【名师名校典型题】2014高考数学二轮复习名师知识点总结:算法与复数
- 格式:pdf
- 大小:844.50 KB
- 文档页数:11
算法与复数1.高考题中对算法的程序框图的考查主要以选择题或填空题的形式为主,试题难度中等偏易,试题主要以考查循环结构的程序框图为主,且常常与其它数学知识融汇在一起考查,如算法与函数、算法和数列、算法和统计以及应用算法解决实际问题.2.复数的概念和运算主要考查复数的分类、共轭复数、复平面和复数的四则运算为主,试题侧重对基本运算的考查,试题难度较低易于得满分,主要分布在试卷的第1、2题位置.1.算法的三种基本逻辑结构(1)顺序结构:如图(1)所示.(2)条件结构:如图(2)和图(3)所示.(3)循环结构:如图(4)和图(5)所示.2.复数(1)复数的相等:a+b i=c+d i(a,b,c,d∈R)⇔a=c,b=d.(2)共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.(3)运算:(a+b i)±(c+d i)=(a±c)+(b±d)i、(a+b i)(c+d i)=(ac-bd)+(bc+ad)i、(a+b i)÷(c+d i)=错误!+错误!i(c+d i≠0).(4)复数的模:|z|=|a+b i|=r=错误!(r≥0,r∈R).考点一程序框图例1 (1)(2013·安徽)如图所示,程序框图(算法流程图)的输出结果是( )A.错误!B。
错误! C.错误! D.错误!(2)(2013·课标全国Ⅱ)执行右面的程序框图,如果输入的N=10,那么输出的S等于()A.1+错误!+错误!+…+错误!B.1+错误!+错误!+…+错误!C.1+错误!+错误!+…+错误!D.1+错误!+错误!+…+错误!答案(1)D (2)B解析(1)赋值S=0,n=2进入循环体:检验n=2<8,S=0+错误!=错误!,n=2+2=4;检验n〈8,S=错误!+错误!=错误!,n=4+2=6;检验n〈8,S=错误!+错误!=错误!,n=6+2=8,检验n=8,脱离循环体,输出S=错误!.(2)k=1,T=错误!,S=1,k=2,T=错误!=错误!,S=1+错误!,k=3,T=11×2×3=错误!,S=1+错误!+错误!,…由于N=10,即k>10时,结束循环,共执行10次.所以输出S=1+错误!+错误!+…+错误!。
一.考场传真1.【2013年高考新课标1卷】设1z 、2z 是复数, 则下列命题中的假命题是 ( ) A.若120z z -=,则12z z = B.若12z z =,则12z z =C.若12z z =,则1122z z z z ⋅=⋅D.若12z z =,则2212z z =2.【2012年高考上海卷】若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( ) A.2b =,3c = B.2b =-,3c = C.2b =-,1c =- D.2b =,1c =-3.【2013年高考浙江卷理】某程序框图如图1所示,若该程序运行后输出的值是59,则( ) A.4=a B.5=a C.6=a D.7=a4.【2013年高考重庆卷理】执行如图2所示的程序框图,如果输出3s =,那么判断框内应填入的条件是( )A.6k ≤B.7k ≤C.8k ≤D.9k ≤5.【2013年高考新课标1卷】执行如图3所示的程序框图,如果输入的[]1,3t ∈-,则输出的s 属于( )A.[]3,4-B.[]5,2-C.[]4,3-D.[]2,5-6.【2012年高考湖北卷】定义在()(),00,-∞+∞ 上的函数()f x ,如果对于任意给定的等比数列{}n a ,(){}n f a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞+∞ 上的如下函数:①()2f x x =;②()2x f x =;③()f x =;④()ln f x x =.则其中是“保等比数列函数”的()f x 的序号为 ( )A.①②B.③④C.①③D.②④7.【2013年高考四川卷理】设1P 、2P 、 、n P 为平面α内的n 个点.在平面α内的所有点中,若点P 到点1P 、2P 、 、n P 的距离之和最小,则称点P 为点1P 、2P 、 、n P 的一个“中位点”.例如,线段AB 上的任意点都是端点A 、B 的中位点.现有下列命题: ①若三个点A 、B 、C 共线,C 在线段AB 上,则C 是A 、B 、C 的中位点; ②直角三角形斜边的中点是该直角三角形三个顶点的中位点; ③若四个点A 、B 、C 、D 共线,则它们的中位点存在且唯一; ④梯形对角线的交点是该梯形四个顶点的唯一中位点. 其中的真命题是_______.(写出所有真命题的序号)8.【2013年高考湖北卷理】古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1、3、6、10、 ,第n 个三角形数为()2111222n n n n +=+.记第n 个k 边形数为()(),3N n k k ≥,以下列出了部分k 边形数中第n 个数的表达式:三角形数 ()211,322N n n n =+, 正方形数 ()2,4N n n =,五边形数 ()231,522N n n n =-, 六边形数 ()2,62N n n n =-,………………………………………可以推测(,)N n k 的表达式,由此计算()10,24N =_________.9.【2013年高考江苏卷】设数列{}:1n a 、2-、2-、3、3、3、4-、4-、4-、4-、 、11(1),,(1)k k k k k ---⋅⋅⋅-个、,即当()()()1122k k k k n k N *-+<≤∈时,记()11k n a k-=-.记()12n n S a a a n N *=++⋅⋅⋅+∈.对于l N *∈,定义集合{},,1l n n p n S a n N n l *=∈≤≤是的整数倍且.(1)求集合11p 中元素的个数; (2)求集合2000p 中元素的个数.二.高考研究考纲要求.1.算法初步(1)算法的含义、程序框图①了解算法的含义,了解算法的思想;②理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.(2)基本算法语句理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.2.推理与证明(1)合情推理与演绎推理.①了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;②了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;③了解合情推理和演绎推理之间的联系和差异.(2)直接证明与间接证明.①了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点;②了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.3.数系的扩充与复数的引入(1)复数的概念①理解复数的基本概念;②理解复数相等的充要条件;③了解复数的代数表示法及其几何意义.(2)复数的四则运算①会进行复数代数形式的四则运算;②了解复数代数形式的加、减运算的几何意义.命题规律1.题量、题型稳定:复数、算法程序框图都是高考中的基础题型,一般地,复数与算法程序框图在高考试题中出现两个题目,以填空题或选择题的形式出现,两者各占一题,每题5分;推理证明、新定义的题,在高考题中也经常出现,以填空、选择题的形式出现,一般作为选择、填空的最后一题,一般这些题在高考中出现一题或两题,其所占平均分值比例为10%~13%.2.知识点分布均衡、重难点突出:以2013年全国新课标卷数学高考《考试说明》为参考,可理解为有19个知识点,一般考查的知识点在60%左右,其中对复数、算法、推理与证明等知识点的考查比较全面,更注重知识点有机结合以及重难点的分布,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度.算法是数学及其应用的重要组成部分,是计算科学的重要基础,也是新课标高考中新增加的内容,也是新课标高考中新增加的元素.高考十分注重逻辑思维的考查,以循环结构为主,有的也考查条件结构,注重知识点的有机整合,强调知识点在学科内的综合,在考查中也渗透数列、函数以及统计等方面的内容.推理与证明是新课标中的重要内容.高考中也十分注重逻辑思维能力的考查,在推理部分,主要考查归纳推理、类比推理以及新定义,在考查时结合数列、函数以及几何部分的内容,命题时注重了数学学科重点内容的考查以及新定义的理解,并保持必要的深度;在证明部分,加强了直接证明与间接证明法以及数学归纳法在综合中的应用,考查学生的推理论证能力.复数是高中数学的一个基本组成部分.高考中注重复数概念、运算以及几何意义的考查,以复数的四则运算为基石,综合考查复数的概念以及几何意义的理解.3.设计新颖、形式多样、难易适度:复数、算法都是高考中的基础知识,在高考中的考查一般以容易题出现,考查的形式以选择题、填空题出现,考查学生对于复数相关概念以及几何形式的理解以及分析问题的能力、逻辑思维能力,这部分的难度基本控制在0.05~0.25之间;推理证明、新定义一般处于选择、填空题的最后一题,考查学生逻辑推理能力以及新定义的理解,属于较难题. 试题平均难度为0.29(其中选择、填空难度0.15~0.52,平均难度0.29,解答题难度在0.11~0.30,平均难度0.17).一.基础知识整合算法与程序框图③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.④不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法. ⑤普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决. 2.