四边形相似性学案
- 格式:doc
- 大小:372.65 KB
- 文档页数:14
1.4 图形的位似学案第二课时班级姓名组别等级一、学习目标1.熟悉位似图形的性质,能够将坐标系中的图形进行放大或缩小.2.在直角坐标系中,探索并了解将一个多边形的顶点坐标分别扩大(缩小)相同的倍数时,所得到的图形与原图形位似.3.培养学生综合分析问题、解决问题的能力,进一步提高学生利用图形的变换解决问题的能力和小组合作、探究学习的能力.二、自主学习(一)自学指导自学课本28-29页内容,独立完成下面问题.本环节用时10分钟.1.在图1-33中四边形0A′B′C′与矩形OABC是位似图形吗?如果是,位似中心是哪个点?它们的相似比是多少?2.你还能在其它象限里画出与矩形OABC是位似的图形吗?如果能,把它画出来?3.如果一条线段一个端点是O(0,0),另一端点是A(a,b)则它的中点的坐标为___________. (二)自学检测请同学们结合自学情况完成下面练习,做题要细心、规范.用时5分钟.如图,O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1),画出以点O为位似中心将△OBC 放大到原来的2倍后的图形,并写出B、C两点的对应点的坐标.(三)针对前面的学习,你还有什么疑惑,请写下来。
三、合作探究组内交流环节一中的问题,时间:3分钟,组长掌握组内的情况,记录没能解决的问题.发言要求:起立讨论、声音洪亮、言简意赅、明确清晰.探究:如图,已知△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标都扩大到原来的2倍,得到点A',B',C'.(1)作出△A'B'C';(2)△A'B'C'与△ABC是位似图形吗?如果是,位似中心是哪个点?对应边的比是多少?展示要求:根据小组交流情况,小组长确定人员到黑板展示.时间:12分钟.四、当堂训练认真规范完成训练题目,书写认真,步骤规范,成绩计入小组量化,本环节不超过12分钟.1.如图所示,△ABC的三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC缩小,使变换后得到的△DEF与△ABC的相似比为1:2,则线段AC的中点P变换后对应点的坐标为____________________.2.如图,在直角坐标系中,已知点E(-4,2),F(-1,1).以O为位似中心,把△EFO缩小到原来的一半,求点E,F的对应点E',F'的坐标.3.如图,△AOB缩小后得到△COD,观察变化前后的三角形顶点,△AOB与△COD相似比是 . 面积比是.五、自我反思一节课的学习,你收获了什么?请你总结在下面.1.我的收获:2.我的易错点:。
第28讲 图形的相似第1课时课时 相似形相似形1.比例线段.比例线段考试内容考试内容考试考试要求要求比例比例 线段线段定义定义在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段.比,那么这四条线段叫做成比例线段.a基本基本 性质性质若a b =c d,则ad ad==bc.bc.当当b =c 时,时,b b 2=ad ad,那么,那么b 是a 、d 的比例中项.比例中项.黄金黄金 分割分割 点C 把线段AB 分成两条线段AC 和BC(AC>BC)BC(AC>BC),如果,如果AC 是线段AB 和BC 的比例中项,且AC AB =BC AC =5-12≈0.6180.618,,那么点C 叫做线段AB 的黄金分割点.割点.2.2.平行线分线段成比例平行线分线段成比例平行线分线段成比例考试内容考试内容考试考试要求要求基本基本 事实事实两条直线被一组平行线所截,所得的对应线段两条直线被一组平行线所截,所得的对应线段. c推论推论平行于三角形一边的直线截其他两边平行于三角形一边的直线截其他两边((或两边的延长线或两边的延长线)),所得的对应线段成比例.成比例.3.3.相似图形的有关概念相似图形的有关概念相似图形的有关概念考试内容考试内容考试考试要求要求相似图形________________________________________相同的图形称为相似图形.相同的图形称为相似图形.相同的图形称为相似图形.a相似多相似多边形边形两个边数相同的多边形,如果它们的角分别如果它们的角分别 ,边 ,那么这两个多边形叫做相似多边形.多边形叫做相似多边形.相似多边形对应相似多边形对应 的比叫做相似比.的比叫做相似比.(1)(1)相似多边形周长的比等于相似比;相似多边形周长的比等于相似比;相似多边形周长的比等于相似比; (2)(2)相似多边形面积的比等于相似比的平方相似多边形面积的比等于相似比的平方相似多边形面积的比等于相似比的平方相似三相似三 角形角形 两个三角形的三个角分别两个三角形的三个角分别_ _ ,三条边,三条边 ,则这两个三角形相似.当相似比等于1时,这两个三角形时,这两个三角形 . 4.4.相似三角形的判定相似三角形的判定相似三角形的判定考试内容考试内容考试考试要求要求判定1________________________________________于三角形一边的直线和其他两边相交,于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.三角形与原三角形相似.a 判定2 三边三边 的两个三角形相似.的两个三角形相似.判定3 两边两边 且夹角且夹角 的两个三角形相似.的两个三角形相似. 判定4 两角分别两角分别 的两个三角形相似.的两个三角形相似.判定5满足斜边和一条直角边满足斜边和一条直角边 的两个直角三角形相似.的两个直角三角形相似.拓展拓展直角三角形中被斜边上的高分成的两个三角形都与原三角形相似.两个三角形都与原三角形相似.5.5.相似三角形的性质相似三角形的性质相似三角形的性质考试内容考试内容考试考试要求要求性质性质1.1.相似三角形的对应角相似三角形的对应角相似三角形的对应角 ,对应边对应边. a2.2.相似三角形对应高的比、相似三角形对应高的比、相似三角形对应高的比、对应中线的比、对应中线的比、对应中线的比、对应角平分线的比和周长的对应角平分线的比和周长的比都等于比都等于.3.3.相似三角形面积的比等于相似比的相似三角形面积的比等于相似比的相似三角形面积的比等于相似比的____________________. ____________________.三角形三角形 的重心的重心 三角形三条中线的交点叫做重心.三角形三条中线的交点叫做重心.三角形的重心分每一条中线成1∶2的两条线段.拓展拓展如图,△ABC 中,∠中,∠ACB ACB ACB==9090°,°,CD 是斜边AB 上的高,则有下列结论.则有下列结论.①AC 2=AD·AB;=AD·AB;②BC 2=BD·AB;=BD·AB;③CD 2=AD·BD;=AD·BD;④AB AB··CD CD=AC·BC.=AC·BC.=AC·BC.考试内容考试内容考试考试要求要求基本基本 思想思想转化思想:证角相等,证比例线段往往转化为证相似三角形;测量问题,往往构建相似三角形,即实际问题转化为相似三角形问题来解决.往往构建相似三角形,即实际问题转化为相似三角形问题来解决.b1.(2017·杭州.(2017·杭州))如图,在△ABC 中,点D ,E 分别在边AB AB,,AC 上,DE DE∥∥BC BC,,若BD BD==2AD 2AD,,则( ( )A .AD AB =12 B .AE EC =12 C .AD EC =12 D .DE BC =12 2.(2015·嘉兴.(2015·嘉兴))如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F.AC 与DF 相交于点H ,且AH AH==2,HB HB==1,BC BC==5,则DEEF的值为的值为( ( ( )A .12B .2C .25D .35 3.(2015·嘉兴.(2015·嘉兴))如图是百度地图的一部分如图是百度地图的一部分((比例尺1∶4000000).按图可估测杭州在嘉兴的南偏西偏西_______________________________________度方向上,杭州到嘉兴的图上距离约2cm ,则杭州到嘉兴的实际距离约为________________________________________..【问题】如图,点D 在△ABC 的边AC 上.上.(1)(1)要判断△ADB 要判断△ADB 与△ABC 相似,添加一个条件是相似,添加一个条件是____________________________________________________________;; (2)若△ADB∽△ABC,若△ADB∽△ABC,AB AB AB==4,AD AD==2,则AC AC==________________;; (3)(3)通过通过通过(1)(1)(1)、、(2)(2)解答,你能说出相似三角形哪些知识?解答,你能说出相似三角形哪些知识?解答,你能说出相似三角形哪些知识?【归纳】通过开放式问题,归纳、疏理比例、相似多边形有关概念,相似三角形性质、判定.