2011上海大同杯数学竞赛试题
- 格式:pdf
- 大小:684.26 KB
- 文档页数:6
G A B CDE F2011年全国初中数学联合数学竞赛试题第一试一.选择题1.已知a +b =2,(1-a )2b +(1-b )2a =-4,则ab 的值为( )(A) 1 (B) -1 (C) -1 2(D)1 22. 已知△ABC 的两条高线的长分别为5和20,若第三条高线的长也是整数,则第三条高线长的最大值为( )(A) 5 (B) 6 (C) 7 (D) 83. 方程│x 2-1│=(4-23) (x +2)的解的个数为( )(A) 1个 (B) 2个 (C) 3个 (D) 4个4. 今有长度分别为1,2,…,9的线段各一条,现从中选出若干条线段组成“线段组”,由这一组线段恰好可以拼接成一个正方形,则这样的“线段组”的组数有( ) (A) 5组 (B) 7组 (C) 9组 (D) 11组5. 如图,菱形ABCD 中,AB =3, DF =1,∠DAB =60°,∠EFG =15°,FG ⊥BC ,则AE =( )(A) 1+2 (B) 6 (C) 23-1 (D) 1+36. 已知1x +1y +z =12, 1y +1x +z =13,1z +1x +y =14,则 2x +3y +4z 的值为( )(A) 1 (B)3 2(C) 2 (D)52二.填空题1. 在△ABC 中,已知∠B =2∠A ,BC =2,AB =2+23,则∠A = .2. 二次函数y =x 2+bx +c 的图象的顶点为D ,与x 轴正方向从左至右依次交于A ,B 两点,与y 轴正方向交于C 点,若△ABD 和△OBC 均为等腰直角三角形(O 为坐标原点),则 b +2c = .3. 能使2n +256是完全平方数的正整数n 的值为 .OA BCDEF4. 如图,已知AB 是⊙O 的直径,弦CD 与AB 交于点E ,过点A 作圆的切线与CD 的延长线交于点F ,如果DE =34CE ,AC =85,D 为EF 的中点,则AB = .第二试1. 已知三个不同的实数a ,b ,c 满足a -b +c =3,方程x 2+ax +1=0和x 2+bx +c =0有一个相同的实根,方程x 2+x +a =0和x 2+cx +b =0也有一个相同的实根.求a ,b ,c 的值.PABCDS2. 如图,在四边形ABCD 中,已知∠BAD =60°,∠ABC =90°,∠BCD =120°,对角线AC ,BD 交于点S ,且DS =2SB ,P 为AC 的中点. 求证:(1)∠PBD =30°;(2)AD =DC .3. 已知m ,n ,p 为正整数,m <n .设A (-m ,0),B (n ,0),C (0,p ),O 为坐标原点.若∠ACB =90°,且OA 2+OB 2+OC 2=3(OA +OB +OC ) (1)证明: m +n =p +3;(2)求图象经过A ,B ,C 三点的二次函数的解析式.参考答案一.选择题1.B2.B3.C4.C5.D6.C二.填空题1. 15°2. 23.114. 24第二试1.解 依次将题设中所给的四个方程编号为①,②,③,④.设1x 是方程①和方程②的一个相同的实根,则⎩⎨⎧=++=++,0,01121121c bx x ax x 两式相减,可解得ba c x --=11. 设2x 是方程③和方程④的一个相同的实根,则⎩⎨⎧=++=++,0,0222222b cx x a x x 两式相减,可解得12--=c ba x 。
(专家预测卷考前必做)2011年全国高中数学联合竞赛加试试题、参考答案一 试一、填空题(本题满分64分,每小题8分)1. 已知2a ≥-,且{}2A x x a =-≤≤,{}23,B y y x x A ==+∈,{}2,C t t x x A ==∈,若C B ⊆,则a 的取值范围是 。
2. 在ABC ∆中,若2AB = ,3AC = ,4BC =,O 为ABC ∆的内心,且A O AB BC λμ=+ ,则λμ+= .3. 已知函数()()()()21,0,1,0,x x f x f x x -⎧-≤⎪=⎨->⎪⎩若关于x 的方程()f x x a =+有且只有两个不相等的实数根,则实数a 的取值范围是 。
