2020高考数学一轮复习第四章三角函数与解三角形第三节三角函数的图象与性质课后作业理
- 格式:doc
- 大小:36.50 KB
- 文档页数:5
第三节 三角函数的图象与性质一、基础知识1.用五点法作正弦函数和余弦函数的简图 (1)“五点法”作图原理:在正弦函数y =sin x ,x ∈[0,2π]的图象上,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0).在余弦函数y =cos x ,x ∈[0,2π]的图象上,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1). 函数y =sin x ,x ∈[0,2π],y =cos x ,x ∈[0,2π]的五个关键点的横坐标是零点和极值点最值点.(2)五点法作图的三步骤:列表、描点、连线(注意光滑). 2.正弦、余弦、正切函数的图象与性质 函数 y =sin xy =cos xy =tan x图象定义域 R R ⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈R ,且x ≠k π+π2,k ∈Z值域 [-1,1] [-1,1] R 奇偶 性奇函数偶函数奇函数单 调 性在⎣⎡⎦⎤-π2+2k π,π2+2k π(k ∈Z)上是递增函数,在⎣⎡⎦⎤π2+2k π,3π2+2k π(k ∈Z)上是递减函数在[2k π-π,2k π](k ∈Z)上是递增函数,在[2k π,2k π+π](k ∈Z)上是递减函数 在⎝⎛⎭⎫-π2+k π,π2+k π (k ∈Z)上是递增函数周 期 性周期是2k π(k ∈Z 且k ≠0),最小正周期是2π周期是2k π(k ∈Z 且k ≠0),最小正周期是2π周期是k π(k ∈Z 且k ≠0),最小正周期是π三角函数性质的注意点(1)正、余弦函数一个完整的单调区间的长度是半个周期;y =tan x 无单调递减区间;y =tan x 在整个定义域内不单调.(2)要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0的形式,避免出现增减区间的混淆.二、常用结论1.对称与周期的关系正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期.2.与三角函数的奇偶性相关的结论(1)若y =A sin(ωx +φ)为偶函数,则有φ=k π+π2(k ∈Z);若为奇函数,则有φ=k π (k∈Z).(2)若y =A cos(ωx +φ)为偶函数,则有φ=k π(k ∈Z);若为奇函数,则有φ=k π+π2 (k∈Z).(3)若y =A tan(ωx +φ)为奇函数,则有φ=k π(k ∈Z). [解题技法]已知三角函数的单调区间求参数范围的3种方法(1)求出原函数的相应单调区间,由所给区间是所求某区间的子集,列不等式(组)求解. (2)由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解.(3)由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解.[解题技法]三角函数图象的对称轴和对称中心的求解方法求三角函数图象的对称轴及对称中心,须先把所给三角函数式化为y =A sin(ωx +φ)或y=A cos(ωx+φ)的形式,再把(ωx+φ)整体看成一个变量,若求f(x)=A sin(ωx+φ)(ω≠0)图象的对称轴,则只需令ωx+φ=π2+kπ(k∈Z),求x;若求f(x)=A sin(ωx+φ)(ω≠0)图象的对称中心的横坐标,则只需令ωx+φ=kπ(k∈Z),求x.。
第三节 三角函数的图象与性质突破点一 三角函数的定义域和值域[基本知识]一、判断题(对的打“√”,错的打“×”)(1)函数y =sin x 在x ∈⎝⎛⎭⎪⎫0,π2内的最大值为1.( )(2)函数y =tan ⎝⎛⎭⎪⎫π4-x 的定义域为x ≠-π4.( )(3)函数y =cos x 的定义域为x ∈⎣⎢⎡⎦⎥⎤-π2+k π,π2+k π,k ∈Z.( )答案:(1)× (2)× (3)× 二、填空题1.y =2sin x -2的定义域为________________________. 解析:要使函数式有意义,需2sin x -2≥0,即sin x ≥22,借助正弦函数的图象(图略),可得π4+2k π≤x ≤3π4+2k π,k ∈Z ,所以该函数的定义域是⎣⎢⎡⎦⎥⎤π4+2k π,3π4+2k π(k ∈Z).答案:⎣⎢⎡⎦⎥⎤π4+2k π,3π4+2k π(k ∈Z)2.函数y =2cos ⎝ ⎛⎭⎪⎫2x +π3,x ∈⎝ ⎛⎭⎪⎫-π6,π6的值域为________. 