题名单以及2016年新增使用全国卷的省份名单发布给大家参考使用。
2016年高考使用全国卷省份名单2016年,福建、四川、广东、湖北、湖南、陕西、重庆、安徽八省市不再自主命题,所有科目由教育部统一命题,全国全部科目使用全国卷的省市区达到24个。
2016年山东、海南两省部分采用全国卷,北京、天津、上海、江苏、浙江五省市从目前来看,2016年仍将自主命题。
2016年全国各省市高考试卷使用一览表2016年使用全国乙卷(新课标一卷)的省份:安徽、湖北、福建、湖南、山西、河北、江西、广东、河南、山东(英语及综合)2016年使用全国甲卷(新课标二卷)的省份:甘肃、青海、西藏、黑龙江、吉林、辽宁、宁夏、新疆、内蒙古、陕西、重庆、海南(语文、数学、英语)2016年使用全国丙卷(新课标三卷)的省份:广西、贵州、云南、四川(语文)全国乙卷(新课标一卷)的使用详情2015年以前使用省份:河南河北山西陕西(语文及综合)湖北(综合)江西(综合)湖南(综合)2015年增加使用省份:江西(语文数学英语)、山东(英语)2016年增加省份:湖南(语文数学英语综合)、湖北(语文数学英语)、广东、福建、安徽、山东(综合);取消省份:陕西2017年增加省份:浙江(英语)2018年高考增加使用新课标一卷省份:山东(语文,数学)2016年使用省区:安徽、湖北、福建、湖南、山西、河北、江西、广东、河南、山东(英语及综合)全国甲卷(新课标二卷)的使用详情2015年及其之前:贵州甘肃广西青海西藏黑龙江吉林宁夏内蒙古新疆云南辽宁(综合)海南(语文数学英语)2015年增加省份:辽宁(语文数学英语)[4]2016年取消省份:广西云南贵州2016年使用省区:甘肃、青海、西藏、黑龙江、吉林、辽宁、宁夏、新疆、内蒙古、陕西、重庆、海南(语文、数学、英语)全国丙卷(新课标三卷)的使用详情在2015年甲卷(全国Ⅱ卷)、乙卷(全国Ⅰ卷)的基础上,新增丙卷(全国Ⅲ卷)。
2016年普通高等学校招生全国统一考试·丙卷(全国卷Ⅲ)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{}{}|(2)(3)0,|0S x x x T x x =--=>≥,则S T I =(A) [2,3] (B)(-∞,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若12z i =+,则41izz =- (A) 1 (B) -1 (C) i (D) -i(3)已知向量 )23,21(=, )21,23(=,则ABC ∠= (A) 30o(B) 45o(C) 60o(D) 120o(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃。
下面叙述不正确的是(A) 各月的平均最低气温都在0℃以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于20℃的月份有5个(5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,254b =,1325c =,则(A )b a c << (B )a b c << (C )b c a << (D )c a b << (7)执行如图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6 (8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A = (A 310 (B 10 (C )10- (D )310-(9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为(A )185+(B )54185+(C )90 (D )81(10)在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,13AA =,则V 的最大值是(A )4π (B )92π (C )6π (D )323π (11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为(A )13(B )12(C )23(D )34(12)定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有 (A )18个(B )16个(C )14个(D )12个第II 卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)若x ,y 满足约束条件1020220x y x y x y -+⎧⎪-⎨⎪+-⎩≥≤≤ ,则z x y =+的最大值为___________.(14)函数sin y x x =的图像可由函数sin y x x =+的图像至少向右平移_____________个单位长度得到.(15)已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =,在点(1,3)-处的切线方程是_______________.(16)已知直线l:30mx y m ++-=与圆2212x y +=交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D两点.若||AB =,则||CD =____________.三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠. (Ⅰ)证明{}n a 是等比数列,并求其通项公式; (Ⅱ)若53132S =,求λ.(18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注: 参考数据:719.32ii y==∑,7140.17i i i t y ==∑721()0.55ii y y =-=∑,错误!未指定书签。