4. 计算器上有一个特殊的按键,在计算器上显示正整数n 时按下这个按键,会等可能的将其替换为0~n -1中的任意一个数。
如果初始时显示2011,反复按这个按键使得最终显示0,那么这个过程中,9、99、999都出现的概率是 。
5. 已知椭圆22143x y +=的左、右焦点分别为F 1、F 2,过椭圆的右焦点作一条直线l 交椭圆于点P 、Q ,则△F 1PQ 内切圆面积的最大值是 .6. 设{}n a 为一个整数数列,并且满足:()()()11121n n n a n a n +-=+--,n N +∈.若20072008a ,则满足2008n a 且2n ≥的最小正整数n 是 .7. 如图,有一个半径为20的实心球,以某条直径为中心轴挖去一个半径为12的圆形的洞,再将余下部分融铸成一个新的实心球,那么新球的半径是 。
8. 在平面直角坐标系内,将适合,3,3,x y x y <<<且使关于t 的方程33421()(3)0x y t x y t x y-+++=-没有实数根的点(,)x y 所成的集合记为N ,则由点集N 所成区域的面积为 。
二、解答题(本题满分56分)9. (本小题满分16分)对正整数2n ≥,记11112n n k k n a n k --==⋅-∑,求数列{}n a 中的最大值.10.(本小题满分20分)已知椭圆 12222=+by a x 过定点A (1,0),且焦点在x 轴上,椭圆与曲线y x =的交点为B 、C 。
x (1+ x ) - e (1- ln(1+ x )) e x ln(1+x ) ln(1+x )-2 - e x e x x = 2e lim 1+ x = 2e lim x ®0 x ®0 x 2x × cos 2 × × cos n , 求 lim a n . 2 2 2解:若q = 0, 则lim a n = 1. 若q ¹ 0 ,则当 n 充分大,使得 2 >|k | 时,时, a n = cos × cos 2 × × cos n = cos × cos 2 × × cos n n × q q qq q qq 1qsin n× cos 2 × × cos n -1 × sin n -1 × qsin n= sin q × cos 2 × × cos n -2 2 sin n -2 × q q q q 1 q q2 sin n sin n 这时这时,, lim a n = lim sin q sin qq q n ®¥ n ®¥2 sin n1第三届全国大学生数学竞赛预赛试卷参考答案及评分标准(非数学类,2011)一、(本题共 4 小题,每题 6 分,共 24 分)计算题2 (1+ x ) x -e 2 (1- ln(1+ x )) 1. lim .x ®0 解:因为2 2 x = 2 l n(1+x ) x - e 2 (1- l n(1+ x )) x,lim x ®0 e 2 ln(1+ x ) x= e 2,………………………………………………3 分lim x ®0 e 2 x 2 = e 2 lim x ®0 2 -12 = e 2 lim x x ®0ln(1+ x ) - 2 x2 ln(1+ x ) - x 2 2 1 -1= -e 2 , ………………5 分所以lim x ®0 2 (1+ x ) x - e 2 (1- ln(1+ x )) x=0. ………………………………6 分2. 设 a n = cos q q qn ®¥n ®¥ ……………………1 分n×s in 2222222 2q qq q 1= cos . ………………………4 分2 2 2 2 2 2= cos × 2 2 2 2 2 n 2 2= . ………………………6 分n 21£ x £ 2, 0 £ y £ }£ x £2, dxdxdy = 1+ ò ò òòòòòò 2n -1 2n -2 2n -1 å 的和函数,并求级数 åx 2 n =1 2 解:令 S (x ) = å2n -1 2n -2 x x æ x 2 ö 2n -1 2n -2 S (t )dt = å ò t dt = åå=n 1ç 2 ÷ò001=n2n -1x3. 