程序框图(1)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形.一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明.(2)构成程序框的图形符号及其作用(3)算法的三种基本逻辑结构:顺序结构、条件结构、循环结构.①顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构.顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤.在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所指定的操作.②条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的算法结构条件P是否成立而选择执行A框或B框.无论P条件是否成立,只能执行A框或B框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行.一个判断结构可以有多个判断框.条件结构主要应用于一些需要依据条件进行判断的算法中,如分段函数的的求值、数据大小关系等问题中,常常用条件结构来设计算法.③循环结构的两种基本类型:(a)当型循环:当给定的条件成立时,反复执行循环体,直至条件不成立为止;(b)直到型循环:先第一次执行循环体,再判断给定的条件是否成立,若成立,跳出循环体;否则,执行循环体,直至条件第一次不成立为止.循环结构一般用于一些有规律的重复计算的算法中,如累加求和、累乘求积等问题常常用循环结构来解决.3.算法语句:(1)输入语句②输入语句的作用是实现算法的输入信息功能;(3)“提示内容”提示用户输入什么样的信息,变量是指程序在运行时其值是可以变化的量;(4)输入语句要求输入的值只能是具体的常数,不能是函数、变量或表达式;(5)提示内容与变量之间用分号“;”隔开,若输入多个变量,变量与变量之间用逗号“,”隔开.(2)输出语句②输出语句的作用是实现算法的输出结果功能;(3)“提示内容”提示用户输入什么样的信息,表达式是指程序要输出的数据;(4)输出语句可以输出常量、变量或表达式的值以及字符.(3)赋值语句①赋值语句的一般格式②赋值语句的作用是将表达式所代表的值赋给变量;③赋值语句中的“=”称作赋值号,与数学中的等号的意义是不同的.赋值号的左右两边不能对换,它将赋值号右边的表达式的值赋给赋值号左边的变量; ④赋值语句左边只能是变量名字,而不是表达式,右边表达式可以是一个数据、常量或算式; ⑤对于一个变量可以多次赋值.注意:①赋值号左边只能是变量名字,而不能是表达式.如:2X =是错误的; ②赋值号左右不能对换.如“A B =”“B A =”的含义运行结果是不同的; ③不能利用赋值语句进行代数式的演算.(如化简、因式分解、解方程等); ④赋值号“=”与数学中的等号意义不同. (3)条件语句分析:在IF —THEN —ELSE 语句中,“条件”表示判断的条件,“语句1”表示满足条件时执行的操作内容;“语句2”表示不满足条件时执行的操作内容;END IF 表示条件语句的结束.计算机在执行时,首先对IF 后的条件进行判断,如果条件符合,则执行THEN 后面的语句1;若条件不符合,则执行ELSE 后面的语句2.注意:“条件”表示判断的条件;“语句”表示满足条件时执行的操作内容,条件不满足时,结束程序;END IF 表示条件语句的结束.计算机在执行时首先对IF 后的条件进行判断,如果条件符合就执行THEN 后边的语句,若条件不符合则直接结束该条件语句,转而执行其它语句.(4)循环语句循环结构是由循环语句来实现的.对应于程序框图中的两种循环结构,一般程序设计语言中也有当型(WHILE型)和直到型(UNTIL型)两种语句结构.即WHILE语句和UNTIL 语句.(b)当计算机遇到WHILE语句时,先判断条件的真假,如果条件符合,就执行WHILE与WEND之间的循环体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止.这时,计算机将不执行循环体,直接跳到WEND 语句后,接着执行WEND之后的语句.因此,当型循环有时也称为“前测试型”循环.(b)直到型循环又称为“后测试型”循环,从UNTIL型循环结构分析,计算机执行该语句时,先执行一次循环体,然后进行条件的判断,如果条件不满足,继续返回执行循环体,然后再进行条件的判断,这个过程反复进行,直到某一次条件满足时,不再执行循环体,跳到LOOP UNTIL语句后执行其他语句,是先执行循环体后进行条件判断的循环语句.分析:当型循环与直到型循环的区别:(先由学生讨论再归纳)(1)当型循环先判断后执行,直到型循环先执行后判断;在WHILE语句中,是当条件满足时执行循环体,在UNTIL语句中,是当条件不满足时执行循环推理与证明1.合情推理:前提为真时,结论可能为真的推理叫做合情推理.(1)归纳推理:根据一类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理叫做归纳推理,它是由部分到整体、由个别到一般的推理.(2)类比推理:根据两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,它是由特殊到特殊的推理.2.演绎推理:根据一般性的原理,推出某个特殊情况下的结论叫做演绎推理,它是由一般到特殊的推理.基本形式是三段论:(1)大前提,已知的一般性原理;(2)小前提,所研究的特殊情况;(3)结论.4.反证法:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.5.数学归纳法:.数学归纳法:(1)当n 取第一个值0n (例如1n =)时,证明命题成立;(2)假设当n k =()0,k Nk n *∈≥时命题成立,并证明当1n k =+时,命题也成立,于是命题对一切n N *∈,0n n ≥,命题都成立,这种证明方法叫做数学归纳法.运用数学归纳法证明命题分为两步:第一步是递推的基础,第二是递推的依据,这两步缺一不可的.复数1.复数的相关概念:(1)形如a bi +(),a b R ∈的数叫复数,其中i 叫做复数的虚数单位,且21i =-,a 叫做复数的实部,b 叫做复数的虚部.复数集用集合C 表示. (2)复数的分类:对于复数z a bi =+(),a b R ∈① 当0b =时,z 是实数; ② 当0b ≠时,z 是虚数; ③ 当0a =且0b ≠时,z 是纯虚数.(3)复数相等:若1z a bi =+(),a b R ∈,2z c di =+(),c d R ∈,则12z z =的充要条件是a c =且b d =.特别地:若0a bi +=(),a b R ∈的充要条件是0a b ==.2.复数的几何意义:(1)复平面:x 轴叫做实轴,实轴上的点都表示实数;y 轴叫做虚轴,除原点外,虚轴上的点都表示纯虚数.(2)复数z a bi =+(),a b R ∈与复平面内的点(),Z a b 一 一对应.(3)复数z a bi =+(),a b R ∈与复平面内所有以原点O 为起点的向量OZ一 一对应. (4)复数的模:向量OZ的模叫做复数z a bi =+(),a b R ∈的模,记作z 或a bi +,且||z =3.复数的四则运算:(1)共轭复数:实部相等,虚部互为相反数.若z a bi =+(),a b R ∈,则它的共轭复数z a bi =-.(2)复数的加法、减法、乘法、除法运算:除法法则:()()()()2222a bi c di a bi ac bd bc adi c di c di c di c d c d+-++-==+++-++; 4.重要性质:1i i =,21i =-, 3i i =-,41i =. 41ni=,41n i i +=,421n i +=-,43n i i +=-.二.高频考点突破考点1 复数的与实系数方程之间的关系【例1】【广东省广州市2013届高三普通毕业班综合测试二】若1i -(i 是虚数单位)是关于x 的方2x +()20,px q p q R +=∈的一个解,则p q +=( )A.3-B.1-C.1D.3()2210i p i q -+-+=,化为复数的一般形式得()()2220p q p i ++--=,根据复数相【规律方法】根与实系数方程之间的关系体现在,一是根代入方程,相应的等式成立;二是体现在韦达定理上,即实系数一元二次方程()200,,,ax bx c a a b c R ++=≠∈的两根分别为1x 、2x ,则12b x x a +=-,12cx x a⋅=,不仅对0∆≥的情况成立,对0∆<的情形(即方程的根为虚根)也成立.【举一反三】【湖北省黄冈中学、黄石二中、鄂州高中2014届高三三校11月联考】已知复数32z i =-+(i为虚数单位)是关于x 的方程220x px q ++=(p 、q 为实数)的一个根,则p q +的值为 ( )A.22B.36C.38D.42考点2 复数的概念与运算【例2】【广东省广州市海珠区2013届高三综合测试一】下面是关于复数21z i=-的四个命题:1p :2z =, 2:p 22z i =, 3:p z 的共轭复数为1i -+ 4:p z 的虚部为1,其中真命题为 ( )A. 2p 、3pB.1p 、2pC.2p 、4pD.3p 、4p【规律方法】对于复数概念、几何意义等相关问题的求解,其核心就是要将复数化为一般形式,即z a bi =+(),a b R ∈,实部为a ,虚部为b .(1)复数的概念:①z 为实数0b ⇔=;②z 为纯虚数0a ⇔≠且0b =;③z 为虚数0b ⇔≠.(2)复数的几何意义:①z a bi z =+⇔在复平面内对应的点(),Z a b z ⇔在复平面对应向量(),OZ a b =;②复数z 的模z a bi =+=.