类型一 比例性质、黄金分割等相关概念例1 (1)(2016·山西(1)(2016·山西))宽与长的比是5-12(约0.618)0.618)的矩形叫做黄金矩形,的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ABCD,,分别取AD AD、、BC 的中点E 、F ,连结EF EF;以点;以点F 为圆心,以FD 为半径画弧,交BC 的延长线于点G ;作GH⊥AD,交AD 的延长线于点H ,则图中下列矩形是黄金矩形的是,则图中下列矩形是黄金矩形的是( ( ( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH【解后感悟】先根据正方形的性质以及勾股定理,求得DF 的长,再根据DF DF==GF 求得CG 的长,最后根据CG 与CD 的比值为黄金比,判断矩形DCGH 为黄金矩形.为黄金矩形.(2)(2) 已知x 3=y 4=z 6≠0,求x +y -z x -y +z 的值.的值.【解后感悟】这类题我们一般是设辅助未知数k ,即比值为k ,把所有字母都用含有k 的式子表示出来,从而达到计算或化简的目的.示出来,从而达到计算或化简的目的.1.在中华经典美文阅读中,在中华经典美文阅读中,小明同学发现自己的一本书的小明同学发现自己的一本书的宽与长之比为黄金比.宽与长之比为黄金比.已知这本书的已知这本书的长为20cm ,则它的宽约为,则它的宽约为( ( ( )A .12.36cmB .13.6cmC .32.36cmD .7.64cm 2.(2015·扬州.(2015·扬州))如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A 、B 、C 都在横格线上,若线段AB AB==4cm ,则线段BC BC==cm .类型二 相似多边形例2 已知矩形ABCD 中,中,AB AB AB==1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ADCB 相似,则AD AD==( ( )A .5-12B .5+12C .3D .2 【解后感悟】解题关键是根据相似多边形的性质:对应边的比等于相似比.【解后感悟】解题关键是根据相似多边形的性质:对应边的比等于相似比.3.(2015·葫芦岛.(2015·葫芦岛))如图,在矩形ABCD 中,中,AD AD AD==2,CD CD==1,连结AC AC,以对角线,以对角线AC 为边,按逆时针方向作矩形ABCD 的相似矩形AB 1C 1C ,再连结AC 1,以对角线AC 1为边作矩形AB 1C 1C 的相似矩形AB 2C 2C 1,…,按此规律继续下去,则矩形AB n C n C n -1的面积为的面积为____________________________________________________________..类型三 相似三角形的判定与性质例3 (2016·南充(2016·南充))已知正方形ABCD 的边长为1,点P 为正方形内一动点,若点M 在AB 上,且满足△PBC∽△PAM,延长BP 交AD 于点N ,连结CM.(1)(1)如图如图1,若点M 在线段AB 上,求证:AP⊥BN;上,求证:AP⊥BN;AM AM AM==AN AN;;(2)①如图2,在点P 运动过程中,满足△PBC∽△PAM 的点M 在AB 的延长线上时,的延长线上时,AP AP AP⊥⊥BN 和AM =AN 是否成立?是否成立?((不需说明理由不需说明理由) )②是否存在满足条件的点P ,使得PC PC==12?请说明理由.?请说明理由.【解后感悟】本题考查相似三角形的性质、正方形的性质、圆的有关知识,解题的关键是熟练应用相似三角形性质解决问题,最后一个问题利用圆的位置关系解决问题.应用相似三角形性质解决问题,最后一个问题利用圆的位置关系解决问题.4.(1)(1)如图,在△ABC 如图,在△ABC 中,点D ,E 分别在边AB AB,,AC 上,且AE AB =AD AC =12,则S △ADE ∶S 四边形BCED 的值为( ( )A .1∶3B .1∶2C .1∶3D .1∶4(2)(2) (2016·河北(2016·河北))如图,△如图,△ABC ABC 中,∠中,∠A A =7878°,°,°,AB AB AB==4,AC AC==6.6.将△ABC 将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似...的是的是( ( ( )5.(1)(2015·自贡)将一副三角板按图叠放,则△AOB 与△DOC 的面积之比等于 .(2)(2015·无锡市南长区模拟(2)(2015·无锡市南长区模拟))如图,△如图,△ABC ABC 中,中,AB AB AB==5,BC BC==3,CA CA==4,D 为AB的中点,过点D 的直线与BC 所在直线交于点E ,若直线DE 截△ABC 所得的三角形与△ABC 相似,则DE DE== .类型四 与相似三角形相关的问题例4 如图,点A ,B ,C ,D 为⊙O 上的四个点,上的四个点,AC AC 平分∠BAD,平分∠BAD,AC AC 交BD 于点E ,CE CE==4,CD CD==6,则AE 的长为的长为( ( ( )A .4B .5C .6D .7【解后感悟】本题运用圆周角定理、相似三角形的判定与性质,解答本题的关键是得出∠CAD =∠CDB,证明△ACD∽△DCE.=∠CDB,证明△ACD∽△DCE.6.(1)(1)已知:在△ABC 已知:在△ABC 中,中,BC BC BC==1010,,BC 边上的高h =5,点E 在边AB 上,过点E 作EF∥BC,交AC 边于点F.F.点点D 为BC 上一点,连结DE DE、、DF.DF.设点设点E 到BC 的距离为x ,则△DEF 的面积S 关于x 的函数图象大致为函数图象大致为( ( ( )(2)(2015·杭州模拟(2)(2015·杭州模拟))在研究相似问题时,甲、乙同学的观点如下:在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3,4,5的三角形按图①的方式向外扩张,得到新的三角形,它们的对应边间距为1,则新三角形与原三角形相似.,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图②的方式向外扩张,得到新矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是对于两人的观点,下列说法正确的是( ( ( ) )A .两人都对.两人都对B .两人都不对.两人都不对C .甲对,乙不对.甲对,乙不对D .甲不对,乙对.甲不对,乙对(3)(3) (2015·滨州(2015·滨州))如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转,若∠BOA 的两边分别与函数y =-1x 、y =2x的图象交于B 、A 两点,则∠OAB 的大小的变化趋势为的大小的变化趋势为( ( ( ) )A .逐渐变小.逐渐变小B .逐渐变大.逐渐变大C .时大时小.时大时小D .保持不变.保持不变7.(2016·龙东.(2016·龙东))已知,在平行四边形ABCD 中,点E 在直线AD 上,上,AE AE AE==13AD AD,连结,连结CE 交BD 于点F ,则EF∶FC 的值是的值是 .【课本改变题】教材母题--浙教版教材九上第149页第5题课本中有一道作业题:课本中有一道作业题:有一块三角形余料ABC ABC,它的边,它的边BC BC==120mm ,高AD AD==80mm .要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB AB,,AC 上.问加工成的正方形零件的边长是多少mm?小颖解得此题的答案为48mm ,小颖善于反思,她又提出了如下的问题.,小颖善于反思,她又提出了如下的问题.(1)(1)如果原题中要加工的零件是一个矩形,如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm ?请你计算.?请你计算.(2)(2)如果原题中所要加工的零件只是一个矩形,如图如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.【方法与对策】本题是课本改变题,试题设置上主要是三角形和矩形的组合,通过基本图形是相似三角形,揭示对应边成比例的关系式来解决问题,再深入探究,规律性较强,这种题型是中考常用的命题方式.常用的命题方式.【找不准相似三角形中的对应边】【找不准相似三角形中的对应边】如图,△如图,△ABC ABC 中,点D 在线段BC 上,且△ABC∽△D 上,且△ABC∽△DBA BA BA,则下列结论一定正确的是,则下列结论一定正确的是,则下列结论一定正确的是( ( ( )A .AB 2=BC·BD =BC·BD B .AB 2=AC·BD =AC·BDC .AB AB··AD AD=BD·BC =BD·BC =BD·BC D .AB AB··AD AD=AD·CD =AD·CD =AD·CD参考答案 第28讲 图形的相似 第1课时 相似形【考点概要】【考点概要】2.成比例成比例 3.形状形状 相等相等 成比例成比例 边 相等相等 成比例成比例 全等全等 4.平行平行 成比例成比例 成比例成比例 相等 相等相等 成比例成比例 5.