求òòsgn(xy -1)dxdy ,其中 D = {(x , y ) | 0 £ x £ 2, 0 £y£ 2} D解:设 D 1 = {(x , y ) | 0 £ x £ 1 2,0 £ y £ 2} D 2 = {(x , y ) | 1 12 xD 3 = {(x , y ) | 1 12 x £ y £ 2} ……………………………2 分 D 1ÈòD 2 2 1 x = 1+ 2 ln 2 , òò dxdy =3 - 2 ln 2 . D 3………………………4 分 2sg n(x y-1)dx d y =d x d y -DD 3D 2ÈD3dxdy= 2 - 4 l n 2 . ………………………6 分4. 求幂级数¥¥n =1n2n -1的和的和..¥n =12nx ,则其的定义区间为 (- 2, 2) . "x Î(- 2, 2) ,æ ö¢ 2 + x 2 è 2 - x ø , x Î (- 2, 2) . 于是, S (x ) = ç÷ = (2 - x ) 2n -1 2n -1 æ 1 ö æ 1 ö 10 ¥¥å=n1 2 2n çèø÷èn1. 如果 lim a n = a ,则lim 2. 如果存在正整数p ,使得 lim(a n + p n) = l,则 lim a n l n ®¥n p 证明:证明:1.1. 由 lim a n = a , $M > 0 使得 | a n |£ M ,且 "e > 0, $N 1 Î,当 n > N 1 时, | a n -a |< e因为 $N 21 ,当n > N 2 时, N 1(M + | a |) e a 1 + +a n N 1(M + | a |) e (n - N 1) e222 2…………………………4 分2n-2n =12 2 ø 9 . ………………………………6 分二、(本题 2 两问,每问 8 分,共 16 分)设{a n }¥=0 为数列, a , l为有限数,求证: n ®¥ n ®¥a 1 + a 2 + + a n n= a ;-a = .n ®¥n ®¥. ……………………………………4 分2>N < .n2于是,- a £ + < e ,n n n 222.2.对于对于 i = 0,1, , p -1,令 A n = a (n +1) p +i -a np +i ,易知{A n } 为{a n + p - a n } 的子列的子列.. 由 lim(a n + p - a n ) = l ,知 lim A n = l ,从而 lim A 1 + A 2i ) + + A ni ) 而 A + A 2 + + A n = a (n +1) p +i - a p +i .所以, lim n a (n +1) p +i l a m lf ¢¢(0) + f ¢¢(0) - m £ ( f ¢¢¢(h 1 2 )) £ M )+ f ¢¢¢(hf ¢¢¢(x 0 12 )) =3 . ………………………15 分) = ( f ¢¢¢(h ) + f ¢¢¢(h所以,limn ®¥a 1 + a 2 + +a n n=a . …………………………………………8 分 (i ) (i ) n ®¥ n ®¥ n ®¥ (i ) (i ) n= l.(i ) (i ) (i )n ®¥a (n +1) p +i - a p +i n= l . 由 lim n ®¥ a p +i n= 0 .知 lim n ®¥a (n +1) p +i n = l. ………………………………………12 分 从而 lim n ®¥ a (n +1) p +i (n +1) p + i= lim × = n ®¥ (n +1) p +i n p"m Î , $n , p , i Î , (0 £ i £ p -1) ,使得 m = np + i ,且当 m ® ¥ 时, n ® ¥.