(3)共轭复数:复数z a bi =+与z a bi =-互为共轭复数.【举一反三】【河南省郑州市四中2013届高三第十三次调考】对于任意复数(),z a bi a b R =+∈,i 为虚数单位,则下列结论中正确的是( )A.2z z a -=B.2z z z⋅= C.1zz= D.20z ≥考点3 算法与数列综合【例3】【2013年高考辽宁卷】执行如图4示的程序框图,若输入10n =,则输出的S = ( )A.511 B.1011 C.3655D.7255【规律方法】若数列{}n a 为公差为()0d d ≠的等差数列,()1n n k k N a a *+⎧⎫∈⎨⎬⎩⎭型数列求和一般是利用裂项法,裂项公式为1111n n k n n k a a kd a a ++⎛⎫=- ⎪⎝⎭,为了方便求出数列()1n n k k N a a *+⎧⎫∈⎨⎬⎩⎭的前n 项和,可以采用将没数列中裂项后被减项写在一起,减数项写在一起,方便观察哪些项消去了,即1122111111111n k k n n kS kd a a kd a a kd a a +++⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12121111111n k k n k kd a a a a a a +++⎡⎤⎛⎫⎛⎫=+++-+++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦ ,但是在处理算法与数列求和问题时,一定要确定循环次数,即在数列中有求和的项数.【举一反三】【2013年高考福建卷理】阅读如图5所示的程序框图,若编入的10k =,则该算法的功能是( ) A.计算数列{}12n -的前10项和 B.计算数列{}12n -的前9项和C.计算数列{}21n-的前10项和 D.计算数列{}21n-的前9项和考点4 判断条件的选择【例4】【广东省深圳市宝安区2014届高三调研考试】运行下图框图输出的S 是254,则①应为( ).A.5≤nB.6≤nC.7≤nD.8≤n【规律方法】等差数列{}n a 的求和公式:()()11122n n n a a n n dS na +-==+(d 为等差数列{}n a 的公差);等比数列{}n a 的求和公式:()()1110,111n n n a q a a qS q q qq--==≠≠--(q 为等比数列{}n a 的公比).在判断条件的选择上,需要注意两方面的问题:一是控制变量是增大还是减小,从而决定判断条件中对控制变量所使用的不等号;二是循环进行的次数,决定判断条件中临界值的选择. 【举一反三】【浙江省金华一中2014届高三10月月考】若框图(图7)所给的程序运行结果为5040S =,那么判断框中应填入的关于k 的条件是___________.考点5 算法与函数综合【例5】【湖北省孝感市2014届高三第一次统一考试】运行如图8所示的算法流程图,当输入的x值为()时,输出的y值为4.A.1B.1-C.2-D.3-【规律方法】分段函数问题的求解主要在于根据自变量的不同取值确定相应的函数解析式,利用解析式来求解分段函数问题.对于分段函数的问题,一般有以下几种考查形式:①求分段函数值,根据自变量的取值选择合适的解析式进行计算,对于复合函数的求值,计算时遵循由内到外的原则;②由函数值求相应的自变量的取值,即令每个解析式等于相应的值求出自变量的值,并对自变量的取值是否在区间进行取舍;③求解分段函数不等式,对自变量在相应区间的取值下解不等式,并将解集与定义域取交集得到最终答案.【举一反三】【四川省资阳市2014届高三第一次诊断性考试】已知x R∈,根据如图9所示的程序框图,则不等式()12 2f x x≥-+的解集是____________.考点6 归纳推理【例6】【广东省珠海一中等六校2014届高三第一次联考】将石子摆成如图10的梯形形状.称数列5、9、14、a=;第n项20、 为“梯形数”.根据图形的构成,数列第6项6a=.n图10【规律方法】归纳推理主要用于与自然数有关的等式或不等式的问题中,一般在数列的推理中常涉及.即通过前几个等式或不等式出发,找出其规律,即找出一般的项与项数之间的对应关系,一般的有平方关系、立方关系、指数变化关系或两个相邻的自然数或奇数相乘等基本关系,需要对相应的数字的规律进行观察、归纳,一般对于的等式或不等式中的项的结构保持一致. 【举一反三】【山西省山大附中2014届高三9月月考】观察下列算式:113=, 5323+=,119733++=,1917151343+++=,… … … …若某数3m 按上述规律展开后,发现等式右边含有“2013”这个数,则=m _______考点7 类比推理【例7】【陕西省西安市长安区长安一中2014届高三第二次质量检测】对于命题:如果O 是线段AB 上一点,则0OB OA OA OB ⋅+⋅=;将它类比到平面的情形是:若O 是ABC ∆内一点,有OBC OCA S OA S OB ∆∆⋅+⋅0OBA S OC ∆+⋅=;将它类比到空间的情形应该是:若O 是四面体ABCD 内一点,则有__________________.【规律方法】类比推理主要是找出两类事物的共性,一般的类比有以下几种:①线段的长度——平面几何中平面图形的面积——立体几何中立体图形的体积的类比;②等差数列与等比数列的类比,等差数列中两数相加类比到等比数列中两数相乘,等差数列中两数的差类比到等比数列中两数相除.在类比的时候还需注意,有些时候不能将式子的结构改变,只需将相应的量进行替换.【举一反三】【广东省佛山市南海区2014届高三8月质检】在等差数列{}n a 中,若m a p =,n a q =(),,1m n N n m *∈-≥,则m n nq mpa n m+-=-类比上述结论,对于等比数列{}()*0,n n b b n N >∈,若m b r =,()2,,n b s n m m n N*=-≥∈,则可以得到m n b += .考点8 新定义【例8】【福建省厦门市外国语学校2014届高三第一次月考】设()f x 与()g x 是定义在同一区间[],a b 上的两个函数,若函数()()y f x g x =-在[],x a b ∈上有两个不同的零点,则称()f x 和()g x 在[],a b 上是“关联函数”,区间[],a b 称为“关联区间”.若()234f x x x =-+与()2g x x m=+在[]0,3上是“关联函数”,则m 的取值范围为 ( )A.9,24⎛⎤-- ⎥⎝⎦ B.[]1,0- C.(],2-∞-D.9,4⎛⎫-+∞ ⎪⎝⎭【规律方法】新定义主要应用于函数、解析几何以及数列中,一般先要理解题中的新定义,然后借助相应的方法进行求解.对于函数或数列不等式恒成立问题以及函数零点个数问题,一般采用分类讨论法或参数分离法求解;对于解析几何中的新定义,一般结合图象来量化问题,将问题中涉及的几何量利用图形直观地表示出来,从图形中得到准确解答.【举一反三】【2013年高考福建卷理】设S、T是R的两个非空子集,如果存在一个从S到T的函数()y f x =满足:(i )(){}T f x x S =∈;(ii )对任意1x 、2x S ∈,当12x x <时,恒有()()12f x f x <,那么称这两个集合“保序同构”,以下集合对不是“保序同构”的是( )A.A N *=,B N = B.{}13A x x =-≤≤,{}8010B x x x ==-<≤或C.{}01A x x =<<,B R = D.A Z =,B Q =考点9 数学归纳法【例9】【广东省五校协作体2014届高三第二次联考】已知数列{}n a 的前n 项和1122n n n S a -⎛⎫=--+ ⎪⎝⎭(n 为正整数).(1)令2nn n b a =,求证数列{}n b 是等差数列,并求数列{}n a 的通项公式; (2)令1n n n c a n +=,12n n T c c c =+++ ,试比较n T 与251nn +的大小,并予以证明.式11122n n n a a --=+,在等式两边同时乘以12n -得到11221n n n n a a --=+,由2n n n b a =,由【规律方法】数学归纳法一般用于与自然数有关的命题、等式或不等式的证明,其解题步骤为:第二数学归纳法的证明步骤是:①归纳奠基:证明当取第一个自然数0n 时命题成立;②归纳递推:假设n k =()0,k Nk n *∈≥时,命题成立,证明当1n k =+时,命题成立;③由①②得出结论.利用数学归纳法来进行证明时,需要注意两个问题:一是验证时n 的初始值不一定为1,要视具体情况而定;二是由n k =到1n k =+时,所需的跨度,即式子两边增加了多少项.【举一反三】【江苏省扬州中学2014届高三开学考试】数列{}21n-的前n 项组成集合n A ={}()1,3,7,,21nn N *-∈ ,从集合n A 中任取()1,2,3,,k k n = 个数,其所有可能的k 个数的乘积的和为k T (若只取一个数,规定乘积为此数本身),记12n n S T T T =+++ .例如:当1n =时,{}11A =,11T =,11S =;当2n =时,{}21,3A =,113T =+,213T =⨯,213137S =++⨯=.(1)求3S ;(2)猜想n S ,并用数学归纳法证明.三.错混辨析1.忽视判别式∆适用的前提【例1】求实数m 的取值范围,使方程()()24120x m i x mi ++++=至少有一个实根.2.忽视对循环结构的合理分析【例2】如果执行如图11所示的程序框图,那么输出的S =( )A.1275B.2550C.5050D.25003.忽视数学归纳法中证题时的跨度 【例3】用数学归纳法证明:()111122234212n n n -++++>≥- .1.(原创题)在复数集C 上定义运算“⊗”:当12z z ≥时,1122z z z z ⊗=;当12z z <时,1212z z z z ⊗=,若113z i =+,21z i =+,33z i =-,则复数()123z z z ⊗⊗在复平面内所对应的点位于 ( )A.第一象限B.第二象限C.第三象限D.第四象限2.(原创题)执行如图12所示的算法程序框图,若输出的y值满足12y ,则输入的x值的取值范围是.【解析】3.【广东省汕头四中2014届高三第一次月考】将全体正奇数排成一个三角形数阵:135791113151719按照以上排列的规律,第n 行()3n ≥从左向右的第3个数为.4.(原创题)已知平面坐标系内两点()11,A x y 、()22,B x y ,定义直角距离()1212,d A B x x y y =-+-.已知点()1,3P ,点Q 为直线20x y ++=上一点,则(),d P Q 的最小值是.12315x x x x =-+---=-++,利用绝对值的几何意义可知,5.【湖北省武汉市部分学校2014届高三11月联考】已知函数()f x 的导函数为()f x ',且对任意0x >,都有()()f x f x x'>.(1)判断函数()()f x F x x=在()0,+∞上的单调性;(2)设1x 、()20,x ∈+∞,证明:()()()1212f x f x f x x +<+; (3)请将(2)中的结论推广到一般形式,并证明你所推广的结论.(3)推广:对任意2n ≥且n N *∈,若1x 、2x 、 、()0,n x ∈+∞,。