解析:∵-π6<x <π6,∴0<2x +π3<2π3,∴-12<cos ⎝ ⎛⎭⎪⎫2x +π3<1,∴-1<2cos ⎝⎛⎭⎪⎫2x +π3<2.∴函数y =2cos ⎝ ⎛⎭⎪⎫2x +π3,x ∈⎝ ⎛⎭⎪⎫-π6,π6的值域为(-1,2).答案:(-1,2) 3.函数y =tan ⎝⎛⎭⎪⎫π2-x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤-π4,π4,且x ≠0的值域为________. 解析:∵-π4≤x ≤π4且x ≠0,∴π4≤π2-x ≤3π4且π2-x ≠π2.由函数y =tan x 的单调性,可得y =tan ⎝ ⎛⎭⎪⎫π2-x 的值域为(-∞,-1]∪[1,+∞). 答案:(-∞,-1]∪[1,+∞)[全析考法]考法一 三角函数的定义域[例1] (2019·德州月考)x ∈[0,2π],y =tan x +-cos x 的定义域为( )A.⎣⎢⎡⎭⎪⎫0,π2B.⎝ ⎛⎦⎥⎤π2,πC.⎣⎢⎡⎭⎪⎫π,3π2 D.⎝⎛⎦⎥⎤3π2,2π[解析] 法一:由题意,⎩⎪⎨⎪⎧tan x ≥0,-cos x ≥0,x ∈[0,2π],所以函数的定义域为⎣⎢⎡⎭⎪⎫π,3π2.故选C.法二:x =π时,函数有意义,排除A 、D ;x =54π时,函数有意义,排除B.故选C.[答案] C [方法技巧]三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.[提醒] 解三角不等式时要注意周期,且k ∈Z 不可以忽略.考法二 三角函数的值域(最值)[例2] (1)(2018·全国卷Ⅰ)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A .f (x )的最小正周期为π,最大值为3 B .f (x )的最小正周期为π,最大值为4 C .f (x )的最小正周期为2π,最大值为3 D .f (x )的最小正周期为2π,最大值为4(2)(2017·全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.(3)函数y =sin x -cos x +sin x cos x ,x ∈[0,π]的值域为________. [解析] (1)∵f (x )=2cos 2x -sin 2x +2=1+cos 2x -1-cos 2x 2+2=32cos 2x +52, ∴f (x )的最小正周期为π,最大值为4.故选B.(2)依题意,f (x )=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝⎛⎭⎪⎫cos x -322+1,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ∈[0,1],因此当cos x =32时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x , 即sin x cos x =1-t22,且-1≤t ≤ 2.∴y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-1时,y min =-1. ∴函数的值域为[-1,1]. [答案] (1)B (2)1 (3)[-1,1][方法技巧] 三角函数值域或最值的3种求法[集训冲关]1.[考法一]函数y =log 2(sin x )的定义域为________. 解析:根据题意知sin x >0,得x ∈(2k π,2k π+π)(k ∈Z). 答案:(2k π,2k π+π)(k ∈Z)2.[考法二](2017·全国卷Ⅱ)函数f (x )=2cos x +sin x 的最大值为________. 解析:f (x )=2cos x +sin x =5⎝⎛⎭⎪⎫255cos x +55sin x=5sin(x +α)(其中tan α=2), 故函数f (x )=2cos x +sin x 的最大值为 5. 答案: 53.[考法二]求函数y =sin x +cos x +3cos x sin x 的最值. 解:令t =sin x +cos x ,则t ∈[-2,2]. ∵(sin x +cos x )2-2sin x cos x =1, ∴sin x cos x =t 2-12,∴y =32t 2+t -32,t ∈[-2, 2 ],∵对称轴t =-13∈[-2, 2 ],∴y min =f ⎝ ⎛⎭⎪⎫-13=32×19-13-32=-53,y max =f (2)=32+ 2.