相等相等 成比例成比例 相似比相似比 平方平方【考题体验】【考题体验】1.B 2.D 3.45 80km 【知识引擎】【知识引擎】【解析】(1)添加条件是∠ABD =∠C 或∠ADB =∠ABC 或者AD AB =AB AC ; (2)由△ADB ∽△ABC ,得AD AB =ABAC,得AC =8; (3)相似三角形知识:性质、判定等.相似三角形知识:性质、判定等. 【例题精析】【例题精析】例1 (1)(1)设正方形的边长为设正方形的边长为2,则CD CD==2,CF CF==1.1.在直角三角形在直角三角形DCF 中,中,DF DF DF==12+22=5,∴FG FG==5,∴CG CG==5-1,∴CG CD =5-12,∴矩形DCGH 为黄金矩形.故选D . . (2)(2)(2)设设x 3=y 4=z 6=k(k≠0),根据题意,得x =3k 3k,,y =4k 4k,,z =6k 6k,所以,所以x +y -z x -y +z =3k 3k++4k 4k--6k 3k 3k--4k 4k++6k =k 5k =15. .例2 B 例3(1)(1)如图如图1中,∵四边形ABCD 是正方形,∴AB AB==BC BC==CD CD==AD AD,,∠DAB DAB=∠ABC=∠BCD=∠D==∠ABC=∠BCD=∠D==∠ABC=∠BCD=∠D=909090°,°,∵△∵△PBC PBC PBC∽△∽△∽△PAM PAM PAM,∴∠,∴∠,∴∠PAM PAM PAM=∠PBC,=∠PBC,PM PC =AM BC =PA PB,∵∠,∵∠PBC PBC PBC+∠PBA=+∠PBA=+∠PBA=909090°,∴∠°,∴∠°,∴∠PAM PAM PAM+∠PBA=+∠PBA=+∠PBA=909090°,°,∴∠∴∠APB APB APB==9090°,∴°,∴°,∴AP AP AP⊥⊥BN BN,∵∠,∵∠,∵∠ABP ABP ABP=∠ABN,∠=∠ABN,∠=∠ABN,∠APB APB APB=∠=∠=∠BAN BAN BAN==9090°,∴△°,∴△°,∴△BAP BAP BAP∽△∽△∽△BNA BNA BNA,∴,∴PA PB PB==ANAB AB,,∴AN AB =AM BC,∵AB AB==BC BC,,∴AN AN==AM. AM. (2)①仍然成立,(2)①仍然成立,AP AP⊥⊥BN 和AM AM==AN.AN.理由如图理由如图2中,∵四边形ABCD 是正方形,∴是正方形,∴AB AB AB==BC BC==CD CD==AD AD,∠,∠,∠DAB DAB DAB=∠ABC=∠BCD=∠D==∠ABC=∠BCD=∠D==∠ABC=∠BCD=∠D=909090°,∵△°,∵△°,∵△PBC PBC PBC∽△∽△∽△PAM PAM PAM,∴∠,∴∠,∴∠PAM PAM PAM==∠PBC,PM PC =AM BC =PA PB,∵∠,∵∠PBC PBC PBC+∠PBA=+∠PBA=+∠PBA=909090°,∴∠°,∴∠°,∴∠PAM PAM PAM+∠PBA=+∠PBA=+∠PBA=909090°,∴∠°,∴∠°,∴∠APB APB APB==9090°,∴°,∴°,∴AP AP AP⊥⊥BN BN,,∵∠∵∠ABP ABP ABP=∠ABN,∠=∠ABN,∠=∠ABN,∠APB APB APB=∠BAN==∠BAN==∠BAN=909090°,∴△°,∴△°,∴△BAP BAP BAP∽△∽△∽△BNA BNA BNA,∴,∴PA PB =AN AB ,∴AN AB =AM BC,∵,∵AB AB AB==BC BC,∴,∴,∴AN AN =AM. AM. ②这样的点P 不存在.理由:假设PC PC==12,如图3中,以点C 为圆心12为半径画圆,以AB为直径画圆,为直径画圆,CO CO CO==BC 2+BO 2=52>12+12,∴两个圆外离,∴∠,∴两个圆外离,∴∠APB APB APB<<9090°,这与°,这与AP⊥PB 矛盾,∴假设不可能成立,∴满足PC PC==12的点P 不存在.不存在. 例4 设AE AE==x ,则AC AC==x +4,∵,∵AC AC 平分∠BAD,∴∠平分∠BAD,∴∠BAC BAC BAC=∠CAD,∵∠=∠CAD,∵∠=∠CAD,∵∠CDB CDB CDB=∠BAC(圆周角定=∠BAC(圆周角定理),∴∠,∴∠CAD CAD CAD=∠CDB,∵∠=∠CDB,∵∠=∠CDB,∵∠ACD ACD ACD=∠DCE,∴△ACD∽△DCE,∴=∠DCE,∴△ACD∽△DCE,∴CD CE =AC DC ,即64=x +46,解得:,解得:x x =5.故选B .【变式拓展】【变式拓展】1.A 2.12 2.12 3.3.5n 22n 2n--1 4.(1)C (2)C 5.(1)1∶35.(1)1∶3 (2)2或103 6.(1)D (2)A (3)D 7.23或43 【热点题型】【热点题型】【分析与解】【分析与解】(1)(1)(1)设矩形的边长设矩形的边长PN PN==2y mm ,则PQ PQ==y mm ,由条件可得△APN∽△ABC,∴PN BC BC==AEAD AD,,即2y 120=8080--y 80,解得y =2407,∴PN PN==2407×2=4807(mm ),答:这个矩形零件的两条边长分别为2407mm ,4807mm ; (2)(2)设设PN PN==x mm ,由条件可得△APN∽△ABC,由条件可得△APN∽△ABC,∴∴PN BC =AE AD ,即x 120=8080--PQ 80,解得PQ PQ==8080--23x.∴S =PN·PQ==PN·PQ=x(80x(80x(80--23x)x)=-=-23x 2+80x 80x=-=-23(x (x--60)2+24002400,∴,∴,∴S S 的最大值为2400mm 2,此时PN PN==60mm ,PQ PQ==8080--23×6060==40(mm ). 【错误警示】A .∵△.∵△ABC ABC ABC∽△∽△∽△DBA DBA DBA,∴,∴AB BD =BC AB ,∴,∴AB AB 2=BD·BC.=BD·BC.。
初三数学教学案1. 3.1 平行四边形的性质班级________ 姓名________ 学号________ 等第________学习目标 1、能证明平行四边形的三个性质①对边相等②对角相等③对角线互相平分2、进一步培养的分析、综合的思考方法,及表达书写能力.发展学生演绎推理能力.3、掌握命题的题设、结论 重 点:平行四边形的性质证明难 点:分析、综合思考的方法 过 程: 一、知识回顾:我们曾经探索得到的平行四边形、矩形、菱形、正方形的性质,在下表相应的空格内打“√”(课本13页) 二、探究新知:1、证明:平行四边形对边相等、对角相等.2、证明:平行四边形对角线互相平分三、例题讲解:1、在□ABCD 中,E 、F 分别是AD 、BC 的中点. 求证:BE=DFFD CB拓展思考:在上述条件下,当点E、F分别在AD、BC上满足什么条件时使BE=DF?2、如图,在□ABCD中,点E,F在对角线AC上,且AE=CF.请你以点F为一个端点,和图中已标明字母的某一点连成一条线段,猜想并证明它和图中已有的某一线段相等(只需证明一组线段相等即可).(1)连结_________.(2)猜想:________=_________.(3)证明:四、课堂演练:1.判断题(对的在括号内填“∨”,错的填“×”)(1)平行四边形两组对边分别平行;()(2)平行四边形的四个内角都相等;()(3)平行四边形的相邻两个内角的和等于180°;()()(4)如果平行四边形相邻两边长分别是2cm和3cm,那么周长是10cm;(5)在平行四边形ABCD中,如果∠A=35°,那么∠B=55°;()2.平行四边形的周长为30,两邻边的差为5,则其较长边是________.※3.在□ABCD中,AC=10,BD=6,则边长AB,AD的可能取值为().(A)AB=4,AD=4 (B)AB=4,AD=7 (C)AB=9,AD=2 (D)AB=6,AD=2 ※4.平行四边形一边长为12cm,那么它的两条对角线的长度可能是().(A)8cm和14cm (B)10cm和14cm (C)18cm和20cm (D)10cm和34cm 3、证明:夹在两条平行线之间的平行线段相等.初三数学教学案1.3.1 平行四边形的性质课后作业班级________ 姓名________ 学号________ 等第________1.已知O是□ABCD的对角线交点,AC=10cm,BD=18cm,AD=•12cm,•则△BOC•的周长是_______.2.已知□ABCD的对角线AC,BD交于点O,△AOB的面积为2,那么□ABCD的面积为_____.3.如图,在□ABCD中,对角线AC,BD交于点O,EF是过点O的一条直线,交AB于点E,•交DC于点F.则OE与OF有什么数量关系,答4.已知平行四边形的两邻边之比为2:3,周长为20cm,•则这个平行四边形的两条邻边长分别为___________.5.如图,在□ABCD中,AE平分∠BAD交DC于点E,AD=5cm,AB=8cm,求EC的长.6.如图,在□ABCD中,AC⊥AB,AB=6,BC=10,求:(1)AB与CD的距离;(2)AD与BC的距离.7.用三种不同的方法把□ABCD的面积四等分,并简要说明分法.8.已知:如图,在□ABCD中,AC,BD交于点O,EF过点O,分别交CB,AD•的延长线于点E,F,求证:AE=CF .9.如图,已知四边形ABCD是平行四边形,∠BCD的平分线CF交AB于点F,∠ADC的平分线DG交边AB于点G.(1)求证:AF=GB;(2)请你在已知条件的基础上再添加一个条件,使得△EFG为等腰直角三角形,并说明理由.。