所以, lim = .…………………………………………………………16 分m ®¥ m p三、(15 分)设函数f (x )在闭区间[-1,1]上具有连续的三阶导数,且 f (-1) = 0 , f (1) = 1, f ¢(0) = 0 .求证:在开区间 (-1,1) 内至少存在一点 x 0 ,使得 f ¢¢¢( x 0 ) =3证. 由马克劳林公式,得f ( x ) = f (0) + 1 2!f ¢¢(0)x 2+ 1 3!f ¢¢¢(h )x 3 ,h 介于 0 与 x 之间, x Î[-1, 1] …3 分 在上式中分别取 x = 1 和 x = -1, 得1 = f (1) = f (0) + 1 12! 3! f ¢¢¢(h 1 ) , 0 < h 1< 1. ………………………5 分 0 = f (-1) = f (0) + 1 1 2! 3!f ¢¢¢(h 2 ) , -1 < h 2 < 0 . ………………………7 分 两式相减,得f ¢¢¢(h 1) + f ¢¢¢(h 2 ) =6 . ………………………10 分由于f ¢¢(x )在闭区间[-1,1] 上连续,因此 f ¢¢¢(x )在闭区间在闭区间[[h 2 ,h 1 ]上有最大值 M 最小值 m ,从而 12…………………………………13 分再由连续函数的介值定理,至少存在一点 x 0 Î[h 2 ,h 1 ] Ì (-1,1) ,使得 123解:在 x 轴的 x 处取一小段 dx , 其质量是 rdx ,到质点的距离为 h + x , 这一小段与质点的引力是 Gm r xdxGm r d (x 2 )2 -1/ 2 +¥ òa(h 2+ x 2 )3/ 2= - Gm r (h + x ) Gm r hdxh sec t Gm r æ a ö , z - ) = 0 确定的隐函数,其中 F 具有连续的二阶偏导数, ¶x ¶x ¶y ¶y, z - ) =0 两边分别关于 x 、 y 求偏导,得 - 2 )F u v = 0 , + ¶x x ¶x+ 2 )F v = 0 . = 2 2 = + F ) ¶y y (F + F四、(15 分)在平面上分)在平面上,, 有一条从点 (a ,0) 向右的射线向右的射线,,线密度为 r. 在点 (0, h ) 处(其中 h > 0)有一质量为 m 的质点的质点.. 求射线对该质点的引力求射线对该质点的引力..2 2dF =Gm r dxh 2 +x 2 (其中 G 为引力常数)为引力常数).. …………………5 分这个引力在水平方向的分量为 dF x = Gm r x dx (h 2 + x 2)3 2. 从而F x =+¥òòa(h 2+ x 2 )3/ 2= 2+¥2a=Gm r h 2 +a 2……10 分而 dF 在竖直方向的分量为 dF y =Gm r hdx (h 2 + x 2)3 2 ,故F y = +¥òa (h 2 + x 2 )3/ 2 = p/ 2 ò arctan a h Gm r h 2 sec 2 dt 3 3 = Gm r h p / 2 òcos tdt = a arctan hç1 - s in a rctan ÷ h è h ø 所求引力向量为 F = (F x , F y ) . …………………………15 分五、(15 分)设 z = z (x , y ) 是由方程 F (z +1 1x y且 F u (u , v ) = F v (u , v ) ¹ 0 .求证: x 2¶z ¶x + y 2 ¶z ¶y = 0 和 x 2 2 2 + xy (x + y ) + y 3 2 2 = 0 .解:在方程 F (z +1 1x y ( ¶z 1 ¶z F ¶z ¶y F u + ( ¶z 1 ¶y y…………………5 分由此解得,¶z ¶x F u ¶z -F v, x (F u vu v )所以, x2 ¶z ¶x + y 2 ¶z ¶y= 0 …………………………10 分 对上式两边关于 x 和 y 分别求偏导,得4¶x ¶x ¶y ¶y + xy (x + y ) + y 3 六、(15 分)设函数 f (x ) 连续, a , b , c 为常数, S是单位球面 x + y + z = 1. 