突破点二 三角函数的性质[基本知识]一、判断题(对的打“√”,错的打“×”)(1)函数y =sin x 的图象关于点(k π,0)(k ∈Z)中心对称.( ) (2)正切函数y =tan x 在定义域内是增函数.( ) (3)y =sin|x |是偶函数.( ) 答案:(1)√ (2)× (3)√ 二、填空题1.已知函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的最小正周期为π,则ω=________. 答案:2 2.函数y =cos ⎝⎛⎭⎪⎫π4-2x 的单调递减区间为________.解析:由y =cos ⎝ ⎛⎭⎪⎫π4-2x =cos ⎝ ⎛⎭⎪⎫2x -π4,得2k π≤2x -π4≤2k π+π(k ∈Z),解得k π+π8≤x ≤k π+5π8(k ∈Z),所以函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z).答案:⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z)3.若函数f (x )=sinx +φ3(φ∈[0,2π])是偶函数,则φ=________.解析:由已知f (x )=sinx +φ3是偶函数,可得φ3=k π+π2,即φ=3k π+3π2(k ∈Z), 又φ∈[0,2π],所以φ=3π2. 答案:3π2[全析考法]考法一 三角函数的单调性考向一 求三角函数的单调区间 [例1] 求下列函数的单调区间: (1)f (x )=|tan x |;(2)f (x )=cos ⎝ ⎛⎭⎪⎫2x -π6,x ∈⎣⎢⎡⎦⎥⎤-π2,π2. [解] (1)观察图象可知,y =|tan x |的单调递增区间是⎣⎢⎡⎭⎪⎫k π,k π+π2,k ∈Z ,单调递减区间是( k π-π2,k π ],k ∈Z.(2)当2k π-π≤2x -π6≤2k π(k ∈Z),即k π-5π12≤x ≤k π+π12,k ∈Z 时,函数f (x )是增函数;当2k π≤2x -π6≤2k π+π(k ∈Z),即k π+π12≤x ≤k π+7π12,k ∈Z 时,函数f (x )是减函数.因此函数f (x )在⎣⎢⎡⎦⎥⎤-π2,π2上的单调递增区间是[ -5π12,π12 ],单调递减区间为⎣⎢⎡⎦⎥⎤-π2,-5π12,⎣⎢⎡⎦⎥⎤π12,π2.[方法技巧] 求三角函数单调区间的2种方法数自身的定义域.考向二 已知单调性求参数值或范围[例2] (1)若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω等于( )A.23 B.32 C .2D .3(2)(2019·绵阳诊断)若f (x )=cos 2x +a cos ( π2+x )在区间⎝ ⎛⎭⎪⎫π6,π2上是增函数,则实数a 的取值范围为________.[解析] (1)因为f (x )=sin ωx (ω>0)过原点, 所以当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时, y =sin ωx 是减函数.由f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在⎣⎢⎡⎦⎥⎤π3,π2上单调递减知,π2ω=π3,所以ω=32.(2)f (x )=1-2sin 2x -a sin x ,令sin x =t ,t ∈⎝ ⎛⎭⎪⎫12,1,则g (t )=-2t 2-at +1,t ∈⎝ ⎛⎭⎪⎫12,1,因为f (x )在⎝ ⎛⎭⎪⎫π6,π2上单调递增,所以-a 4≥1,即a ≤-4.[答案] (1)B (2)(-∞,-4] [方法技巧]已知单调区间求参数范围的3种方法[例3] (2018·全国卷Ⅲ)函数f (x )=tan x1+tan 2x 的最小正周期为( ) A.π4B.π2C .πD .2π[解析] 由已知得f (x )=tan x 1+tan 2x =sin x cos x 1+⎝ ⎛⎭⎪⎫sin x cos x 2=sin x cos x cos 2x +sin 2xcos 2x =sin x ·cos x =12sin2x ,所以f (x )的最小正周期为T =2π2=π.[答案] C[方法技巧] 三角函数周期的求解方法[例4] (1)(2018·枣庄一模)函数y =1-2sin 2( x -3π4 )是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数(2)函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3+φ,φ∈(0,π)满足f (|x |)=f (x ),则φ的值为( ) A.π6 B.