≈2.646.参考公式:相关系数12211()()()(yy)niii n ni ii i t t y y r t t ===--=--∑∑∑ 回归方程y a bt =+)))中斜率和截距的最小二乘估计公式分别为:121()()()nii i nii tt y y b tt ==--=-∑∑),=.a y bt -)))(19)(本小题满分12分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC P ,=3AB AD AC ==,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(Ⅰ)证明MN P 平面PAB ;(Ⅱ)求直线AN 与平面PMN 所成角的正弦值.BD(20)(本小题满分12分)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线1l ,2l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(Ⅱ)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.(21)(本小题满分12分)设函数()cos 2(1)(cos 1)f x x x αα=+-+,其中0α>,记|()|f x 的最大值为A . (Ⅰ)求()f x '; (Ⅱ)求A ;(Ⅲ)证明|()|2f x A '≤.请考生在(22)、(23)、(24)题中任选一题作答。
如果多做,则按所做的第一题计分。
(22)(本小题满分10分)选修4-1:几何证明选讲如图,⊙O 中»AB 的中点为P ,弦PC ,PD 分别交AB 于E ,F 两点. (Ⅰ)若∠PFB =2∠PCD ,求∠PCD 的大小;(Ⅱ)若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明OG ⊥CD .C23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C的极坐标方程为sin()4ρθπ+=(Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.24.(本小题满分10分)选修4-5:不等式选讲已知函数()|2|f x x a a =-+(Ⅰ)当a =2时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-,当x ∈R 时,()()3f x g x +≥,求a 的取值范围.2016年普通高等学校招生全国统一考试·丙卷(新课标Ⅲ)理科数学答案(1)D 【解析】(,2][3,)S =-∞+∞U ,所以(0,2][3,)S T =+∞I U ,故选D . (2)C 【解析】441(12)(12)1i ii zz i i ==-+--,故选C . (3)A【解析】由题意得112222cos 112||||BA BC ABC BA BC +⨯⋅∠===⨯⋅u u u r u u u r u uu r u u u r , 所以30ABC ∠=o,故选A .(4)D 【解析】由图可知0℃在虚线框内,所以各月的平均最低气温都在0℃以上,A 正确;由图可知七月的平均温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都约为10℃,基本相同,C 正确;由图可知平均最高气温高于20℃的月份不是5个,D 不正确,故选D .(5)A 【解析】由sin 3tan cos 4ααα==,22cos sin 1αα+=,得3sin 5α=,4cos 5α=或 3sin 5α=-,4cos 5α=-,所以24sin 22sin cos 25ααα==, 则2164864cos 2sin 2252525αα+=+=,故选A . (6)A 【解析】因为4133216a ==,2155416b ==,1325c =,且幂函数13y x =在R 上单调递增,指数函数16xy =在R 上单调递增,所以b a c <<,故选A .(7)B 【解析】第一次循环,得2,4,6,6,1a b a s n =====;第二次循环,得2a =-,6,4,10,2b a s n ====;第三次循环,得2,4,6,16,3a b a s n =====;第四次循环,得2,6,4,20,4a b a s n =-====,此时2016s =>,退出循环,输出的4n =,故选B .(8)C 【解析】设△ABC 中角A ,B ,C 的对边分别是a ,b ,c ,由题意可得1sin 342a c c π==,则2a c =.在△ABC 中,由余弦定理可得222222295322b ac c c c c =+-=+-=,则2b =.