第十四章算法初步、推理与证明、复数第1讲算法的含义及流程图对应学生用书P201考点梳理1.算法与流程图(1)算法通常是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.(2)设计算法要注意的问题①认真分析问题,找出解决此问题的一般方法.②借助有关的变量或参数对算法加以表述.③将解决问题的过程划分为若干步骤.④用简练的语言将各个步骤表示出来.(3)流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.2.三种基本逻辑结构(1)顺序结构是由若干个依次执行的处理步骤组成的,这是任何一个算法都离不开的基本结构.其结构形式为(2)选择结构是指算法的流程根据给定的条件是否成立而选择执行不同的流向的结构形式,也称为分支结构.其结构形式为(3)循环结构是指在算法中,需要重复执行同一操作的结构.反复执行的处理步骤称为循环体.循环结构又分为当型和直到型.循环结构主要用在一些有规律的重复计算的算法中,如累加求和,累乘求积等问题常常需要用循环结构来设计算法.其结构形式为【助学·微博】一个复习指导算法初步是必考内容之一,试题难度不大,属基础题,以填空题形式出现,主要考查流程图知识,但往往与其他章节知识结合,常与数列等知识融合在一起.两种循环语句的区别在当型语句中,是当条件满足时执行循环体,而在直到型语句中是当条件不满足时执行循环体,二者是有区别的,在解决问题时用两种循环语句编写应注意条件的不同.考点自测1.阅读如图所示的流程图,若输入的x是2,则输出的值为________.解析∵2>0,故输出的值为1.答案 12.如图所示的是一个算法的流程图,已知a1=3,输出的结果为7,则a2的值是________.解析已知图形是一个顺序结构的框图,表示的算法的功能是求两数a1、a2的算术平均数,已知a1=3,输出结果为7,有a1+a22=7,解得a2=11.答案113.(2012·泰州模拟)如图是一个算法的流程图,则输出a的值是________.解析a=log2256=log228=8>2;a=log28=3>2;a=log23<2,所以输出a=log23.答案log234.(2011·湖南卷)若执行如图所示的框图,输入x1=1,x2=2,x3=4,x4=8,则输出的数为________.解析解读框图可知,本题的实质是求4个数x1,x2,x3,x4的平均数,其平均数为1+2+4+84=154.答案15 45.(2011·课标全国卷改编)执行如图所示的流程图,如果输入的N是6,那么输出的p是________.解析当输入的N是6时,由于k=1,p=1,因此p=p·k=1.此时k=1,满足k<6.故k=k+1=2.当k=2时,p=1×2,此时满足k<6,故k=k+1=3.当k=3时,p=1×2×3,此时满足k<6,故k=k+1=4.当k=4时,p=1×2×3×4,此时满足k<6,故k=k+1=5.当k=5时,p=1×2×3×4×5,此时满足k<6,故k=k+1=6.当k=6时,p=1×2×3×4×5×6=720,此时k<6不再成立,因此输出p=720.答案720对应学生用书P202考向一算法的意义与设计及顺序结构的应用【例1】已知点P(x0,y0)和直线l:Ax+By+C=0,求点P(x0,y0)到直线l的距离d,写出其算法并画出流程图.解算法如下:第一步,输入x0,y0及直线方程的系数A,B,C.第二步,计算Z1←Ax0+By0+C.第三步,计算Z2←A2+B2.第四步,计算d←|Z1| Z2.第五步,输出d.该算法对应的流程图如图所示:[方法总结] 给出一个问题,设计算法应注意:(1)认真分析问题,联系解决此问题的一般数学方法;(2)综合考虑此类问题中可能涉及的各种情况;(3)将解决问题的过程划分为若干个步骤;(4)用简练的语言将各个步骤表示出来.【训练1】已知f(x)=x2-2x-3.求f(3)、f(-5)、f(5),并计算f(3)+f(-5)+f(5)的值.设计出解决该问题的一个算法,并画出流程图.解算法如下:S1x←3.S2y1←x2-2x-3.S3x←-5.S4y2←x2-2x-3.S5 x ←5.S6 y 3←x 2-2x -3. S7 y ←y 1+y 2+y 3.S8 输出y 1,y 2,y 3,y 的值. 该算法对应的流程图如图所示:考向二 算法的选择结构【例2】 已知函数y =⎩⎨⎧-2x (x >0),0 (x =0),2x (x <0),写出求该函数的函数值的算法及流程图.解 算法如下: S1 输入x ;S2 如果x >0,转S3,如果x =0,转S4,否则转S5; S3 y ←-2x ; S4 y ←0; S5 y ←2x ; S6 输出y .相应的流程图如图所示:[方法总结] 利用选择结构解决算法问题时,要引入判断框,要根据题目的要求引入一个或多个判断框.而判断框内的条件不同,对应的下一图框中的内容和操作也相应地进行变化,故应逐个分析判断框内的条件.【训练2】 (1)如图(1)是某个函数求值的流程图,则满足该程序的函数解析式为________.(2)(2010·山东卷)执行如图(2)所示的流程图,若输入x =4,则输出y 的值为________.解析 (1)依题意得当x <0时,f (x )=2x -3; 当x ≥0时,f (x )=5-4x .因此f (x )=⎩⎨⎧2x -3,x <05-4x ,x ≥0.(2)当x =4时,y =1,不满足|y -x |<1, 因此由x =y 知x =1.当x =1时,y =-12,不满足|y -x |<1, 因此由x =y 知x =-12. 当x =-12时,y =-54, 此时,⎪⎪⎪⎪⎪⎪-54+12<1成立.答案 (1)f (x )=⎩⎨⎧2x -3,x <05-4x ,x ≥0(2)-54考向三 算法的循环结构【例3】 设计算法求11×2+12×3+13×4+…+12 011×2 012的值,并画出流程图.解 算法如下: S1 S ←0,i ←1;S2 如果i ≤2 011,则转S3,否则,转S5; S3 S ←S +1i (i +1); S4 i ←i +1,转S 2; S5 输出S . 流程图:法一 当型循环流程图: 法二 直到型循环流程图:[方法总结] 利用循环结构表示算法,第一要确定是利用当型循环结构,还是直到型循环结构;第二要注意根据条件,设计合理的计数变量、累加变量等,特别要注意循环结构中条件的表述要恰当、精确,以免出现多一次循环或少一次循环的情况.【训练3】(1)(2012·江苏卷)如图(1)是一个算法流程图,则输出的k的值是________.(2)(2011·浙江卷)某流程图如图(2)所示,则该程序运行后输出的k的值是________.解析(1)∵条件语句为k2-5k+4>0,即k<1或k>4.∴当k=5时,满足此条件,此时输出5.(2)初始值:k=2,执行“k=k+1”得k=3,a=43=64,b=34=81,a>b不成立;k=4,a=44=256,b=44=256,a>b不成立;k=5,a=45=1 024,b=54=625,a>b成立,此时输出k=5.答案(1)5(2)5对应学生用书P203规范解答24算法流程图的识别与读取2014年高考,算法初步为必考知识,估计试题难度为中、低档题,一般是以流程图为考查重点,考查对算法思想和流程图的应用.【示例】(2012·山东卷改编)执行右面的程序框图,如果输入a=4,那么输出的n的值为________.[审题路线图] (1)这是一个累加求和的当型循环结构.(2)P、Q是累加变量,n是计数变量.[解答示范] n=0,P=0+40=1,Q=2+1=3;n=1,P=1+41=5,Q=6+1=7;n=2,P=5+42=21,Q=14+1=15;n=3,P>Q.故n值为3.(5分)[点评] (1)在解决循环结构问题时,一定要弄明白计数变量和累加变量是用什么字母表示的,再把这两个变量的变化规律弄明白,就能理解这个流程图的功能了,问题也就清楚了.(2)在解决带有循环结构的流程图问题时,循环结构的终止条件是至关重要的,这也是考生非常容易弄错的地方,考生一定要根据问题的情境弄清楚这点.高考经典题组训练1.(2012·福建卷)阅读如图所示的程序框图,运行相应的程序,输出的s值等于________.解析第1次s=1,k=1;第2次s=1,k=2,;第3次s=0,k=3;第4次s=-3,k=4.结束.答案-32.(2012·浙江卷)若某程序框图如图所示,则该程序运行后输出的值是________.解析第1次,T=1,第2次,T=12,第3次,T=16,第4次,T=124,第5次,T=1120,i=6结束.答案1 1203.