π3 C.5π6D.2π3[解析] (1)y =1-2sin 2⎝⎛⎭⎪⎫x -3π4=cos ⎝ ⎛⎭⎪⎫2x -3π2=cos ⎝ ⎛⎭⎪⎫3π2-2x=-sin 2x ,故函数y 是最小正周期为π的奇函数,故选A. (2)因为f (|x |)=f (x ),所以函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3+φ是偶函数,所以-π3+φ=k π+π2,k ∈Z ,所以φ=k π+5π6,k ∈Z ,又因为φ∈(0,π),所以φ=5π6.[答案] (1)A (2)C [方法技巧]与三角函数奇偶性相关的结论三角函数中,判断奇偶性的前提是定义域关于原点对称,奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.常见的结论有:(1)若y =A sin(ωx +φ)为偶函数,则有φ=k π+π2(k ∈Z);若为奇函数,则有φ=k π(k ∈Z).(2)若y =A cos(ωx +φ)为偶函数,则有φ=k π(k ∈Z);若为奇函数,则有φ=k π+π2(k ∈Z). (3)若y =A tan(ωx +φ)为奇函数,则有φ=k π(k ∈Z).考法四 三角函数的对称性(1)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)函数的图象对称轴或对称中心时,都是把“ωx +φ”看作一个整体,然后根据三角函数图象的对称轴或对称中心列方程进行求解.(2)在判断对称轴或对称中心时,用以下结论可快速解题:设y =f (x )=A sin(ωx +φ),g (x )=A cos(ωx +φ),x =x 0是对称轴方程⇔f (x 0)=±A ,g (x 0)=±A ;(x 0,0)是对称中心⇔f (x 0)=0,g (x 0)=0.[例5] (1)(2019·南昌十校联考)函数y =sin ⎝⎛⎭⎪⎫x -π4的图象的一个对称中心是( )A .(-π,0)B.⎝ ⎛⎭⎪⎫-3π4,0C.⎝⎛⎭⎪⎫3π2,0D.⎝⎛⎭⎪⎫π2,0(2)(2019·合肥联考)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6-cos 2x 的图象的一条对称轴的方程可以是( )A .x =-π6B .x =11π12C .x =-2π3D .x =7π12[解析] (1)令x -π4=k π,k ∈Z ,得函数图象的对称中心为⎝ ⎛⎭⎪⎫π4+k π,0,k ∈Z. 当k =-1时,y =sin ⎝ ⎛⎭⎪⎫x -π4的图象的一个对称中心为⎝ ⎛⎭⎪⎫-3π4,0.故选B.(2)f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6-cos 2x =32sin 2x -32cos 2x =3sin ⎝ ⎛⎭⎪⎫2x -π3.令2x -π3=π2+k π(k ∈Z),可得x =512π+k2π(k ∈Z).令k =1可得函数图象的一条对称轴的方程是x=1112π. [答案] (1)B (2)B[方法技巧] 三角函数对称性问题的2种求解方法1.[考法一·考向一]已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫π4-2x ,则函数f (x )的单调递减区间为( )A.⎣⎢⎡⎦⎥⎤3π8+2k π,7π8+2k π(k ∈Z)B.⎣⎢⎡⎦⎥⎤-π8+2k π,3π8+2k π(k ∈Z)C.⎣⎢⎡⎦⎥⎤3π8+k π,7π8+k π(k ∈Z) D.⎣⎢⎡⎦⎥⎤-π8+k π,3π8+k π(k ∈Z) 解析:选D 依题意,f (x )=2sin ⎝ ⎛⎭⎪⎫π4-2x =-2sin ( 2x -π4 ),令-π2+2k π≤2x -π4≤π2+2k π(k ∈Z),故-π4+2k π≤2x ≤3π4+2k π(k ∈Z),解得f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤-π8+k π,3π8+k π(k ∈Z).故选D. 2.[考法一·考向二]若函数f (x )=2a sin(2x +θ)(0<θ<π),a 是不为零的常数,f (x )在R 上的值域为[-2,2],且在区间⎣⎢⎡⎦⎥⎤-5π12,π12上是单调减函数,则a 和θ的值是( ) A .a =1,θ=π3B .a =-1,θ=π3C .a =1,θ=π6D .a =-1,θ=π6解析:选B ∵sin(2x +θ)∈[-1,1],且f (x )∈[-2,2],∴2|a |=2,∴a =±1.