《四边形》教案《四边形》教案15篇作为一名无私奉献的老师,常常要写一份优秀的教案,教案有助于顺利而有效地开展教学活动。
那要怎么写好教案呢?以下是小编收集整理的《四边形》教案,仅供参考,希望能够帮助到大家。
《四边形》教案1教学目标1、知识与技能:理解平行与垂直是同一平面内两条直线的两种特殊位置关系,初步认识平行线与垂线。
2、过程与方法:在观察、操作、比较、概括中,经历探究平行线和垂线特征的过程,建立平行与垂直的概念。
3、情感态度与价值观:在活动中丰富学生活动经验,培养学生的空间观念及空间想象能力。
教学重难点1、教学重点:正确理解“相交”“互相平行”“互相垂直”等概念。
2、教学难点:理解平行与垂直概念的本质特征。
教学工具多媒体设备教学过程一、情境导入,画图感知1.学生想象在无限大的平面上两条直线的位置关系。
教师:摸一摸平放在桌面上的白纸,你有什么感觉?(1)学生交流汇报。
(2)像这样很平的面,我们就称它为平面。
(板书:平面)我们可以把白纸的这个面作为平面的一部分,请大家在这个平面上任意画一条直线,说一说,你画的这条直线有什么特点?(3)闭上眼睛想一想:白纸所在的平面慢慢变大,变得无限大,在这个无限大的平面上,直线也跟着不断延长。
这时平面上又出现了另一条直线,这两条直线的位置关系是怎样的呢?会有哪几种不同的情况?2.学生画出同一平面内两条直线的各种位置关系。
把你想象的情况画在白纸上。
注意一张纸上只画一种情况,想到几种就画几种,相同类型的不画。
二、观察分类,感受特征1.展示作品。
教师:同学们想象力真丰富!相互看一看,你们的想法一样吗?老师选择了几幅有代表性的作品,我们一起来欣赏一下。
如果你画的和这几种情况不一样,可以补充到黑板上。
不管哪种情况,我们所画的两条直线都在同一张白纸上。
因为我们把白纸的面看作了一个平面,所以可以这样说,我们所画的两条直线都在同一平面。
(板书:同一平面)2.分类讨论。
教师:同学们的想象力可真丰富,画出来这么多种情况。
OABCO图4-3平行四边形定义及性质学案1、定义理解:(利用P98~99平行四边形定义和性质段落内容,完成下列题目) ①在四边形ABCD 中,∵ , ;∴四边形ABCD 为 。
理由是 ②线段AC 和线段BD 叫做平行四边形ABCD 的两条 。
③平行四边形ABCD 用符号表示为 ;④∵□ABCD ,∴AB CD ,(定义)理由是: 。
AB CD ,(性质)理由是: 。
⑤∵□ABCD ,∴∠ABC=∠ ,∠BAC=∠ ;理由是: 。
⑥∵□ABCD ,∴AD ∥BC,∴∠ABC+∠BAC= 。
理由是: 。
⑦性质: 1、平行四边形的 相等, 2、平行四边形的 相等。
2、牛刀小试(请注意,第④题是让你学习做题格式和思路,) ①□ABCD 中,∠B=60。
,则∠A= ,∠C= ,∠D= 。
②□ABCD 中∠A+∠C=200°.则:∠A= ,∠B= .∠C= , ③□ABCD 中,∠A=120。
,∠ABD=35。
,则∠C= 。
,∠CBD= 。
.④如右下图,四边形ABCD 是平行四边形。
求: ③图 (1)∠D ,∠BCD 的度数。
3、探索平行四边形对角线性质如4-3图,□ABCD 的两条对角线AC ,BD 相交于点O , (1)图中有哪些三角形是全等的?有哪些线段是相等的?全等三角形有 相等的线段有:结论:平行四边形的性质3:平行四边形的对角线 。
数学表达式:∵□ABCD ,∴A0 C0,B0 D0;理由是( )4、模仿P100例1,完成下面题目如图,在□ABCD 中,BD ⊥AD ,AB=20,AD=16,分别求BC,CD 及OD,AO,AC 的长5、如图1,在□ABCD 中,对角线相交于点O ,AC ⊥CD ,AO = 3,BO = 5,则CO =____,CD=____,AD =6、在□ABCD 中,AB 、BC 、CD 的长度分别为2x +1,3x ,x +4,求□ABCD 的周长___ ____,感觉最顺手的几个题是_ _ _,感觉稍微难的题目是_ _ __,需要提醒才能完成的题目是_ __,经过讨论后发现自己做错的题目是_ ____,至今还有问题的题目是_ ____,如果让你给其他同学做些提醒,你最想提醒的是___ ; 你都和哪些同学交流了你的看法___ __ ___; 给你帮助最大(或你给他帮助)的同学是 __;平行四边形判定定理学案(阅读P103、P105、P106,选择合适判定定理,完成下列题目)①如图,四边形ABCD,AC、BD相交于点O,若OA=OC,OB=OD,则四边形ABCD是__________,理由是②如图,四边形ABCD中,若AB//CD,AD//BC则四边形ABCD是 ,理由是③四边形ABCD中,AB//CD,且AB=CD,则四边形ABCD是___________,理由是④图中的四边形ABCD是平行四边形吗?;理由是⑤在图中,AC=BD=16, AB=CD=EF=15,CE=DF=9。
27.3 位似第1课时位似图形的概念及画法一、预习目标及范围1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.3、预习P47-48,自学“思考”与“探究”,理解位似的概念,会找出位似图形的位似中心,并能按要求将图形进行放大或缩小的位似变换.二、预习要点两个多边形不仅,而且对应点的连线相交于一点,对应边互相,像这样的两个图形叫做位似图形,这个点叫做.三、预习检测1.下列说法正确的是( )A.两个图形如果是位似图形,那么这两个图形一定全等B.两个图形如果是位似图形,那么这两个图形不一定相似C.两个图形如果是相似图形,那么这两个图形一定位似D.两个图形如果是位似图形,那么这两个图形一定相似2.用作位似图形的方法,可以将一个图形放大或缩小,位似中心位置可能在( )A.原图形的外部B.原图形的内部C.原图形的边上D.任意位置3.下面是△ABC位似图形的几种画法,其中正确的有( )A.1个B.2个C.3个D.4个4.利用位似图形将一个图形放大或缩小时,首先要选取一点作为位似中心,那么位似中心可以在( )A.图形外B.图形内C.图形上D.以上都可以5.如图,在正方形A BCD的边AB,BC,CD,DA上顺次截取AA'=BB'=CC'=DD',根据所学知识,我们知道四边形A'B'C'D'也是正方形,且正方形A'B'C'D'相似于正方形ABCD,其中点A与A',点B与B',点C与C',点D与D'是对应顶点,那么这两个正方形是位似图形吗?如果是位似图形,请找出位似中心;如果不是位似图形,请说明理由.我的疑惑在预习过程中的存在哪些困惑与建议填写在下面,并与同学交流。
___________________________________________________________________________ _____________________________________________________________________________ __参考答案二、预习要点相似平行位似中心三、预习检测1.D2.D3.C4.D5.解:这两个正方形不是位似图形,因为它们对应点的连线所在的直线不交于同一点.。
2.5 四边形分类学案(含答案)
5四边形分类项目内容
1.你知道下面的四边形分别是什么四边形吗
2.认识四边形。
1画形状和大小不同的四边形。
2认识平行四边形和梯形。
两组对边分别平行的四边形叫作下图一,只有一组对边平行的四边形叫作下图二。
3.通过预习,我知道了常见的四边形有...等,其中长方形和正方形是特殊的。
判断平行四边形的标准是看两组对边是否,判断梯形的标准是必须是四边形并且只有组对边平行。
4.我还有不明白。
5.判断。
对的画“”,错的画“”1有一组对边平行的四边形是梯形。
2长方形.正方形是特殊的平行四边形。
3两条线段互相平行,它们也一定相等。
4两组对边分别平行的四边形叫作平行四边形。
6.剪一剪,在一个梯形上剪一刀,使分成的两个图形中有一个是平行四边形,另一个会是什么图形温馨提示知识准备长方形和正方形.平行线等相关知识。
学具准备拼四边形用的塑料棒四根,平行四边形.梯形剪纸模型各一个。
参考答案
1.长方形正方形
2.1略2平行四边形梯形
3.长方形正方形平行四边形梯形平行四边形平行一
4.略
5.123
46.剪图形略三角形或梯形。