记第一型曲面积分 这部分摊开可以看成一个细长条这部分摊开可以看成一个细长条.. 这个细长条的长是 2p 1 -u ,宽是 x 2¶2 z 2 + y 2¶2z ¶y ¶x= -2x ¶z ¶x ,x + y 2 2 = -2 y¶z ¶y 上面第一式乘以 x 加上第二式乘以 y ,并注意到 x 2 ¶z ¶x + y 2 ¶z ¶y= 0 ,得到 x 3 ¶2z ¶2z ¶2z ¶x 2 ¶x ¶y ¶y 2= 0…………………………………………15 分2 2 2 1 I = òò f (ax + by + cz )dS . 求证: I = 2p òf ( a 2 + b 2 + c 2 u )du S-1解:由 S的面积为 4p 可见:当 a , b , c 都为零时,等式成立都为零时,等式成立.. …………………2 分当它们不全为零时当它们不全为零时,, 可知:原点到平面 ax + by + cz + d =0 的距离是 | d |a 2 +b 2 +c 2. …………………………5 分设平面 P u : u =ax + by +cz a 2 + b 2 +c 2 ,其中 u 固定固定.. 则 | u | 是原点到平面 P u的距离,从而-1 £ u £1 . …………………………8 分两平面 P u 和 P u +du截单位球 S 的截下的部分上的截下的部分上,, 被积函数取值为 f ( a 2 + b 2 + c 2 u ). (10)分2 du 1 -u 2,它的面积是 2p du ,故我们得证我们得证..…………………………15 分5。
上海市2015年12月大同杯数学竞赛(含答案)BCO 1O 2PA倍,则这三个素数为________.解答:设这三个素数为,,a b c 。
则有23()abc a b c =++。
因为23是素数,从23()abc a b c =++,可以得到23能够整除三个素数,,a b c 的abc 积。
从而可以得到其中有一个素数必为23。
假设23a = 这样就有23124(1)(1)2446212bc b c bc b c b c =++⇒--+=⇒--==⨯=⨯因为,b c 为素数,所以得到5,7b c ==或3,13b c == 这样得到三个素数为5,7,23或3,13,23。
5. 如图,圆1O 与圆 2O 外切于点P ,从圆1O 上点A作圆2O 的切线AB , B 是切点,连接AP 并延长,与圆2O 交于点C .已知圆1O 、圆2O 的半径分别为2、1,则ACAB=________.解答:做如图所示的辅助线。
可以得到21211//2CO PC AO CO PA AO ⇒==为此设PC k=,则2.PA k = 应用切割线定理有:223.AB AP AC k k AB=⋅=⨯⇒=所以AC AB ==。
A 'B AM NPQ6、 如图所示,在平面直角坐标系xOy 中,MON的两边分别是射线 y x (x0)与x 轴正 半轴.点A (6,5),B (10,2)是MON内的两个定点,点P 、Q 分别是MON两边上的动点,则四边形ABQP 周长的最小值是________.解答:本题主要就是应用对称。
应为四边形ABQP ,其中一个边AB 为定值。
要求四边形 ABQP 周长的最小值,只要求另外三边的最小值。
从对称可以得到/(5,6)A ,/(10,2)B -.四边形另外三边的最小值为//A B依据两点间距离公式有 。
//22(105)(26)89A B=----=22(105)(25)34AB =---=8934+。
上海市第二十五届初中物理竞赛(大同中学杯)复赛参考答案一、选择题(每小题4分,共32分)二、填空题(每题6分,共30分)9、 虚 , 凸 。
10、 p 0 , h 。
11、 圆弧 , 932L π 。
12、 1062 。
13、 下降 , 600 。