当a =1时,f (x )=2sin(2x +θ),其最小正周期T =2π2=π,∵f (x )在区间⎣⎢⎡⎦⎥⎤-512π,π12内单调递减,且π12-⎝ ⎛⎭⎪⎫-512π=π2,为半个周期,∴f (x )max =f ⎝ ⎛⎭⎪⎫-512π=2sin ⎝⎛⎭⎪⎫θ-56π=2,∴θ-56π=2k π+π2(k ∈Z),∴θ=2k π+43π(k ∈Z).又0<θ<π,∴a =1不符合题意,舍去.当a =-1时,f (x )=-2sin(2x +θ)在[ -512π,π12 ]上单调递减,∴f (x )max =f ⎝ ⎛⎭⎪⎫-512π=-2sin ⎝ ⎛⎭⎪⎫θ-56π=2,∴sin ⎝⎛⎭⎪⎫θ-56π=-1,∴θ-56π=2k π-π2(k ∈Z),θ=2k π+π3(k ∈Z).又∵0<θ<π,∴当k =0时,θ=π3,∴a =-1,θ=π3.故选B. 3.[考法一、二、三]下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上单调递增的奇函数是( )A .y =sin ⎝⎛⎭⎪⎫2x +3π2 B .y =cos ⎝ ⎛⎭⎪⎫2x -π2 C .y =cos ⎝ ⎛⎭⎪⎫2x +π2 D .y =sin ⎝ ⎛⎭⎪⎫π2-x 解析:选C y =sin ⎝ ⎛⎭⎪⎫2x +3π2=-cos 2x 为偶函数,排除A ;y =cos ⎝⎛⎭⎪⎫2x -π2=sin 2x在⎣⎢⎡⎦⎥⎤π4,π2上为减函数,排除B ;y =cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x 为奇函数,在⎣⎢⎡⎦⎥⎤π4,π2上单调递增,且周期为π,符合题意;y =sin ⎝ ⎛⎭⎪⎫π2-x =cos x 为偶函数,排除D.故选C. 4.[考法四]已知函数y =sin(2x +φ)( -π2<φ<π2 )的图象关于直线x =π3对称,则φ的值为( )A.π6 B .-π6 C.π3 D .-π3解析:选B 由题意得f ⎝ ⎛⎭⎪⎫π3=sin ⎝ ⎛⎭⎪⎫2π3+φ=±1, ∴2π3+φ=k π+π2,k ∈Z , ∴φ=k π-π6,k ∈Z. ∵φ∈⎝ ⎛⎭⎪⎫-π2,π2, ∴φ=-π6.。
微专题五 三角函数问题的多解探究[解题技法]三角函数是高中数学的重要内容,是每年高考的必考知识点,也是与其它知识交汇频率较高的知识点,它与数列、向量、方程、不等式、解析几何等知识紧密联系,历来倍受各级各类命题者的青睐.题目 已知3cos x +4sin x =5,求tan x 的值.解 方法一 构造方程由3cos x +4sin x =5两边平方,得9cos 2x +24sin x cos x +16sin 2x =25.而25=25(sin 2x +cos 2x ),所以上式可整理为9sin 2x -24sin x cos x +16cos 2x =0.即(3sin x -4cos x )2=0.所以3sin x -4cos x =0,解得tan x =43. 方法二 构造方程组由⎩⎪⎨⎪⎧ sin 2x +cos 2x =1,3cos x +4sin x =5,消去cos x , 整理得(5sin x -4)2=0.解得sin x =45,cos x =35. 故tan x =sin x cos x =43. 方法三 构造辅助角由3cos x +4sin x =5⎝ ⎛⎭⎪⎫45sin x +35 cos x =5sin(x +φ)=5,其中cos φ=45,sin φ=35.所以tan φ=34. 所以x +φ=2k π+π2(k ∈Z ), 于是tan x =tan ⎝ ⎛⎭⎪⎫2k π+π2-φ=cot φ=43. 方法四 代数换元令tan x =t ,即t cos x =sin x ,代入3cos x +4sin x =5,得3cos x +4t cos x =5,cos x =54t +3,sin x =5t 4t +3. 再代入sin 2x +cos 2x =1,得⎝⎛⎭⎪⎫54t +32+⎝ ⎛⎭⎪⎫5t 4t +32=1. 解得t =43,即tan x =43. 方法五 运用三角函数定义设P (m ,n )为角x 终边上任意一点,P 点到原点O 的距离为r ,则r =m 2+n 2.把sin x =n r ,cos x =m r 代入已知等式得3·m r +4·n r=5.即(3m +4n )2=(5r )2=25(m 2+n 2).整理得(4m -3n )2=0.所以4m =3n ,显然m ≠0. 故tan x =n m =43. 方法六 构造直线斜率由3cos x +4sin x =5可知点A (cos x ,sin x )在直线3x +4y =5上,同时也在单位圆x 2+y 2=1上,所以点A 为直线与单位圆的切点.