图形的位似学习目标1.通过实验、操作、思考活动认识位似形.2.会利用位似形原理将一个图形放大或缩小.3.经历“探索—发现—猜想”,通过实际问题的研究,提高分析问题、解决问题的能力;4.懂得数学在现实生活中的作用,增强学好数学的信心.学习重点:理解位似是由位似中心和相似比决定的.学习难点:作位似图形以及求位似图形的相似比.学习过程:一、创设情景,感悟新知1.怎样作一个三角形的内接正方形呢?二、探索规律,揭示新知两个图形相似且对应点的连线相交于一点,像这样的相似形叫做位似形.三、尝试反馈,领悟新知1.如图,已知四边形ABCD,用尺规将它放大,使放大前后的图形对应线段的比为1∶2.2.如图,已知O是坐标原点,B.C两点的坐标分别为(3,-1)、(2,1).(1)以O为位似中心在y轴的将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B.C两点的对应点B‘、C‘的坐标;(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M’的坐标.3.如果两个三角形不仅是相似三角形,而且每对对应点所在的直线都经过同一点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做位似中心.利用三角形的位似可以将一个三角形缩小或放大.(1)如图(1),点O是等边△PQR的中心,P‘、Q’、R‘分别是OP、OQ、OR的中点,则△P’Q‘R’与△PQR是位似三角形,△P’Q‘R’与△PQR的位似比,位似中心分别为()A.2、点PB.、点PC.2、点OD.、点O(2)如图(2),用下面的方法可以画△AOB的内接等边三角形.阅读后证明相应问题.画法:①在△AOB画等边三角形CDE,使点C在OA上,点D在OB上;②连结OE并延长,交AB于点E‘,过E’作E‘C’∥EC,交OA于点C‘,作E’D‘∥ED,交OB于点D’;③连结C‘D’.则△C‘D’E‘是△AOB的内接三角形.求证:△C‘D’E‘是等边三角形.四、课堂练习,巩固新知1.用作位似图形的方法,可以将一个图形放大或缩小,位似中心位置可选在()修正栏:A.原图形的外部B.原图形的内部C.原图形的边上D.任意位置2.两个图形是位似图形,则它们一定相似,反过来,两个图形相似,则它们()A.一定位似B. 一定不位似C.不一定位似D.对应点的连线交于一点3.如图,矩形OABC的顶点坐标分别为O(0,0),A(6,0),B(6,4),C(0,4),画出以点O为位似中心,矩形OABC的位似图形OA’B‘C’,使它的面积等于矩形OABC面积的,并分别写出A’、B‘、C’三点的坐标.4.印刷一张矩形的广告牌,如图,它的印刷面积是32dm2,上下空白各1dm,两边空白各0.5dm,设印刷部分从上到下的长为xdm。
16.2平行四边行的性质(第1课时)能力.1.平行四边形的定义:(1)定义:两组对边分别平行的四边形是平行四边形;(2)表示:平行四边形用符号“□”来表示。
2.平行四边形性质:(1)边:两组对边分别平行且相等;(2)角:对角相等、邻角互补;(3)对角线:对角线互相平分。
3.两条平行线间的距离的定义:两条平行线中,一条直线上的任意一点到另一条直线的距离叫做这两条平行线间的距离。
4.平行四边形的面积:(1)计算公式:S=底×高;(2)等底等高的平行四边形面积相等,等底等高的三角形面积是平行四边形面积的一半。
能力和发散思维能力成功后的快乐。
课前准备:1、回忆四边形相关知识:指出下四边形的对边、对角、对角线对边定义:____________________________________________________________________ 对角定义: ____________________________________________________________________对角线定义:_______________________________________________________互为对边的是_____________D互为对角的是_____________对角线有:__________________平行四边形的概念1、拼图游戏问题1:小组活动:用两个全等的三角形,能拼出怎样的四边形?拼拼看。
⑴将一个三角形沿对应边对折可拼成_________________________________。
⑵将一个三角形旋转180度后,使对应边生命可拼成___________________。
⑶将每组对应边旋转后重合可拼出_____个____________________________。
问题2:观察拼出的这个四边形的对边有怎样的位置关系?说说你的理由. 归纳小结:1、平行四边形概念:两组 分别 的四边形,叫做平行四边形。
《四边形》中考复习学案例1、(2015泰安)(本小题满分10分)如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC的中点,BD平分∠ABC,点F在AB上,且BF = BC.(2)DE⊥AC例2、(2016泰安)如图,在四边形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中点,AD⊥AE.(1)求证:AC2=CDBC;(2)过E作EG⊥AB,并延长EG至点K,使EK=EB.①若点H是点D关于AC的对称点,点F为AC的中点,求证:FH⊥GH;②若∠B=30°,求证:四边形AKEC是菱形.例3、(2016泰安)(1)已知:△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由;(3)若将(1)中的“若∠A=60°”改为“若∠A=90°”,其它条件不变,则的值是多少?(直接写出结论,不要求写解答过程)例4、(2017•泰安)如图,四边形ABCD 是平行四边形,AD=AC ,AD ⊥AC ,E 是AB 的中点,F 是AC 延长线上一点.(1)若ED ⊥EF ,求证:ED=EF ;(2)在(1)的条件下,若DC 的延长线与FB 交于点P ,试判定四边形ACPE 是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)若ED=EF ,ED 与EF 垂直吗?若垂直给出证明.例5、(2018泰安)如图,ABC ∆中,D 是AB 上一点,DE AC ⊥于点E ,F 是AD 的中点,FG BC ⊥于点G ,与DE 交于点H ,若FG AF =,AG 平分CAB ∠,连接GE ,GD .(1)求证:ECG GHD ∆≅∆;(2)小亮同学经过探究发现:AD AC EC =+.请你帮助小亮同学证明这一结论. (3)若30B ∠=,判定四边形AEGF 是否为菱形,并说明理由.训练题一、选择题(本大题共10小题,共30.0分)1.如图,的对角线AC与BD相交于点O,垂足为E,,,,则AE的长为A. B. C. D.2.如图,四边形ABCD内接于,若四边形ABCO是平行四边形,则∠的大小为A. °B. °C. °D. °3.如图,正方形ABCD和正方形CEFG中,点D在CG上,,,H是AF的中点,那么CH的长是A. B. C. D. 24.如图,菱形ABCD中,,∠,,,垂足分别为E,F,连接EF,则△的面积是A. B. C. D.5.如图,已知▱AOBC的顶点,,点B在x轴正半轴上按以下步骤作图:以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,分别以点D,E为圆心,大于的长为半径作弧,两弧在∠内交于点作射线OF,交边AC于点则点G的坐标为A. B. C. D.6.如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于最小值的是A. ABB. DEC. BDD. AF7.如图,四边形ABCD为平行四边形,延长AD到E,使,连接EB,EC,添加一个条件,不能使四边形DBCE成为矩形的是A. B. C. ∠ D.8.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接若,,则菱形ABCD的面积为A. B. C. D.9.如图,四个全等的直角三角形纸片既可以拼成菱形内角不是直角,也可以拼成正方形有空隙,则菱形ABCD面积和正方形EFGH面积的比值为A. 1B.C.D.10.如图,点E在正方形ABCD的对角线AC上,且,直角三角形FEG的两直角边EF,EG分别交BC,DC于点M,N,若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为A. B. C. D.二、填空题(本大题共7小题,共21.0分)11.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,,F为DE的中点若△的周长为18,则OF的长为.12.如图,已知菱形ABCD,对角线AC,BD相交于点O,若∠,,则BD的长是.13.如图,矩形ABCD中,,点E为DC上一个动点,把△沿AE折叠,当点D的对应点落在∠的角平分线上时,DE的长为.14.如图,在▱ABCD中,,F是AD的中点,作,垂足E在线段AB上,连接EF、则下列结论中一定成立的是把所有正确结论的序号都填在横线上∠∠∠∠.△ △15.如图,△和△是两个具有公共边的全等的等腰三角形,,将△沿射线BC平移一定的距离得到△,连接、如果四边形是矩形,那么平移的距离为cm.16.如图,在矩形纸片ABCD中,,点E在CD上,将△沿BE折叠,点C恰落在边AD上的点F处点G在AF上,将△沿BG折叠,点A恰落在线段BF上的点H处有下列结论:∠△ △.其中正确的是把所有正确结论的序号都选上17.如图,在菱形ABCD中,,M,N分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当时,的值为.三、解答题(本大题共7小题,共56.0分)18.