三、计算题(本题共36分) 14、(本题共9分)解:由投入含有石块的冰块可知,F 浮=G (冰+石块)ρ水gS Δh =(m 冰+m 石)gm 冰+m 石=ρ水S Δh =1.0×103×100×10-4×6×10-2kg =0.6kg 冰熔化后,水位下降的高度: mgph 3310528.510100.128.55-⨯=⨯⨯=∆='∆水ρ水位下降就是由于冰化成水体积减小引起的,即 V 冰-V 水=S Δh ’S h m m ρρ'-=∆冰冰冰水kgkg h S m 498.010528.510100109.0100.1109.0100.1343333=⨯⨯⨯⨯⨯-⨯⨯⨯⨯='∆-=--冰水冰水冰ρρρρ石块的质量m 石=0.6kg -0.498kg =0.102kg石块的体积35333241067.4109.0498.010610100S mmmm h V ---⨯=⨯-⨯⨯⨯=-∆=冰冰石ρ石块的密度335/1018.21067.4102.0mkg V m ⨯=⨯==-石石石ρ15、(本题共8分)设v 1=4km/s ,v 2=2km/s ,O 点为震中地点,t 和t ´分别为纵向地震波传至甲处(A 点)和(B 点)乙处的时间; 则kms km OA s v v t t v t v OA 164/4414)4(2121=⨯=⇒=-=⇒+==同理可得:km OB 40= O 点位置如图,由余弦定理可得:5.0401628.3440162cos 222222≈⨯⨯-+=⋅-+=OBOA ABOBOAθ,60≈⇒θ16.(本题共9分)解答:加热器在2分钟内所供应的总热量,等于水温升高所吸收的热量,加上散失到周围环境的热量,即 21()P t cm T T Q =-+若水温变化不大,则散失到周围环境的热量与时间成正比。
2009年第一届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(每小题5分,共20分)(x+y)ln(1+yxdy=____________,其中区域D由直线x+y=1与两) 1.计算⎰⎰D-x-y坐标轴所围成三角形区域.⎛0解令x+y=u,x=v,则x=v,y=u-v,dxdy=det 1⎝(x+y)ln(1+y)ulnu-ulnvD1⎫⎪dudv=dudv,⎪-1⎭⎰⎰D-x-yxdy=⎰⎰10-uudv==⎰(⎰10ulnu-uulnu-uu22⎰udv-u-u-u⎰ulnvdv)du-u(ulnu-u)du=⎰-udu (*)令t=-u,则u=1-t2,du=-2tdt,u2=1-2t2+t4,u(1-u)=t2(1-t)(1+t),24(*)=-2⎰(1-2t+t)dt=2⎰102315⎤16⎡24(1-2t+t)dt=2⎢t-t+t⎥=3515⎣⎦02.设f(x)是连续函数,且满足f(x)=3x2-解令A=A=⎰20f(x)dx-2, 则f(x)=____________.⎰20f(x)dx,则f(x)=3x-A-2,2⎰20(3x-A-2)dx=8-2(A+2)=4-2A,2解得A=432。
因此f(x)=3x-103。
3.曲面z=x22+y-2平行平面2x+2y-z=0的切平面方程是__________.x22解因平面2x+2y-z=0的法向量为(2,2,-1),而曲面z=2+y-2在2(x0,y0)处的法向量为(zx(x0,y0),zy(x0,y0),-1),故(zx(x0,y0),zy(x0,y0),-1)与(2,2,-1)平行,因此,由zx=x,zy=2y知2=zx(x0,y0)=x0,2=zy(x0,y0)=2y0,即x0=2,y0=1,又z(x0,y0)=z(2,1)=5,于是曲面2x+2y-z=0在(x0,y0,z(x0,y0))处的切平面方程是2(x-2)+2(y-1)-(z-5)=0,即曲面z=2x+2y-z=0的切平面方程是2x+2y-z-1=0。