(2012·安徽卷改编)如图所示,程序框图(算法流程图)的输出结果是________.解析答案 44.(2012·湖北卷)阅读如图所示的程序框图,运行相应的程序,输出的结果s =________.解析第1次,n=1,s=1,a=3,第2次,n=2,s=4,a=5,第3次,n=3,s=9,输出s=9.答案95.(2010·江苏卷)如图是一个算法的流程图,则输出S的值是________.解析执行过程如下表:答案63对应学生用书P377分层训练A级基础达标演练(时间:30分钟满分:40分)1.关于流程图的图形符号的理解,正确的是________(填序号).①任何一个流程图都必须有起止框;②输入框只能在开始框之后,输出框只能放在结束框之前;③判断框是唯一具有超过一个退出点的图形符号;④对于一个流程图来说,判断框内的条件是唯一的.解析任何一个程序都有开始和结束,因而必须有起止框;输入和输出可以放在算法中任何需要输入、输出的位置;判断框内的条件不是唯一的,如a>b,亦可写为a≤b.故只有①③对.答案①③2.(2011·天津卷改编)阅读如图所示流程图,运行相应的程序,若输入x的值为-4,则输出y的值为________.解析当x=-4时,|x|=4>3,x赋值为x=|-4-3|=7>3,∴x赋值为x=|7-3|=4>3,x再赋值为x=|4-3|=1<3,则y=21=2,输出2.答案 23.(2012·盐城市期末考试)执行如图所示的流程图,则输出的y的值是________.解析当x=16时,经循环得x=4,再循环得x=2,此时不满足x>2,故y=e2-2=1.答案 14.执行如图所示流程图,得到的结果是________.解析由题意,得S=12+14+18=78.答案7 85.(2013·无锡调研)某算法的流程图如图所示,若输入a=4,b=2,c=6,则输出的结果为________.(第4题图)解析 原执行程序是在输入的a ,b ,c 中,选出最大的数, ∴结果为6. 答案 66.(2012·南通调研一)如图是求函数值的算法流程图,当输入值为2时,则输出值为________.解析 本题的流程图其实是一个分段函数 y =⎩⎨⎧2x -3,x <0,5-4x ,x ≥0.当输入x =2时,y =5-4×2=-3. 答案 -37.(2011·天津卷)阅读下面的程序框图,运行相应的程序,则输出i 的值为________. 解析 第一次运行结束:i =1,a =2; 第二次运行结束:i =2,a =5; 第三次运行结束:i =3,a =16;第四次运行结束:i =4,a =65,故输出i =4. 答案 48.(2012·天津卷改编)阅读如图算法流程图,运行相应的程序,当输入x 的值为-25时,输出x 的值为________.解析 当输入x =-25时,|-25|>1成立,因此x =|-25|-1=4,x =4时,|4|>1成立,因此x =|4|-1=1;x =1时,1>1不成立,因此x =2×1+1=3,输出x 为3. 答案 3分层训练B 级 创新能力提升1.(2011·江西卷)如图是某算法的流程图,则程序运行后输出的结果是________.解析 n =1,s =0+(-1)1+1=0,n=2时,s=0+(-1)2+2=3,n=3时,s=3+(-1)3+3=5,n=4时,s=5+(-1)4+4=10>9,故运行输出结果为10.答案102.(2011·陕西卷)如图中,x1,x2,x3为某次考试三个评阅人对同一道题的独立评分,p为该题的最终得分,当x1=6,x2=9,p=8.5时,x3等于________.解析由题意知x1=6,x2=9,此时|x1-x2|=3>2,若|x3-6|<|x3-9|,则p=6+x3 2=8.5,解得x3=11,不满足|x3-6|<|x3-9|,舍去;若|x3-6|≥|x3-9|,则p=x3+9 2=8.5,解得x3=8,符合题意.答案83.(2011·辽宁卷改编)执行如图流程图,如果输入的n是4,则输出的p是________.解析由k=1,n=4,知1<4⇒p=1=0+1⇒s=1,t=1⇒k=2⇒2<4⇒p=1+1=2⇒s=1,t=2⇒k=3⇒3<4⇒p=1+2=3⇒s=2,t=3⇒k=4⇒4<4――→否输出p=3.答案 34.(2010·广东卷)某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中n位居民的月均用水量分别为x1,…,x n(单位:吨).根据如图所示的程序框图,若n=2,且x1,x2分别为1,2,则输出的结果s为________.解析当i=1时,s1=1,s2=1,s=1×(1-1)=0,当i=2时,s1=3,s2=1+4=5,s=12×⎝⎛⎭⎪⎫5-12×9=14.答案1 45.(2012·苏州调研一)如图是一个算法的流程图,则最后输出W的值是________.解析由流程图,执行过程为:故输出答案146.(2012·泰州调研二)2010年上海世博会园区每天9:00开园,20:00停止入园.在如图所示的框图中,S表示上海世博会官方网站在每个整点报道的入园总人数,a表示整点报道前1个小时内入园人数,则空白的处理框内应填________.解析框图表示的是每天入园参观的人数统计,报道的入园总人数的时间为整点,但入园的时间有整点入园和非整点入园.举例说明如11点报道的入园人数为10点钟以后到11点整入园的人数与之前入园的人数之和.答案S←S+a7.(2011·苏锡常镇调研)如图给出的是计算1+13+15+…+119的值的一个流程图,其中判断框内应填入的条件是________.解析按算法的运算本质,执行到n=19时,结束输出.即:答案i>108.(2011·湖南卷)若执行如图所示的流程图,输入x1=1,x2=2,x3=3,x=2,则输出的数为________.解析通过流程图可以看出本题的实质是求数据x1,x2,x3的方差,根据方差公式,得S=13[(1-2)2+(2-2)2+(3-2)2]=23.答案2 3第2讲基本算法语句对应学生用书P204考点梳理1.基本算法语句五种基本算法语句分别是赋值语句、输入语句、输出语句、条件语句、循环语句.2.赋值语句、输入语句、输出语句赋值语句用符号“←”表示,其一般格式是变量←表达式(或变量),其作用是对程序中的变量赋值;输入语句“Read a,b”表示输入的数据依次递给a,b,输出语句“Print x”表示输出运算结果x.3.算法的选择结构由条件语句来表达,条件语句有两种,一种是If-Then-Else另一种是If-Then语句,其格式是If A ThenBEnd If,对应的流程图为.4.算法中的循环结构,可以运用循环语句来实现.(1)当循环的次数已经确定,可用“For”语句表示“For”语句的一般形式为对应的流程图为说明:上面“For”和“End For”之间缩进的步骤称为循环体,如果省略“Step步长”,那么重复循环时,I每次增加1.(2)不论循环次数是否确定都可以用下面循环语句来实现循环结构当型和直到型两种语句结构.对应的流程图为对应的流程图为【助学·微博】关于赋值语句,有以下几点需要注意:(1)赋值号左边只能是变量名字,而不是表达式,例如3←m是错误的.(2)赋值号左右不能对换,赋值语句是将赋值号右边的表达式的值赋给赋值号左边的变量,例如Y←x,表示用x的值替代变量Y的原先的取值,不能改写为x←Y.因为后者表示用Y的值替代变量x的值.(3)在一个赋值语句中只能给一个变量赋值,不能出现多个“←”.考点自测1.(课本改编题)阅读右面伪代码,则输出的结果为________.解析a=5,b=3,c=(a+b)2=4.答案 42.(2012·南通一模)计算机执行下面的伪代码后,输出的结果是________.解析a=3+1=4,b=4-3=1.答案4,13.当a=1,b=3时,执行以下伪代码输出的结果为________.解析因为1<3满足a<b,所以x=1+3=4.答案 44.要使下面的“For”循环语句循环执行15次,“初值”应为________.For I From“初值”To 5 Step-1解析由x-5+1=15,得x=19.答案 195.(2012·南京模拟)当x =2时,下面的伪代码执行后的结果是________. 解析 当i =1时,s =0×2+1=1, 当i =2时,s =1×2+1=3, 当i =3时,s =3×2+1=7, 当i =4时,s =7×2+1=15. 答案 15i ←1s ←0While i ≤4s ←s ·x +1i ←i +1End While Print s对应学生用书P205考向一 输入、输出和赋值语句【例1】 要求输入两个正数a 和b 的值,输出a b 与b a 的值,画出流程图,写出伪代码.解 流程图: 伪代码如下: Read a ,b A ←a bB ←b aPrint A ,B[方法总结] 编写伪代码的关键在于搞清问题的算法,特别是算法结构,然后确定采取哪一种算法语句.【训练1】 编写伪代码,求用长度为l 的细铁丝分别围成一个正方形和一个圆时的面积.要求输入l 的值,输出正方形和圆的面积.(π取3.14) 解 伪代码如下:错误!【例2】 已知分段函数y =⎩⎨⎧-x +1,x <0,0,x =0,x +1,x >0.编写伪代码,输入自变量x 的值,输出其相应的函数值,并画出流程图. 解 伪代码如下: 流程图 Read xIf x <0 Then y ←-x +1ElseIf x =0 Theny ←0Else y ←x +1 End If End If Print y[方法总结] 这是一个分段函数问题,计算函数值必须先判断x 的范围,因而设计求函数值的算法必须用到选择结构,相应程序的书写应用条件语句来书写.【训练2】 已知函数f (x )=⎩⎨⎧x 2-1(x ≥0),2x 2-5(x <0),设计一个算法并用伪代码实现每输入一个x 的值,都得到相应的函数值.解 用x ,y 分别表示自变量和函数值,则相应的算法如下: S1 输入x 的值;S2 判断x 的取值范围,如果x ≥0,则y ←x 2-1,求函数值,否则y ←2x 2-5; S3 输出函数值y . 