由余弦定理,可得22222259cos 2c c c b c a A bc +-+-===C . (9)B 【解析】由三视图可得该几何体是平行六面体,上下底面是边长为3的正方形,故面积都是9,前后两个侧面是平行四边形,一边长为3、该边上的高为6,故面积都为18,左右两个侧面是矩形,边长为3,故面积都为面积为2(9 +18+(10)B 【解析】由题意可得若y 最大,则球与直三棱柱的部分面相切,若与三个侧面都相切,可求得球的半径为2,球的直径为4,超过直三棱柱的高,所以这个球放不进去,则球可与上下底面相切,此时球的半径32R =,该球的体为 334439()3322R πππ=⨯=,故选B . (11)A 【解析】设(0,)E m ,则直线AE 的方程为1x y a b -+=,由题意可知(,)mcM c m a--,(0,)2m和(,0)B a 三点共线,则22mc m m m a c a--=--,化简得3a c =, 则C 的离心率13c e a ==.故选A . (12)C 【解析】由题意可得10a =,81a =,2a ,3a ,…,7a 中有3个O 、3个1,且满足对任意k ≤8,都有1a ,2a ,…,k a 中O 的个数不少于1的个数,利用列举法可得不同的“规范01数列”有00001111,00010111, 00011011, 00011101,00100111, 00101011,00101101,00110011,00110101,01000111,01001011,01001101,01010011,01010101,共14个.(13)32【解析】约束条件对应的平面区域是以点1(1,)2、(0,1)和(2,1)--为顶点的三角形,当目标函数y x z =-+经过点1(1,)2时,z 取得最大值32. (14)23π【解析】函数sin 2sin()3y x x x π=-=-的图像可由函数sin 2sin()3y x x x π==+的图像至少向右平移23π个单位长度得到. (15)21y x =--【解析】由题意可得当0x >时,()ln 3f x x x =-,则1()3f x x'=-, (1)2f '=-,则在点(1,3)-处的切线方程为32(1)y x +=--,即21y x =--.(16)4【解析】设圆心到直线:30l mx y m ++=的距离为d ,则弦长||AB ==,得3d =3=,解得m =,则直线:60l x +=,数形结合可得||||4cos30AB CD ==o.(17)【解析】(Ⅰ)由题意得1111a S a λ+==,故1≠λ,λ-=111a ,01≠a . 由n n a S λ+=1,111+++=n n a S λ得n n n a a a λλ-=++11,即n n a a λλ=-+)1(1. 由01≠a ,0≠λ且1λ≠得0≠n a ,所以11-=+λλn n a a . 因此}{n a 是首项为λ-11,公比为1-λλ的等比数列,于是1)1(11---=n n a λλλ. (Ⅱ)由(Ⅰ)得n n S )1(1--=λλ,由32315=S 得3231)1(15=--λλ,即=-5)1(λλ321, 解得1λ=-.(18)【解析】(Ⅰ)由折线图这数据和附注中参考数据得4=t ,28)(712=-∑=i i t t ,55.0)(712=-∑=i iy y,89.232.9417.40))((717171=⨯-=-=--∑∑∑===i i i ii i i iy t yt y y t t,99.0646.2255.089.2≈⨯⨯≈r .因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关相当高,从而可以用线性回归模型拟合y 与t 的关系.(Ⅱ)由331.1732.9≈=y 及(Ⅰ)得103.02889.2)())((ˆ71271≈=---=∑∑==i ii i it ty y t tb , 92.04103.0331.1ˆˆ≈⨯-≈-=t b y a.所以,y 关于t 的回归方程为:t y10.092.0ˆ+=. 将2016年对应的9=t 代入回归方程得:82.1910.092.0ˆ=⨯+=y. 所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨. (19)【解析】(Ⅰ)由已知得232==AD AM , 取BP 的中点T ,连接TN AT ,. 由N 为PC 中点知BC TN //,221==BC TN . 又BC AD //,故TN 平行且等于AM ,四边形AMNT 为平行四边形,于是AT MN //.因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB .(Ⅱ)取BC 的中点E ,连结AE ,由AC AB =得BC AE ⊥,从而AD AE ⊥,且5)2(2222=-=-=BC AB BE AB AE . 以A 为坐标原点,AE 的方向为x 轴正方向,建立如图所示的空间直角坐标系xyz A -,由题意知,)4,0,0(P ,)0,2,0(M ,)0,2,5(C ,)2,1,25(N , )4,2,0(-=PM ,)2,1,25(-=PN , )2,1,25(=AN . 