2011年全国高中数学联合竞赛一试试题(A 卷)考试时间:2011年10月16日 8:00—9:20一、填空题:本大题共8小题,每小题8分,共64分.把答案填在横线上.1.设集合},,,{4321a a a a A =,若A 中所有三元子集的三个元素之和组成的集合为}8,5,3,1{-=B ,则集合=A.2.函数11)(2-+=x x x f 的值域为 .3.设b a ,为正实数,2211≤+ba,32)(4)(ab b a =-,则=b a log .4.如果)cos (sin 7sin cos 3355θθθθ-<-,)2,0[πθ∈,那么θ的取值范围是 .5.现安排7名同学去参加5个运动项目,要求甲、乙两同学不能参加同一个项目,每个项目都有人参加,每人只参加一个项目,则满足上述要求的不同安排方案数为 .(用数字作答)6.在四面体ABCD 中,已知︒=∠=∠=∠60CDA BDC ADB ,3==BD AD ,2=CD ,则四面体ABCD 的外接球的半径为 .7.直线012=--y x 与抛物线x y 42=交于B A ,两点,C 为抛物线上的一点,︒=∠90ACB ,则点C 的坐标为 .8.已知=n a C ())95,,2,1(2162003200=⎪⎪⎭⎫⎝⎛⋅⋅-n nnn ,则数列}{n a 中整数项的个数为 .二、解答题:本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤. 9.(本小题满分16分)设函数|)1lg(|)(+=x x f ,实数)(,b a b a <满足)21()(++-=b b f a f ,2lg 4)21610(=++b a f ,求b a ,的值.10.(本小题满分20分)已知数列}{n a 满足:∈-=t t a (321R 且)1±≠t ,121)1(2)32(11-+--+-=++nn n n n n t a t t a t a ∈n (N )*.(1)求数列}{n a 的通项公式; (2)若0>t ,试比较1+n a 与n a 的大小.11.(本小题满分20分)作斜率为31的直线l 与椭圆C :143622=+y x 交于B A ,两点(如图所示),且)2,23(P 在直线l 的左上方.(1)证明:△PAB 的内切圆的圆心在一条定直线上;(2)若︒=∠60APB ,求△PAB 的面积.2011年全国高中数学联合竞赛加试试题(A卷)考试时间:2011年10月16日 9:40—12:10二、(本题满分40分)证明:对任意整数4≥n ,存在一个n 次多项式0111)(a x a x a x x f n n n ++++=--具有如下性质:(1)110,,,-n a a a 均为正整数;(2)对任意正整数m ,及任意)2(≥k k 个互不相同的正整数k r r r ,,,21 ,均有)()()()(21k r f r f r f m f ≠.三、(本题满分50分)设)4(,,,21≥n a a a n 是给定的正实数,n a a a <<< 21.对任意正实数r ,满足)1(n k j i r a a a a jk i j ≤<<≤=--的三元数组),,(k j i 的个数记为)(r f n .证明:4)(2n r f n <.四、(本题满分50分)设A是一个93⨯的方格表,在每一个小方格内各填一个正整数.称A中的一个)9⨯nmm方格表为“好矩形”,若它的所有数的和为10的倍数.称A n≤≤1(≤1,3≤中的一个11⨯的小方格为“坏格”,若它不包含于任何一个“好矩形”.求A中“坏格”个数的最大值.出师表两汉:诸葛亮先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。
2011年新知杯上海市初中数学竞赛试题
一、填空题(每题10分,共80分)
1.已知关于x的两个方程:-x+3m=0……①,+x+m=0……②,其中m≠0.若方程①
有一个根是方程②的一个根的3倍,则实数m的值是_________。
2.已知梯形ABCD中AB‖CD,∠ABC=90°,BD⊥AD,BC=5,BD=13,则梯形ABCD的面积为______。
3.从编号为1、2、3、4、5、6的六张卡片中任意抽取三张,则抽出的卡片编号都大于2的概率为________.
4.将8个数,-7,-5,-3,-2,2,4,6,13排列为a,b,c,d,e,f,g,h,使得
+的值最小,则这个最小值为________.