伪代码如下: Read xIf x ≥0 Then y ←x 2-1Else y ←2×x 2-5End If Print y【例3】编写伪代码,求1+12+13+…+1n>1 000的最小自然数n的值.解本题不等号的左边1+12+13+…+1n是有规律的累加,故可引入和变量S,转化为求S>1 000的最小自然数n的值,故可以用“While S≤1 000”来控制循环.伪代码如下:错误![方法总结] 通过本题掌握While语句的特点,注意与For语句的区别.在设计算法时要注意循环体的构成,不能颠倒.【训练3】某算法的伪代码如下:错误!则输出的结果是________.解析伪代码所示的算法是一个求和运算.答案50 101对应学生用书P206规范解答25算法语句的识别与读取结合江苏高考以及实施新课标省份的高考试题来看,对算法的考查深度、难度并不大.考查基本上集中在两个方面:一是流程图表示的算法;二是伪代码表示的算法.【示例】(2011·江苏卷)根据如图所示的伪代码,当输入a,b分别为2,3时,最后输出的m的值是________.[审题路线图] (1)本题是一个含条件语句的伪代码.(2)利用流程图和伪代码的关系、算法语句的意义解题.[解答示范] 由题意知,m为a,b中的最大值,故最后输出的m值为3.Read a,bIf a>b Thenm←aElsem←bEnd IfPrint m(5分)[点评] 计算机在执行条件语句时,首先对If后的条件进行判断,如果条件符合,就执行Then后的语句1,若条件不符合,对于If—Then—Else语句就执行Else后的语句2,然后结束这一条件语句.对于If—Then语句,则直接结束该条件语句.高考经典题组训练1.下列伪代码的运行结果是________.a←3b←5Print a+b答案82.(2012·无锡模拟)当x=3时,下面算法输出结果是________.解析这是一个条件语句,x=3满足x<10,所以y=2x=6.答案 63.下面伪代码运行后输出的结果为________.解析由于x=5,所以条件不满足,程序执行Else语句后面的y=y+3,所以y=-17,从而得x-y=5-(-17)=22;y-x=-17-5=-22.答案22,-224.为了在运行下面的伪代码后输出y=16,应输入的整数x的值是________.解析当x<0时,由(x+1)2=16得x=-5;当x≥0时,由1-x2=16得x2=-15,矛盾.答案-55.(2013·南京外国语学校调研)如图所示的伪代码的输出结果为________.解析S=1+1+3+5+7+9=26.答案26对应学生用书P379分层训练A级基础达标演练(时间:30分钟满分:60分)一、填空题(每小题5分,共30分)1.按照下面的算法进行操作:S1x←2.35S2y←Int(x)S3Print y最后输出的结果是________.解析Int(x)表示不大于x的最大整数.答案 22.下面是一个算法的伪代码,如果输入的x的值是20,则输出的y的值是________.解析∵x=20>5,∴执行赋值语句y=7.5x=7.5×20=150.答案150Read xIf x≤5Then y←10xElsey←7.5xEnd IfPrint y Read xIf x<3Theny←2xElseIf x>3Theny←x2-1Elsey←2End IfEnd If3.以上给出的是用条件语句编写的一个伪代码,该伪代码的功能是________. 答案 求下列函数当自变量输入值为x 时的函数值f (x ),其中f (x )=⎩⎨⎧2x ,x <32,x =3x 2-1,x >34.(2013·南通调研)根据如图的算法,输出的结果是________.S ←0For I From 1 to 10 S ←S +IEnd For Print S End解析 S =1+2+3+…+10=10×112=55.答案 555.(2012·苏州调研)根据如图所示的伪代码,最后输出的t =________. 解析 由题意,得t =1+3+5+7+9=25. 答案 256.(2012·苏北四市质检(一))根据如图所示的伪代码,可知输出的S =________. 解析 i =1时第一次循环:i =3,S =9;第二次循环:i =5,S =13;第三次循环:i =7,S =17;第四次循环:i =9,S =21,此时不满足条件“i <8”,停止循环,输出S =21. 答案 21二、解答题(每小题15分,共30分)7.已知分段函数y =⎩⎨⎧x +3(x <0),0(x =0),x +8(x >0),编写伪代码,输入自变量x 的值,输出其相应的y 值,并画出流程图.解 伪代码如下: 流程图如下: Read xIf x <0 Then y ←x +3ElseIf x =0 Theny ←0Else y ←x +8 End If End If Print y8.用伪代码写出求1+3+32+33+34的值的算法. 解S ←0For I From 0 to 4 Step 1 S ←S +3I End For Print S分层训练B 级 创新能力提升1.(2012·盐城调研)如图所示的伪代码运行的结果为________. 解析 a =1+1=2,b =2+1=3,c =2+3=5; a =2+3=5,b =5+3=8,c =5+8=13; a =5+8=13,b =13+8=21,c =13+21=34. 答案 34(第1题图) (第2题图)2.(2012·高邮模拟)根据如图所示伪代码,可知输出结果S=________,I=________.解析S=2×7+3=17,I=7+2=9.答案1793.(2012·泰州调研)如图,运行伪代码所示的程序,则输出的结果是________.a←1b←2I←2While I≤6a←a+bb←a+bI←I+2End WhilePrint b解析流程图的执行如下:当I=8时,答案344.(2012·南京调研)写出下列伪代码的运行结果.(1)图1的运行结果为________;(2)图2的运行结果为________.解析(1)图1的伪代码是先执行S←S+i,后执行i←i+1∴S=0+1+2+…+(i-1)=(i-1)i2>20,∴i的最小值为7.(2)图2的伪代码是先执行i←i+1,后执行S←S+i,∴S=0+1+2+…+i=i(i+1)2>20.∴i的最小值为6.答案(1)7(2)65.(2012·常州调研)根据下列伪代码画出相应的流程图,并写出相应的算法.S←1n←1While S<1 000S←S×nn←n+1End WhilePrint n解流程图如图:算法如下:S1S←1;S2n←1;S3如果S<1 000,那么S←S×n,n←n+1,重复S3;S4输出n.6.(2012·苏北四市调研)设计算法,求1-3+5-7+…-99+101的值,用伪代码表示.解用“For”语句表示,S ←1a ←1For I From 3 To 101 Step 2 a ←a ×(-1) S ←S +a ×I End For Print S用“While”语句表示, S ←1I ←3a ←1While I ≤101a ←a ×(-1) S ←S +a ×I I ←I +2End While Print S 第3讲 合情推理与演绎推理对应学生用书P207考点梳理1.归纳推理(1)定义:根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性的推理.或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳). (2)归纳推理的特点①归纳推理是由部分到整体,由个别到一般的推理; ②归纳推理的结论不一定为真;③归纳的个别情况越多,越具有代表性,推广的一般性命题就越可靠. 2.类比推理(1)定义:由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征的推理,称为类比推理.类比推理是两类事物特征之间的推理.(2)类比推理的特点①类比推理是由特殊到特殊的推理;②类比推理属于合情推理,其结论具有或然性,可能为真,也可能为假;③类比的相似性越多,相似的性质与推测的性质之间越相关,类比得出的命题就越可靠.3.演绎推理(1)定义:演绎推理是根据已知的事实和正确的结论,按照严格的逻辑法则得到新结论的推理过程.(2)演绎推理的特点①演绎推理是由一般到特殊的推理;②当前提为真时,结论必然为真.(3)演绎推理的主要形式是三段论,其一般模式为:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断.【助学·微博】一个命题解读本部分内容是新课标内容,高考考查的几率非常大.对归纳推理与类比推理仍会以填空形式考查,主要是由个别情况归纳出一般结论,或运用类比的形式给出某个问题的结论.而演绎推理以解答题出现的可能性较大,因此要求学生具备一定的逻辑推理能力.两个防范(1)合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.(2)演绎推理是由一般到特殊的推理,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.考点自测1.(2012·盐城市第一学期摸底考试)在平面上,若两个正方形的边长的比为1∶2,则它们的面积比为1∶4;类似地,在空间内,若两个正方体的棱长的比为1∶2,则它们的体积比为________.解析 由正方体的体积之比等于棱长的立方之比可得. 答案 1∶82.给出下列三个类比结论.①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2. 其中结论正确的序号是________. 答案 ③3.“因为指数函数y =a x 是增函数(大前提),而y =⎝ ⎛⎭⎪⎫13x 是指数函数(小前提),所以函数y =⎝ ⎛⎭⎪⎫13x是增函数(结论)”,上面推理的错误在于________错误导致结论错.