由于直线的斜率为-34,所以OA 的斜率为43, 即tan x =43. 方法七 构造单位圆因为3cos x +4sin x =5,即35cos x +45sin x =1. 设A (cos x ,sin x ),B ⎝ ⎛⎭⎪⎫35,45, 则点A ,B 均在单位圆x 2+y 2=1上.所以过B 点的切线方程为35x +45y =1. 可知点A (cos x ,sin x )也在切线35x +45y =1上, 从而点A 也是切点,由切点的唯一性也可知A ,B 两点重合,所以cos x =35,sin x =45,即tan x =43. 方法八 构造平面向量因为35cos x +45sin x =1,不妨令m =(cos x ,sin x ),n =⎝ ⎛⎭⎪⎫35,45,可知|m |=1,|n |=1. 所以m ,n 均为单位向量,且m ·n =1.由|m ||n |≥|m ·n |,等号成立的条件为:m ∥n ,则有45cos x =35sin x ,即tan x =43.。
【2019最新】精选高考数学一轮复习第四章三角函数与解三角形第三节三
角函数的图象与性质课后作业理
一、选择题
1.(2015·四川高考)下列函数中,最小正周期为π且图象关于原点对称的函数是( )
A .y =cos
B .y =sin ⎝ ⎛⎭
⎪⎫2x +π
2
C .y =sin 2x +cos 2x
D .y =sin x +cos x
2.若函数f(x)同时具有以下两个性质:①f(x)是偶函数;②对任意实数x ,都有f =f.则f(x)的解析式可以是( )
A .f(x)=cos x
B .f(x)=cos ⎝ ⎛⎭
⎪⎫2x +π
2
C .f(x)=sin
D .f(x)=cos 6x
3.函数y =tan x +sin x -|tan x -sin x|在区间内的图象是( )
A B C D
4.函数f(x)=sin 在区间上的最小值为( )
2
2
.D 0.C .-B 1 .-A
5.已知曲线f(x)=sin 2x +cos 2x 关于点(x0,0)成中心对称,若x0∈,则x0
=( )
5π
12
D. C. B. A.
二、填空题
6.设函数f(x)=3sin ,若存在这样的实数x1,x2,对任意的x∈R,都有
f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为________.
7.设函数f(x)=Asin(ωx+φ)与直线y =3的交点的横坐标构成以π为公差的
等差数列,且x =是f(x)图象的一条对称轴,则函数f(x)的单调递增区间为________.
8.已知x∈(0,π],关于x 的方程2sin =a 有两个不同的实数解,则实数a 的
取值范围为________.
三、解答题
9.已知函数f(x)=sin(ωx+φ)的最小正周期为π.
(1)求当f(x)为偶函数时φ的值;
(2)若f(x)的图象过点,求f(x)的单调递增区间.
10.已知函数f(x)=sin +cos ,g(x)=2sin2.
(1)若α是第一象限角,且f(α)=,求g(α)的值;
(2)求使f(x)≥g(x)成立的x 的取值集合.
1.已知函数f(x)=sin ωx+cos ωx(ω>0),f +f =0,且f(x)在区间上单调
递减,则ω=( )
A .3
B .2
C .6
D .5
2.函数y =sin(ωx+φ)在区间上单调递减,且函数值从1减小到-1,那么此
函数图象与y 轴交点的纵坐标为( )
6+2
4
D.
C. B. A.
3.已知函数f(x)=3sin(ω>0)和g(x)=3cos(2x +φ)的图象的对称中心完全相
同,若x∈,则f(x)的取值范围是________.
4.已知函数f(x)=sin ,其中x∈.若f(x)的值域是,则a 的取值范围是________.
答 案
一、选择题
1.解析:选A y =cos =-sin 2x ,最小正周期T ==π,且为奇函数,其图象关于原点对称,故A 正确;y =sin =cos 2x ,最小正周期为π,且为偶函数,其图象关于y 轴对称,故B 不正确;C ,D 均为非奇非偶函数,其图象不关于原点对称,故
C ,
D 不正确.
2.解析:选C 由题意可得,函数f(x)是偶函数,且它的图象关于直线x =对称.∵f(x)=cos x 是偶函数,f =,不是最值,故不满足图象关于直线x =对称,故排除A.∵函数f(x)=cos =-sin 2x 是奇函数,不满足条件,故排除B.∵函数f(x)=sin =cos 4x 是偶函数,f =-1,是最小值,故满足图象关于直线x =对称,故C 满足条件.∵函数f(x)=cos 6x 是偶函数,f =0,不是最值,故不满足图象关于直
线x =对称,故排除D.