如图,AB是的直径,于点O,连接DA交于点C,过点C作的切线交DO于点E,连接BC交DO于点F.求证:连接AF并延长,交于点填空:当∠的度数为时,四边形ECFG为菱形当∠的度数为时,四边形ECOG为正方形.19.如图,在四边形ABCD中,BD为一条对角线,,,∠,E为AD的中点,连接BE.求证:四边形BCDE为菱形连接AC,若AC平分∠,,求AC的长.20.在△中,∠,D是BC的中点,E是AD的中点过点A作交BE的延长线于点F.求证:△ △证明四边形ADCF是菱形若,,求菱形ADCF的面积.21.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠∠.求证:;求证:△ △;如图2,若AD、BC所在直线互相垂直,求的值.22.已知:如图,在△中,∠°,D、E分别是BC、AC上,且,,M是AE的中点,MD和AB的延长线交于点F.求证:△ △;.23.在△中,,点O是AC的中点,点P是AC上的一个动点点P不与点A,O,C重合过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.如图1,请直接写出线段OE与OF的数量关系;如图2,当∠°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由;若,,当△为等腰三角形时,请直接写出线段OP的长.24.(2019泰安)如图,四边形ABCD是正方形,△是等腰直角三角形,点E在AB上,且∠°,,垂足为点G.试判断AG与FG是否相等?并给出证明;若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.答案和解析1.【答案】D【解析】【分析】本题考查了勾股定理的逆定理和平行四边形的性质,由勾股定理的逆定理可判定△是直角三角形,利用三角形ABC面积的不同表示方法,建立方程求出AE的长.【解答】解:,,四边形ABCD是平行四边形,,,,,∠°,在△中,,,△,,故选D.2.【答案】C【解析】【分析】本题主要考查了圆周角定理,圆内接四边形的性质,平行四边形的性质应牢固掌握该定理并能灵活运用,设∠的度数°,则∠的度数°,由题意可得方程,求出x即可解决问题.【解答】解:设∠,则∠.四边形ABCO是平行四边形,∠∠.∠∠,..∠.故选C.3.【答案】B【解析】【分析】此题考查正方形的性质、勾股定理等知识分析题意,根据勾股定理可求出AF,再根据直角三角形的性质即可求出CH.【解答】解:如图,连接AC、CF,在正方形ABCD和正方形CEFG中,1,,,,∠∠,∠,由勾股定理得,,是AF的中点,2.故选B.4.【答案】B【解析】【分析】此题考查菱形的性质,等边三角形的判定.掌握菱形的性质,等边三角形的面积公式,证明△是等边三角形是解题的关键.首先利用菱形的性质及等边三角形的判定可判断出△是等边三角形,再根据勾股定理求出等边三角形的边长即可.【解答】解:连接AC,如图所示,在菱形ABCD中,,∠, △是等边三角形,,∠,,,同理可得,∠,则△为等边三角形,.△故选B.5.【答案】A【解析】【分析】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.依据勾股定理即可得到△中,,依据∠∠,即可得到,进而得出,可得点G的坐标.【解答】解:如图,设AC与y轴交于点H.在▱AOBC中,,轴,,,由作图知OF平分∠,∠∠∠,,,点G的坐标为.故选A.6.【答案】D【解析】【分析】本题考查的是轴对称,最短路线问题,根据题意作出A关于BD的对称点C是解答此题的关键.连接CE,CP,当点E,P,C在同一直线上时,的最小值为CE长,依据△ △,即可得到最小值等于线段AF的长.【解答】解:在正方形ABCD中,连接CE、PC.点A与点C关于直线BD对称,,的最小值为EC.,F分别为AD,BC的中点,.,∠∠,△ △..故选D.7.【答案】B【解析】【分析】本题考查了平行四边形的判定和性质、矩形的判定,首先判定四边形BCDE为平行四边形是解题的关键.先证明四边形BCDE为平行四边形,再根据矩形的判定进行解答.【解答】解:四边形ABCD是平行四边形,,,,,又,,四边形DBCE是平行四边形.若,则,则平行四边形DBCE是矩形.若,则平行四边形DBCE是菱形.若,即∠,则平行四边形DBCE是矩形.若∠,则∠,则平行四边形DBCE是矩形.故选B.8.【答案】A【解析】【分析】本题考查菱形的性质,三角形中位线定理,先根据已知得EF是△的中位线,根据三角形中位线定理求的AC的长,然后根据菱形的面积公式求解.【解答】解:因为E,F分别是AD,CD边上的中点,所以,且,所以.所以菱形.故选A.9.【答案】C【解析】【分析】本题考查了正方形的性质,直角三角形的性质,正确的理解题意是解题的关键.设直角三角形的长直角边为b,短直角边为a,于是得到,根据直角三角形的性质得到∠°,求得于是得到菱形,正方形EFGH面积,即可得到结论.【解答】解:设直角三角形的长直角边的长度为b,短直角边的长度为a,四边形ABCD是菱形,,即,∠,a,S菱形ABCD,又正方形,菱形ABCD面积和正方形EFGH面积的比值为.故选C.10.【答案】D【解析】【分析】本题考查正方形的性质,全等三角形的判定与性质,关键是过E作于点P,于点O,△ △,利用四边形EMCD的面积等于正方形HCOE的面积求解.【解答】解:过点E作,,显然四边形EHCO为正方形,,∠.∠∠,∠∠.∠∠, △ △,.四边形正方形,.,正方形,,正方形正方形重叠部分四边形EMCN的面积为.故选D.11.【答案】【解析】【分析】本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中.先根据直角三角形的性质求出DE的长,再由勾股定理得出CD的长,进而可得出BE的长,由三角形中位线定理即可得出结论.【解答】解:四边形ABCD是正方形,,,∠.在△中,为DE的中点,.△的周长为18,,又,,,,,.在△中,,F为DE的中点,为△的中位线,.12.【答案】2【解析】【分析】本题考查了菱形的性质,解直角三角形,锐角三角函数的定义,掌握菱形的对角线互相垂直平分是解题的关键根据菱形的对角线互相垂直平分可得,,再解△,根据∠,求出,那么【解答】解:四边形ABCD是菱形,,∠,又,.故答案是2.13.【答案】或【解析】【分析】本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.连接,过作,交AB于点M,CD于点N,作交BC于点P,先利用勾股定理求出,再分两种情况利用勾股定理求出DE【解答】解:作BF平分∠交CD于点F,作于点G,由题意知,,是以A为圆心,AD长为半径的圆弧与BF的交点,易知有两种情况,第一种情况:如图,在△中,,,,作,垂足为H.在△中,易求得,,设,则,,在△中,,即,解得,即,第二种情况:如图,作,垂足为H,同理求得.综上所述,DE的长为或.14.【答案】【解析】【分析】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△ △是解题关键分别利用平行四边形的性质以及全等三角形的判定与性质得出△ △,得出对应线段之间关系进而得出答案.【解答】解:是AD的中点,,在▱ABCD中,,,∠∠,,∠∠,∠∠,∠∠,故正确延长EF,交CD的延长线于M,四边形ABCD是平行四边形,,∠∠,∠∠在△和△中,∠∠△ △,,,∠,∠∠,,故正确,△ △ ,,△ △ ,△ △ ,故错误由得∠∠∠,又易证∠∠∠,∠∠∠∠,故正确.15.【答案】7【解析】【分析】本题考查了等腰三角形的性质,矩形的性质,勾股定理,三角形的面积和因式分解法解一元二次方程,作出辅助线构建相似三角形是解题的关键.作于E,设平移的为xcm,根据等腰三角形的性质和矩形的性质求得∠∠,∠∠°,根据勾股定理求出AE与的长,再根据三角形的面积相等列出方程,解方程即可求得平移的距离.【解答】解:作于点E,则.设平移的距离为xcm,在△中,,当四边形为矩形时,∠,在△中,,,所以,整理得,解得,舍去,所以平移的距离为7cm.16.【答案】【解析】【分析】本题考查了勾股定理,折叠的性质,矩形的性质等知识点,能灵活运用定理进行推理和计算是解此题的关键根据矩形的性质得出∠∠∠∠°,,,根据折叠得出∠∠,∠∠,,,,根据勾股定理求出,再逐个判断即可.矩形的四个角都是直角,一条对角线将矩形分成两个直角三角形,可用勾股定理或三角函数求线段的长矩形的对角线相等且互相平分,故可借助对角线的关系得到全等三角形矩形的两条对角线把矩形分成四个等腰三角形当已知条件中有一个角为时,应联想到“在直角三角形中,角所对的直角边等于斜边的一半”这一性质.【解答】解:∠∠,∠∠,∠,∠,故正确,,,,设,则,在△中,,,,即,,,,又易知△△,,即,,,若△ △,则,但,故不正确,,△ △ ,△ △,△ △ ,故正确△ △,,,,,,故正确.17.【答案】【解析】【分析】此题主要考查了翻折变换的性质以及解直角三角形,正确表示出CN的长是解题关键.首先延长NF与DC交于点H,进而利用翻折变换的性质得出,再利用边角关系得出BN,CN的长进而得出答案.【解答】解:延长NF与DC交于点H,∠,∠∠,∠∠,∠∠,∠∠,∠∠,∠∠,.在△中,,设,则,,,.∠,则∠,,,,,,.18.【答案】解:证明:连接OC.是的切线,.∠∠.,∠∠.