解析 “指数函数y =a x 是增函数”是本推理的大前提,它是错误的,因为实数a 的取值范围没有确定,所以导致结论是错误的. 答案 大前提错4.(2010·陕西卷)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________.解析 13+23=32=(1+2)2,13+23+33=62=(1+2+3)2,13+23+33+43=102=(1+2+3+4)2,则13+23+…+n 3=(1+2+…+n )2=⎣⎢⎡⎦⎥⎤n (n +1)22,故第五个等式即为当n =6时,13+23+33+43+53+63=⎝⎛⎭⎪⎫6×722=212. 答案 13+23+33+43+53+63=2125.(2011·盐城调研)观察下列几个三角恒等式: ①tan 10°tan 20°+tan 20°tan 60°+tan 60°tan 10°=1; ②tan 5°tan 100°+tan 100°tan(-15°)+tan(-15°)tan 5°=1; ③tan 13°tan 35°+tan 35°tan 42°+tan 42°tan 13°=1.一般地,若tan α,tan β,tan γ都有意义,你从这三个恒等式中猜想得到的一个结论为________.解析 由于三个等式中,角度之间满足10°+20°+60°=90°,5°+100°-15°=90°,13°+35°+42°=90°.于是通过类比可得.答案 当α+β+γ=90°时,tan αtan β+tan βtan γ+tan γtan α=1对应学生用书P207考向一 归纳推理【例1】 观察下列等式: 1=1,1+2=3,1+2+3=6,1+2+3+4=10,1+2+3+4+5=15, 13=1,13+23=9,13+23+33=36,13+23+33+43=100,13+23+33+43+53=225.可以推测:13+23+33+…+n 3=________(n ∈N *,用含有n 的代数式表示). 解析 第二列等式的右端分别是1×1,3×3,6×6,10×10,15×15,∵1,3,6,10,15,…第n 项a n ,与第n -1项a n -1(n ≥2)的差为:a n -a n -1=n ,∴a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,…,a n -a n -1=n ,各式相加得,a n =a 1+2+3+…+n ,其中a 1=1,∴a n =1+2+3+…+n ,即a n =n (n +1)2,∴a 2n =14n 2(n +1)2.答案 14n 2(n +1)2[方法总结] 所谓归纳,就是由特殊到一般,因此在归纳时就要分析所给条件之间的变化规律,从而得到一般结论. 【训练1】 (2011·山东)设函数f (x )=xx +2(x >0),观察: f 1(x )=f (x )=xx +2,f 2(x )=f (f 1(x ))=x3x +4, f 3(x )=f (f 2(x ))=x7x +8, f 4(x )=f (f 3(x ))=x15x +16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=________. 解析 由f (x )=x x +2(x >0)得,f 1(x )=f (x )=x x +2, f 2(x )=f (f 1(x ))=x 3x +4=x(22-1)x +22, f 3(x )=f (f 2(x ))=x 7x +8=x (23-1)x +23, f 4(x )=f (f 3(x ))=x 15x +16=x(24-1)x +24,……∴当n ≥2且n ∈N *时,f n (x )=f (f n -1(x ))=x(2n-1)x +2n.答案x(2n -1)x +2n考向二 类比推理【例2】 在平面几何里,有“若△ABC 的三边长分别为a ,b ,c ,内切圆半径为r ,则三角形面积为S △ABC =12(a +b +c )r ”,拓展到空间,类比上述结论,“若四面体ABCD 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,则四面体的体积为________”.解析 三角形的面积类比为四面体的体积,三角形的边长类比为四面体四个面的面积,内切圆半径类比为内切球的半径.二维图形中12类比为三维图形中的13,得V 四面体ABCD =13(S 1+S 2+S 3+S 4)r .答案 V 四面体ABCD =13(S 1+S 2+S 3+S 4)r[方法总结] (1)类比是从已经掌握了的事物的属性,推测正在研究的事物的属性,是以旧有的认识为基础,类比出新的结果;(2)类比是从一种事物的特殊属性推测另一种事物的特殊属性;(3)类比的结果是猜测性的,不一定可靠,但它却有发现的功能.【训练2】 (2012·盐城模拟)记等差数列{a n }的前n 项和为S n ,利用倒序求和的方法,可将S n 表示成首项a 1、末项a n 与项数n 的一个关系式,即公式S n =n (a 1+a n )2;类似地,记等比数列{b n }的前n 项积为T n ,且b n >0(n ∈N *),试类比等差数列求和的方法,可将T n 表示成首项b 1、末项b n 与项数n 的一个关系式,即公式T n =________.解析 利用等比数列性质,即若m +n =p +q ,则b m ·b n = b p ·b q ,得T 2n =(b 1b 2…b n )·(b n b n -1…b 2b 1)=(b 1b n )n,即T n =(b 1b n )n 2. 答案 (b 1b n )n 2考向三 演绎推理【例3】 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n (n ∈N +),证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n , ∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . ∴S n +1n +1=2·S nn ,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以2为公比的等比数列.(结论)(大前提是等比数列的定义,这里省略了)(2)由(1)可知S n+1n+1=4·S n-1n-1(n≥2),∴S n+1=4(n+1)·S n-1n-1=4·n-1+2n-1·S n-1=4a n(n≥2)(小前提)又a2=3S1=3,S2=a1+a2=1+3=4=4a1,(小前提)∴对于任意正整数n,都有S n+1=4a n(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件)[方法总结] 演绎推理是从一般到特殊的推理;其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略.【训练3】已知函数f(x)=2x-12x+1(x∈R),(1)判定函数f(x)的奇偶性;(2)判定函数f(x)在R上的单调性,并证明.解(1)对∀x∈R有-x∈R,并且f(-x)=2-x-12-x+1=1-2x1+2x=-2x-12x+1=-f(x),所以f(x)是奇函数.(2)f(x)在R上单调递增,证明如下:任取x1,x2∈R,并且x1>x2,f(x1)-f(x2)=2x1-12x1+1-2x2-12x2+1=(2x1-1)(2x2+1)-(2x2-1)(2x1+1)(2x1+1)(2x2+1)=2(2x1-2x2) (2x1+1)(2x2+1).∵x1>x2,∴2x1>2x2>0,即2x1-2x2>0,又∵2x1+1>0,2x2+1>0.∴2(2x1-2x2)(2x1+1)(2x2+1)>0.∴f(x1)>f(x2).∴f(x)在R上为单调递增函数.。
2014届高考数学(理科)二轮复习专题讲义:专题六 第4讲 推理与证明、算法初步、复数一、基础知识要记牢 (1)复数的模:复数z =a +b i 的模|z |=a 2+b 2. (2)复数相等的充要条件:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ). 特别地,a +b i =0⇔a =0且b =0(a ,b ∈R ).(3)复数的除法一般是将分母实数化,即分子、分母同乘以分母的共轭复数再进一步化简.二、经典例题领悟好[例1] (1)(2013·安徽高考)设i 是虚数单位,若复数a -103-i (a ∈R )是纯虚数,则a 的值为( )A .-3B .-1C .1D .3(2)(2013·陕西高考)设z 1,z 2是复数,则下列命题中的假命题是( ) A .若|z 1-z 2|=0,则z 1=z 2 B .若z 1=z 2,则z 1=z 2 C .若|z 1|=|z 2|,则z 1·z 1=z 2·z 2D .若|z 1|=|z 2|,则z 21=z 22[解析] (1)因为a -103-i =a -10(3+i )(3-i )(3+i )=a -10(3+i )10=(a -3)-i ,由纯虚数的定义,知a -3=0,所以a =3.(2)A ,|z 1-z 2|=0⇒z 1-z 2=0⇒z 1=z 2⇒z 1=z 2,真命题;B ,z 1=z 2⇒z 1=z 2=z 2,真命题;C ,|z 1|=|z 2|⇒|z 1|2=|z 2|2⇒z 1·z 1=z 2·z 2,真命题;D ,当|z 1|=|z 2|时,可取z 1=1,z 2=i ,显然z 21=1,z 22=-1,即z 21≠z 22,假命题.[答案] (1)D (2)D(1)与复数z 有关的复杂式子为纯虚数,可设为m i (m ≠0),利用复数相等去运算较简便.(2)在有关复数z 的等式中,可设出z =a +b i (a ,b ∈R ),用待定系数法求解.