⎩⎪⎨
⎪
⎧
2tan x ,x ∈⎝ ⎛⎦
⎥⎤π2,π,
2sin x ,x ∈⎝
⎛⎭⎪⎫π,3π2.
=sin x|-|tan x -sin x +tan x =y
D .解析:选3
4.解析:选B 因为0≤x≤,所以-≤2x-≤,由正弦函数的图象知,1≥sin≥
-,所以函数f(x)=sin 在区间上的最小值为-.
5.解析:选 C 由题意可知f(x)=2sin ,其对称中心为(x0,0),故2x0+=
kπ(k∈Z),∴x0=-+(k∈Z),又x0∈,∴k=1,x0=.
二、填空题
6.解析:∵对任意x∈R,都有f(x 1)≤f(x)≤f(x2)成立,∴f(x1),f(x2)分别
为函数f(x)的最小值和最大值,∴|x1-x2|的最小值为T =×=2.
答案:2
7.解析:由题意得A =3,T =π,∴ω=2.
∴f(x)=3sin(2x +φ).又f =3或f =-3, ∴2×+φ=k π+,k ∈Z ,φ=+k π,k ∈Z.
又∵|φ|<,∴φ=,∴f(x)=3sin. 令-+2kπ≤2x+≤+2kπ,k∈Z,
得-+kπ≤x≤+kπ,k∈Z,
∴函数f(x)的单调递增区间为,k ∈Z.
答案:,k∈Z
8.
解析:令y1=2sin ,x∈(0,π],y2=a ,作出y1的图象如图所示.若2sin =
a 在(0,π]上有两个不同的实数解,则y1与y2应有两个不同的交点,所以<a<2.
答案:(,2)
三、解答题
9.解:∵由f(x)的最小正周期为π,则T ==π,∴ω=2,
∴f(x)=sin(2x +φ).
(1)当f(x)为偶函数时,f(-x)=f(x).
∴sin(2x +φ)=sin(-2x +φ),
展开整理得sin 2xcos φ=0,
由已知上式对∀x∈R 都成立,
∴cos φ=0.∵0<φ<,∴φ=. (2)f(x)的图象过点时,sin =,
即sin =.
又∵0<φ<,∴<+φ<π,∴+φ=,φ=.
∴f(x)=sin.
令2kπ-≤2x+≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z.
∴f(x)的单调递增区间为,k ∈Z.
⎝ ⎛⎭
⎪⎫x -π
3cos +sin =f(x).解:10 =sin x -cos x +cos x +sin x
=sin x ,
g(x)=2sin2=1-cos x.
(1)由f(α)=,得sin α=.
又α是第一象限角,所以cos α>0.
从而g(α)=1-cos α=1-=1-=.
(2)f(x)≥g(x)等价于sin x≥1-cos x ,
即sin x +cos x≥1.于是sin≥.
从而2k π+≤x+≤2kπ+,k∈Z,即2k π≤x≤2kπ+,k∈Z.
故使f(x)≥g(x)成立的x 的取值集合为x2k π≤x≤2kπ+,k∈Z.
1.解析:选B ∵f(x)在上单调递减,且f +f =0,∴f=0,∵f(x)=sin ωx +·cos ωx=2sin ,∴f=f =2sin =0,∴ω+=kπ(k∈Z),又·≥-,ω>0,∴ω
=2.
2.解析:选A 函数y =sin(ωx +φ)的最大值为1,最小值为-1,由该函数在区间上单调递减,且函数值从1减小到-1,可知-=为半周期,则周期为π,ω===2,此时原函数式为y =sin(2x +φ).又由函数y =sin(ωx+φ)的图象过点,
代入可得φ=,因此函数为y =sin.令x =0,可得y =.
3.解析:由两三角函数图象的对称中心完全相同,可知两函数的周期相同,故
ω=2,所以f(x)=3sin ,当x∈时,-≤2x-≤,所以-≤sin≤1,故f(x)∈.
⎣⎢⎡⎦
⎥
⎤-3
2,3答案:
4.解析:若-≤x≤,则-≤2x+≤,此时-≤sin≤1,即f(x)的值域是.
若-≤x≤a,则-≤2x≤2a,-≤2x+≤2a+.因为当2x +=-或2x +=时,
sin =-,所以要使f(x)的值域是,则≤2a+≤,即≤2a≤π,
所以≤a≤,即a 的取值范围是.
⎣⎢⎡⎦
⎥⎤π6,π
2答案:。