∠∠,∠∠.,∠∠B.∠∠....【解析】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.连接OC,如图,利用切线的性质得∠∠°,再利用等腰三角形和互余证明∠∠,然后根据等腰三角形的判定定理得到结论;当∠°时,∠°,证明△和△都为等边三角形,从而得到,则可判断四边形ECFG为菱形;当∠°时,∠°,利用三角形内角和计算出∠°,利用对称得∠°,则∠°,接着证明△ △得到∠∠°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.19.【答案】证明:为AD的中点,.,.,四边形BCDE为平行四边形.又在△中,E为AD的中点,∠,,为菱形.解:设AC与BE交于点H,如图.,∠∠.平分∠,∠∠,∠∠,,由可知,,, △为等边三角形,∠,,.在△中,∠,.【解析】本题考查菱形的判定与性质,直角三角形斜边上的中线,°直角三角形的性质.由,,推出四边形BCDE是平行四边形,再证明即可解决问题;在△中,只要证明∠°,即可解决问题.20.【答案】证明:在△中,∠,D是BC的中点,.,∠∠,是AD的中点,.又∠∠,△ △.证明:由知,四边形ADCF是平行四边形.又,四边形ADCF是菱形.解:解法一:连接DF,,,,四边形ABDF是平行四边形,,.菱形解法二:在△中,,,,设BC边上的高为h,则,,.菱形【解析】本题考查了全等三角形的性质和判定,平行四边形的判定,菱形的判定的应用,菱形的面积计算,主要考查了推理能力.根据AAS证△ △;利用中全等三角形的对应边相等得到结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF是菱形,由“直角三角形斜边的中线等于斜边的一半”得到,从而得出结论;由直角三角形ABC与菱形有相同的高,根据等积变形求出这个高,代入菱形面积公式可求出结论.21.【答案】证明:是AB的垂直平分线,,同理:,在△和△中,∠∠,△ △,;证明:∠∠,∠∠,在△和△中,,△ △,,又∠∠,∠∠,△ △;解:延长AD交GB于点M,交BC的延长线于点H,如图所示:则,△ △,∠∠,在△和△中,∠∠,∠∠,∠∠°,∠∠°,,又 △ △,.【解析】本题是相似形综合题目,考查了线段垂直平分线的性质、全等三角形的判定与性质、相似三角形的判定与性质、三角函数等知识;本题难度较大,综合性强,特别是中,需要通过作辅助线综合运用的结论和三角函数才能得出结果.由线段垂直平分线的性质得出,,由SAS证明△ △,得出对应边相等即可;先证出∠∠,由,证出△ △,得出比例式,再证出∠∠,即可得出△ △;延长AD交GB于点M,交BC的延长线于点H,则,由△ △,得出∠∠,再求出∠∠°,得出∠∠°,求出,由△ △,即可得出的值.22.【答案】证明:,,△是等腰直角三角形.是AE的中点,,.∠°,∠,∠都与∠互余,∠∠,又,∠∠°,△ △;延长AD,交FC于N,由△ △,得,又∠°,∠∠°.又∠°,∠∠,,,.【解析】本题考查了等腰直角三角形的性质与判定,全等三角形的判定与性质,垂线的性质,平行线的判定等;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.23.【答案】解:.,理由如下:如图2中,延长EO交CF于K.∠∠∠°,∠∠°,∠∠°,∠∠,在△和△中,∠∠∠∠△ △,,.,,,∠∠,在△和△中,∠∠∠∠△ △,,,,△是等腰直角三角形,,.的长为或.【解析】【分析】本题考查三角形综合题、等腰三角形的性质、全等三角形的判定和性质、直角三角形斜边中线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.如图1中,延长EO交CF于首先证明△ △,推出即可解决问题;如图2中,延长EO交CF于由△ △,推出,,由△ △,推出,,推出,可得△是等腰直角三角形,即可解决问题;分两种情形分别求解即可解决问题.【解答】解:如图1中,延长EO交CF于K.,,,∠∠,在△和△中,∠∠∠∠△ △,,△是直角三角形,.见答案.如图3中,延长EO交CF于作于H.,,,,在△中,∠,∠°,∠°,,,△是等腰三角形,观察图形可知,只有,在△中,,,,.如图4中,当点P在线段OC上时,作于G.同法可得:,,,∠,∠°,,,,△是等腰三角形,,,,.综上所述,OP的长为或.24.【答案】解:,理由如下:如图,过点F作交BA的延长线于点M四边形ABCD是正方形,∠°∠,∠°,四边形AGFM是矩形,,,∠°,∠∠°,∠∠°,∠∠,且∠∠°,, △ △,,,,四边形AGFM是正方形,,理由如下:如图,延长GH交CD于点N,,,,∠∠,∠∠,点H为CF的中点,,△ △,,,,又,,且,.【解析】本题考查了正方形的性质,矩形的判定,全等三角形的判定和性质,等腰三角形的性质,证明△ △是本题的关键.过点F作交BA的延长线于点M,可证四边形AGFM是矩形,可得,,由“AAS”可证△ △,可得,,可得;延长GH交CD于点N,由平行线的性质,得出∠∠,∠∠,加之,得出△ △,可得,,即可求,由等腰三角形的性质可得.。
第五章四边形第一讲多边形与平行四边形【基础知识回顾】一、多边形:1、定义:在平面内,由若干条不在同一直线上的线段相连组成的图形叫做多边形,各边相等、也相等的多边形叫做正多边形2、多边形的内外角和:n(n≥3)的内角和是外角和是正n边形的每个外角的度数是,每个内角的度数是。
3、多边形的对角线:多边形的对角线是连接多边形的两个顶点的线段,从n边形的一个顶点出发有条对角线,将多边形分成个三角形。
【名师提醒:1、三角形是边数最少的多边形2、所有的正多边形都是轴对称图形,正n边形共有条对称轴,边数为数的正多边形也是中心对称图形】二、平行四边形1、定义:两组对边分别的四边形是平行四边形,平行四边形ABCD可表示为2、平行四边形的特质:⑴平行四边形的两组对边分别⑵平行四边形的两组对角分别⑶平行四边形的对角线【名师提醒:1、平行四边形是对称图形,对称中心是过对角线交点的任一直线被一组对边截得的线段该直线将原平行四边形分成全等的两个部分】3、平行四边形的判定:⑴用定义判定⑵两组对边分别的四边形是平行四边形⑶一组对边的四边形是平行四边形⑷两组对角分别的四边形是平行四边形⑸对角线的四边形是平行四边形4、平行四边形的面积:计算公式×同底(等底)同高(等高)的平行四边形面积【名师提醒:夹在两平行线间的平行线段两平行线之间的距离处处】【重点考点例析】考点一:多边形内角和、外角和公式例 1 (2013•梅州)若一个多边形的内角和小于其外角和,则这个多边形的边数是()A.3 B.4 C.5 D.6对应训练1.(2013•长沙)下列多边形中,内角和与外角和相等的是()A.四边形B.五边形C.六边形D.八边形考点二:平行四边形的性质例2 (2013•益阳)如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2 B.∠BAD=∠BCD C.AB=CD D.AC⊥BD3.(2013•长春)在△ABC中,AB=AC,点D、E、F分别是AC、BC、BA延长线上的点,四边形ADEF为平行四边形.求证:AD=BF.考点三:平行四边形的判定例3(2013•荆门)四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种B.4种C.5种D.6种第二讲矩形菱形正方形【基础知识回顾】一、矩形:1、定义:有一个角是角的平行四边形叫做矩形2、矩形的性质:⑴矩形的四个角都⑵矩形的对角线3、矩形的判定:⑴用定义判定⑵有三个角是直角的是矩形⑶对角线相等的是矩形【名师提醒:1、矩形是对称图形,对称中心是,矩形又是对称图形,对称轴有条】二、菱形:1、定义:有一组邻边的平行四边形叫做菱形2、菱形的性质:⑴菱形的四条边都⑵菱形的对角线且每条对角线3、菱形的判定:⑴用定义判定⑵对角线互相垂直的是菱形⑶四条边都相等的是菱形【名师提醒:1、菱形既是对称图形,也是对称图形,2、菱形的面积可以用平行四边形面积公式计算,也可以用两对角线积的来计算】三、正方形:1、定义:有一组邻边相等的是正方形,或有一个角是直角的是正方形2、性质:⑴正方形四个角都都是角,⑵正方形四边条都⑶正方形两对角线、且每条对角线平分一组内角3、判定:⑴先证是矩形,再证⑵先证是菱形,再证4、正方形也既是对称图形,又是对称图形,有条对称轴。