设(,,)x y z =r n 为平面PMN 的法向量,则00PM PN ⎧⋅=⎪⎨⋅=⎪⎩r u u u u r r u u u rn n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x , 可取)1,2,0(=n , 于是2558|||||||,cos |=⋅=><AN n AN n AN n . (20)【解析】由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且22111(,),(,),(,),(,),(,)222222a b a b A a B b P a Q b R +---. 记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x .(Ⅰ)由于F 在线段AB 上,故01=+ab .记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b aab a ab a b a a b a k =-=-==--=+-=. 所以FQ AR ∥.(Ⅱ)设l 与x 轴的交点为)0,(1x D , 则2,2121211b a S x a b FD a b S PQF ABF -=--=-=∆∆. 由题设可得221211b a x a b -=--,所以01=x (舍去),11=x . 设满足条件的AB 的中点为),(y x E .当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x y b a . 而y b a =+2,所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为12-=x y .(21)【解析】(Ⅰ)()2sin 2(1)sin f x a x a x '=---.(Ⅱ)当1≥a 时,|()||sin 2(1)(cos 1)|f x a x a x '=+-+)1(2-+≤a a 32a =-(0)f =因此,32A a =-.当01a <<时,将()f x 变形为2()2cos (1)cos 1f x a x a x =+--.令2()2(1)1g t at a t =+--,则A 是|()|g t 在[1,1]-上的最大值,(1)g a -=, (1)32g a =-,且当14a t a-=时,()g t 取得极小值, 极小值为221(1)61()1488a a a a g a a a--++=--=-. 令1114a a --<<,解得13a <-(舍去),15a >. (ⅰ)当510≤<a 时,()g t 在[1,1]-内无极值点,|(1)|g a -=,|(1)|23g a =-, |(1)||(1)|g g -<,所以23A a =-.(ⅱ)当115a<<时,由(1)(1)2(1)0g g a--=->,知1(1)(1)()4ag g ga-->>.又1(1)(17)|()||(1)|048a a ag ga a--+--=>,所以2161|()|48a a aA ga a-++==.综上,11,2351,816510,322⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-<<++≤<-=aaaaaaaaA.(Ⅲ)由(Ⅰ)得12sin)1(2sin2)('-+≤---=aaxaxaxf.当510≤<a时,Aaaaxf2)32(2421)('=-<-≤+≤.当115a<<时,143818≥++=aaA,所以Aaxf21)('<+≤.当1≥a时,Aaaxf24613)('=-≤-≤,所以Axf2)('≤.22. 【解析】(Ⅰ)连结BCPB,,则BCDPCBPCDBPDPBABFD∠+∠=∠∠+∠=∠,.因为BPAP=,所以PCBPBA∠=∠,又BCDBPD∠=∠,所以PCDBFD∠=∠.又PCDPFBBFDPFD∠=∠=∠+∠2,180ο,所以ο1803=∠PCD,因此ο60=∠PCD.(Ⅱ)因为BFDPCD∠=∠,所以ο180=∠+∠EFDPCD,由此知EFDC,,,四点共圆,其圆心既在CE的垂直平分线上,又在DF的垂直平分线上,故G就是过EFDC,,,四点的圆的圆心,所以G在CD的垂直平分线上,因此CDOG⊥.23.【解析】(Ⅰ)1C的普通方程为2213xy+=,2C的直角坐标方程为40x y+-=.(Ⅱ)由题意,可设点P的直角坐标为(3,sin)αα,因为2C是直线,所以||PQ的最小值,即为P到2C的距离()dα的最小值,()sin()2|3d παα==+-.当且仅当2()6k k Z παπ=+∈时,()d α, 此时P 的直角坐标为31(,)22.24. 【解析】(Ⅰ)当2a =时,()|22|2f x x =-+. 解不等式6222≤+-x ,得31≤≤-x .因此,()6f x ≤的解集为{}31≤≤-x x .(Ⅱ)当x R ∈时,()()|2||12|f x g x x a a x +=-++- a x a x +-+-≥212|1|a a =-+,当12x =时等号成立, 所以当x R ∈时,3)()(≥+x g x f 等价于 31≥+-a a ① 当1≤a 时,①等价于31≥+-a a ,无解.当1a >时,①等价于31≥+-a a ,解得2≥a . 所以a 的取值范围是[2,)+∞.。