5.已知正方形ABCD边长为4,E、F分别在AB,BC上,AE=3,BF=2,AF,DE交于G,则四边形DGFC的面积为。
6.在等腰直角三角形ABC中,∠ACB=90°,P是△ABC内一点,使得PA=11,PB=7,PC=6,则AC边长为____________。
7.有10名象棋选手进行单循环赛,规定每场比赛胜方得2分,负方得0分,平局各得1
分,比赛结束后发现每位选手得分各不同,且第二名的得分是最后五名选手得分之和的,则第二名选手得分是_______。
8.已知a,b,c,d都是素数(可以相同),并且abcd是35个连续正整数之和,则a+b+c+d 的最小值为_________.
二、解答题(第9、10题每题15分,第11、12题每题20分,共70分)
9.如图,矩形ABCD的对角线交于O,已知∠DAC=60°,∠DAC的平分线与DC交于S,直线OS,AD相交于L,直线BL与AC交于M。
求证:SM‖LC.
10.求所有正整数组a ≥b ≥c ≥d ≥e ≥f ,使得a !=b !+c !+d !+e !+f !。
11.①求证:存在整数x ,y ,满足+4xy+=2022
②是否存在整数x ,y ,满足+4xy+=2011?请证明你的结论。
12、整数1n >,它的所有不同的素因子为12,,k p p p ,对于每个1i k ≤≤,存在正整数i a 使得1i i a a i i p n p +≤≤。
记()1212k a a a k p n p p p =++ ,例如62(100)2589p =+=。
①试找出一个正整数n ,使得()p n n >;
②证明:存在无穷多个正整数n ,使得()1110
p n n >
2011年新知杯上海市初中数学竞赛试题解析
一、填空题(每题10分,共80分)
1.已知关于x的两个方程:-x+3m=0……①,+x+m=0……②,其中m≠0.若方程①
有一个根是方程②的一个根的3倍,则实数m的值是_________。
2.已知梯形ABCD中AB‖CD,∠ABC=90°,BD⊥AD,BC=5,BD=13,则梯形ABCD的面积为______。
3.从编号为1、2、3、4、5、6的六张卡片中任意抽取三张,则抽出的卡片编号都大于2的概率为________.
4.将8个数,-7,-5,-3,-2,2,4,6,13排列为a,b,c,d,e,f,g,h,使得
+的值最小,则这个最小值为________.
5.已知正方形ABCD边长为4,E、F分别在AB,BC上,AE=3,BF=2,AF,DE交于G,则四边
形DGFC的面积为。
6.在等腰直角三角形ABC中,∠ACB=90°,P是△ABC内一点,使得PA=11,PB=7,PC=6,则AC边长为____________。
7.有10名象棋选手进行单循环赛,规定每场比赛胜方得2分,负方得0分,平局各得1分,
比赛结束后发现每位选手得分各不同,且第二名的得分是最后五名选手得分之和的,则第二名选手得分是_______。
8.已知a,b,c,d都是素数(可以相同),并且abcd是35个连续正整数之和,则a+b+c+d 的最小值为_________.
二、解答题(第9、10题每题15分,第11、12题每题20分,共70分)
9.如图,矩形ABCD的对角线交于O,已知∠DAC=60°,∠DAC的平分线与DC交于S,直线OS,AD相交于L,直线BL与AC交于M。
求证:SM‖LC.
10.求所有正整数组a≥b≥c≥d≥e≥f,使得a!=b!+c!+d!+e!+f!。
11.①求证:存在整数x ,y ,满足+4xy+=2022
②是否存在整数x ,y ,满足+4xy+=2011?请证明你的结论。
12、整数1n >,它的所有不同的素因子为12,,k p p p ,对于每个1i k ≤≤,存在正整数i a 使得1i i a a i i p n p +≤≤。
记()1212k a a a k p n p p p =++ ,例如62(100)2589p =+=。
①试找出一个正整数n ,使得()p n n >;②证明:存在无穷多个正整数n ,使得()1110
p n n >。