【重点考点例析】考点一:与矩形有关的折叠问题例1 (2013•泸州)如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=105cm,且tan∠EFC=34,那么该矩形的周长为()A.72cm B.36cm C.20cm D.16cm考点二:和菱形有关的对角线、周长、面积的计算问题例2 (2013•泉州)如图,菱形ABCD的周长为85,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO= ,菱形ABCD的面积S= .对应训练(2013•凉山州)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.17考点三:和正方形有关的证明题3.(2013•济宁)如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA 上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.4.(2013•青岛)已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB= 时,四边形MENF是正方形(只写结论,不需证明)第三讲平移、旋转与对称【基础知识回顾】一、轴对称与轴对称图形:1、轴对称:把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形那么就说这两个图形成轴对称,这条直线叫2、轴对称图形:如果把一个图形沿着某条直线对折,直线两旁的部分能够互相那么这个图形叫做轴对称图形3、轴对称性质:⑴关于某条直线对称的两个图形⑵对应点连接被对称轴【名师提醒:1、轴对称是指个图形的位置关系,而轴对称图形是指个具有特殊形状的图形;2、对称轴是而不是线段,轴对称图形的对称轴不一定只有一条】二、图形的平移与旋转:1、平移:⑴定义:在平面内,把某个图形沿着某个移动一定的这样的图形运动称为平移⑵性质:Ⅰ、平移不改变图形的与,即平移前后的图形Ⅱ、平移前后的图形对应点所连的线段平行且【名师提醒:平移作图的关键是确定平移的和】2、旋转:⑴定义:在平面内,将一个图形绕一个定点沿某个方向旋转一个,这样的图形运动称为旋转,这个点称为转动的称为旋转角⑵旋转的性质:Ⅰ、旋转前后的图形Ⅱ、旋转前后的两个圆形中,对应点到旋转中心的距离都,每对对应点与旋转中心的连线所成的角度都是旋转角都【名师提醒:1、旋转作用的关键是确定、和,2、一个图形旋转一定角度后如果能与自身重合,那么这个图形就是旋转对称图形】三、中心对称与中心对称图形:1、中心对称:在平面内,一个图形绕某一点旋转1800能与自身重合它能与另一个图形就说这两个图形关于这个点成中心对称,这个点叫做2、中心对称图形:一个图形绕着某点旋转后能与自身重合,这种图形叫中心对称图形,这个点叫做3、性质:在中心对称的两个图形中,对称点的连线都经过且被平分【名师提醒:1、中心对称是指个图形的位置关系,而中心对称图形是指个具有特殊形状的图形2、常见的轴对称有、、、、、等,常见的中心对称图形有、、、、、等【典型例题解析】考点一:轴对称图形例1 下列四种图形都是轴对称图形,其中对称轴条数最多的图形是()等边三角形B.矩形C.菱形D.正方形例2 (2013•遵义)已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则a b的值为.对应训练1.(2013•铜仁地区)点P(2,-1)关于x轴对称的点P′的坐标是.2.(2013•郴州)在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?考点二:中心对称图形例(2013•深圳)在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于原点对称,则a+b的值为()A.33 B.-33 C.-7 D.7对应训练4.(2013•营口)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.考点四:平移例4 (2013•绵阳)如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(-2,3),嘴唇C点的坐标为(-1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是.5.(2013•陕西)在平面直角坐标系中,线段AB的两个端点的坐标分别为A(-2,1)、B(1,3),将线段AB通过平移后得到线段A′B′,若点A的对应点为A′(3,2),则点B的对应点B′的坐标是.考点五:旋转的性质6.(2013•扬州)如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连接AE.(1)求证:AB⊥AE;(2)若BC2=AD•AB,求证:四边形ADCE为正方形.考点七:简单的图形变换的应用例12 (2013•眉山)如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求A与A1,B与B1,C与C1相对应)(2)作出△ABC绕点C顺时针方向旋转90°后得到的△A2B2C;(3)在(2)的条件下直接写出点B旋转到B2所经过的路径的长.(结果保留π)第四讲相似图形【基础知识回顾】一、成比例线段:1、线段的比:如果选用同一长度的两条线段AB,CD的长度分别为m、n则这两条线段的比就是它们长度的比,即:=2、比例线段:四条线段a、b、c、d如果= 那么四条线段叫做成比例线段。
3、比例的基本性质:= <=>4、合比性质:5、等比性质6、、平行线分线段成比例定理:将平行线截两条直线7、黄金分割:点C把线段AB分成两条,线段AC和BC(AC>BC)如果那么称线段AB被点C黄金分割AC与AB的比叫黄金比,即ACAB= ≈二、相似三角形:1、定义:如果两个三角形的各角对应各边对应那么这两个三角形相似2、性质:⑴相似三角形的对应角对应边⑵相似三角形对应点的比、对应角平分线的比、对应的比都等于⑶相似三角形周长的比等于面积的比等于1、判定:⑴基本定理:平行于三角形一边的直线和其它两边或两线相交,三角形与原三角形相似⑵两边对应且夹角的两三角形相似⑶两角的两三角形相似⑷三组对应边的比的两三角形相似三、相似多边形:1、定义:各角对应各边对应的两个多边形叫做相似多边形2、性质:⑴相似多边形对应角对应边⑵相似多边形周长的比等于面积的比等于四、位似:1、定义:如果两个图形不仅是而且每组对应点所在直线都经过那么这样的两个图形叫做位似图形,这个点叫做这时相似比又称为2、性质:位似图形上任意一点到位似中心的距离之比都等于【重点考点例析】考点一:平行线分线段成比例例1 (2013•上海)如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()A.5:8 B.3:8 C.3:5 D.2:5对应训练1.(2013•乌鲁木齐)如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=3,则GH的长为.考点二:位似例2 在平面直角坐标系中,已知点E (-4,2),F (-2,-2),以原点O 为位似中心,相似比为12,把△EFO 缩小,则点E 的对应点E′的坐标是( ) A .(-2,1) B .(-8,4) C .(-8,4)或(8,-4) D .(-2,1)或(2,-1)对应训练2.(2013•青岛)如图,△ABO 缩小后变为△A′B′O ,其中A 、B 的对应点分别为A′、B′点A 、B 、A′、B′均在图中在格点上.若线段AB 上有一点P (m ,n ),则点P 在A′B′上的对应点P′的坐标为( )A .(2m ,n )B .(m ,n )C .(m ,2n )D .(2m ,2n ) 考点三:相似三角形的性质及其应用例 3 (2013•陕西)一天晚上,黎明和张龙利用灯光下的影子长来测量一路灯D 的高度.如图,当李明走到点A 处时,张龙测得李明直立时身高AM 与影子长AE 正好相等;接着李明沿AC 方向继续向前走,走到点B 处时,李明直立时身高BN 的影子恰好是线段AB ,并测得AB=1.25m ,已知李明直立时的身高为1.75m ,求路灯的高CD 的长.(结果精确到0.1m .考点四:相似三角形的判定例4.(2013•益阳)如图,在△ABC 中,AB=AC ,BD=CD ,CE ⊥AB 于E .求证:△ABD ∽△CBE .考点五:相似三角形的判定和性质例5 (2013•荆州)如图,在△ABC 中,BC >AC ,点D 在BC 上,且DC=AC ,∠ACB 的平分线CE 交AD 于E ,点F 是AB 的中点,则S △AEF :S 四边形BDEF 为( )A .3:4B .1:2C .2:3D .1:3对应训练5.(2013•无锡)如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于O ,AD=1,BC=4,则△AOD 与△BOC 的面积比等于( )A .12B .14C .18D .1166.(2013•徐州)如图,在Rt △ABC 中,∠C=90°,翻折∠C ,使点C 落在斜边AB 上某一点D 处,折痕为EF (点E 、F 分别在边AC 、BC 上)(1)若△CEF 与△ABC 相似.①当AC=BC=2时,AD 的长为 ;②当AC=3,BC=4时,AD 的长为 ;(2)当点D 是AB 的中点时,△CEF 与△ABC 相似吗?请说明理由.第五讲 投影与视图【基础知识回顾】一、投影:1、定义:一般地,用光线照射物体,在某个平面上得到得影子叫做物体的 其中照射光线叫做 投影所在的平面叫做2、平行投影:太阳光可以近似地看作是 光线,像这样的光线所形成的投影称为平行投影3、中心投影:由同一点(点光源)发出的光线形成的投影叫做 ,如物体在 、 、 等照射下所形成的投影就是中心投影【名师提醒:1、中心投影的光线 平行投影的光线2、在同一时刻,不同物体在太阳下的影长与物高成3、物体投影问题有时也会出现计算解答题,解决这类问题首先要根据图形准确找出比例关系,然后求解】二、视图:1、定义:从不同的方向看一个物体,然后描绘出所看到的图形即视图。