(3)熟记一些常见的运算结果可提高运算速度:(1±i )2=±2i ,1+i 1-i =i ,1-i1+i=-i ,设ω=-12+32i ,则ω3=1,|ω|=1,ω2=ω,1+ω+ω2=0.三、预测押题不能少1.(1)设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则|(1-z )·z |=( ) A.10 B .2 C. 2D .1解析:选A 依题意得(1-z )·z =(2+i)(-1+i)=-3+i ,|(1-z )·z |=|-3+i|=(-3)2+12=10.(2)已知i 是虚数单位,z =1+i ,z 为z 的共轭复数,则复数z 2z在复平面上对应的点的坐标为________.解析:z =1+i ,则z 2z =(1+i )21-i =2i 1-i =2i (1+i )(1-i )(1+i )=-1+i ,则复数z 2z在复平面上对应的点的坐标为(-1,1).答案:(-1,1)一、基础知识要记牢 (1)类比推理的一般步骤:①找出两类事物之间的相似性或一致性;②用一类事物的性质推测另一类事物的性质,得出一个明确的结论. (2)归纳推理的一般步骤:①通过观察个别事物发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题.一般情况下,归纳的个别事物越多,越具有代表性,推广的一般性结论也就越可靠. 二、经典例题领悟好[例2] (2013·陕西高考)观察下列等式: 12=1, 12-22=-3,12-22+32=6,12-22+32-42=-10,……照此规律,第n个等式可为________.[解析]12=1,12-22=-(1+2),12-22+32=1+2+3,12-22+32-42=-(1+2+3+4),……12-22+32-42+…+(-1)n+1n2=(-1)n+1(1+2+…+n)=(-1)n+1n(n+1)2.[答案]12-22+32-42+…+(-1)n+1n2=(-1)n+1n(n+1)2合情推理的解题思路(1)在进行归纳推理时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论.(2)在进行类比推理时,要充分考虑已知对象性质的推理过程,然后通过类比,推导出类比对象的性质.(3)归纳推理关键是找规律,类比推理关键是看共性.三、预测押题不能少2.(1)21×1=2,22×1×3=3×4,23×1×3×5=4×5×6,24×1×3×5×7=5×6×7×8,….依此类推,第n个等式为__________________________.解析:由归纳推理可知,第n个等式为2n×1×3×…×(2n-1)=(n+1)×(n+2)×…×2n.答案:2n×1×3×...×(2n-1)=(n+1)×(n+2)× (2)(2)对于命题:若O是线段AB上一点,则有|OB|·OA+|OA|·OB=0.将它类比到平面的情形是:若O是△ABC内一点,则有S△OBC·OA+S△O CA·OB+S△OBA·OC=0,将它类比到空间的情形应该是:若O是四面体ABCD内一点,则有________.解析:将平面中的相关结论类比到空间,通常是将平面中的图形的面积类比为空间中的几何体的体积,因此依题意可知:若O为四面体ABCD内一点,则有V O-BCD·OA+V O-ACD·OB+V O-ABD·OC+V O-ABC·OD=0.答案:V O-BCD·OA+V O-ACD·OB+V O-ABD·OC+V O-ABC·OD=0一、经典例题领悟好[例3] (2013·新课标全国卷Ⅱ)执行下面的程序框图,如果输入的N =10,那么输出的S =( )A .1+12+13+…+110B .1+12!+13!+…+110!C .1+12+13+…+111D .1+12!+13!+…+111![解析] 当输入N =10时,由于k =1,S =0,T =1,因此T =11=1,S =1,k =2,此时不满足k >10;当k =2时,T =11×2=12!,S =1+12!,k =3,此时不满足k >10; 当k =3时,T =11×2×3=13!,S =1+12!+13!,k =4,此时不满足k >10;当k =4时,T =11×2×3×4=14!,S =1+12!+13!+14!,k =5,此时不满足k >10 ;……当k =10时,T =11×2×3×4×…×10=110!,S =1+12!+13!+14!+…+110!,k =11,此时满足k >10.因此输出S =1+12!+13!+14!+…+110!.[答案] B(1)解答有关程序框图问题,首先要读懂程序框图,要熟练掌握程序框图的三种基本结构.(2)利用循环结构表示算法要注意:①要选择准确的表示累计的变量;②要注意在哪一步结束循环;③执行完整每一次循环,防止执行程序不彻底,造成错误.二、预测押题不能少3.(1)程序框图如图,如果程序运行的结果为S=132,那么判断框中可填入()A.k≤10 B.k≥10C.k≤11 D.k≥11解析:选A输出的S值是一个逐次累积的结果,第一次运行S=12,k=11;第二次运行S=132,k=10.如果此时输出结果,则判断框中的k的最大值是10.(2)若某程序框图如图所示,则该程序运行后输出的值是()A.2 B.3C.4 D.5解析:选C逐次运行的结果是n=3,i=2;n=4,i=3;n=2,i=4.故输出的值是4.算法是新课标高考中的一大热点,特别体现在算法的交汇性问题上,这些问题题目背景新颖,交汇自然,主要表现在算法与函数、数列、不等式、概率及统计的交汇.一、经典例题领悟好[例] (2013·四川高考节选)某算法的程序框图如图所示,其中输入的变量x 在1,2,3,…,24这24个整数中等可能随机产生.(1)分别求出按程序框图正确编程运行时输出y 的值为i 的概率P i (i =1,2,3);(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为i (i =1,2,3)的频数.以下是甲、乙所作频数统计表的部分数据.甲的频数统计表(部分)乙的频数统计表(部分)当n =2 100时,根据表中的数据,分别写出甲、乙所编程序各自输出y 的值为i (i =1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编程序符合算法要求的可能性较大;(3)将按程序框图正确编写的程序运行3次,求输出y 的值为2的次数ξ的分布列及数学期望.(1)学审题——审条件之审视图表和数据程序框图――→审图计算输出y 的值为1,2,3的数的个数―――――――→古典概型公式概率.(2)学审题 频数统计表――→审表 各小组频数―→频率―――――→与(1)比较结论. (3)学审题 条件―→确定y 的取值13每次发生的概率为求出分布列―→期望值.[解] (1)变量x 是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能. 当x 从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y 的值为1,故P 1=12;当x 从2,4,8,10,14,16,20,22这8个数中产生时,输出y 的值为2,故P 2=13;当x 从6,12,18,24这4个数中产生时,输出y 的值为3,故P 3=16.所以,输出y 的值为1的概率为12,输出y 的值为2的概率为13,输出y 的值为3的概率为16. (2)当n =2 100时,甲、乙所编程序各自输出y 的值为i (i =1,2,3)的频率如下:比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性较大. (3)随机变量ξ可能的取值为0,1,2,3.P (ξ=0)=C 03×⎝⎛⎭⎫130×⎝⎛⎭⎫233=827, P (ξ=1)=C 13×⎝⎛⎭⎫131×⎝⎛⎭⎫232=49, P (ξ=2)=C 23×⎝⎛⎭⎫132×⎝⎛⎭⎫231=29, P (ξ=3)=C 33×⎝⎛⎭⎫133×⎝⎛⎭⎫230=127, 故ξ的分布列为所以,E (ξ)=3×13=1.即ξ的数学期望为1.本题主要考查算法与程序框图、古典概型、频数、频率、随机变量的分布列、数学期望等概念及相关计算,考查运用统计与概率的知识与方法解决实际问题的能力,考查数据处理能力、应用意识和创新意识.解答本题的易错点为:一是错读程序框图使本题在求解第一步时就出现错误,二是处理频数分布表中数据时运算错误.二、预测押题不能少某工厂欲加工一件艺术品,需要用到三棱锥形状的坯材,工人将如图所示的长方体ABCD -EFGH 材料切割成三棱锥H -ACF .(1)若点M ,N ,K 分别是棱HA ,HC ,HF 的中点,点G 是NK 上的任意一点,求证:MG ∥平面ACF ;(2)已知原长方体材料中,AB =2 m ,AD =3 m ,DH =1 m ,根据艺术品加工需要,工程师必须求出该三棱锥的高.工程师设计了一个求三棱锥的高度的程序,其框图如图所示,则运行该程序时乙工程师应输入的t 的值是多少?解:(1)证明:∵HM =MA ,HN =NC ,HK =KF ,∴MK ∥AF ,MN ∥AC . ∵MK ⊄平面ACF ,AF ⊂平面ACF ,∴MK ∥平面ACF , 同理可证MN ∥平面ACF ,∵MN ,MK ⊂平面MNK ,且MK ∩MN =M ,∴平面MNK ∥平面ACF ,又MG ⊂平面MNK ,故MG ∥平面ACF . (2)由程序框图可知a =CF ,b =AC ,c =AF , ∴d =b 2+c 2-a 22bc =AC 2+AF 2-CF 22AC ·AF =cos ∠CAF ,∴e =12bc 1-d 2=12AC ·AF ·sin ∠CAF =S △ACF .又h =3t e ,∴t =13he =13h ·S △ACF=V 三棱锥H -ACF . ∵三棱锥H -ACF 为将长方体ABCD -EFGH 切掉4个体积相等的小三棱锥所得, ∴V 三棱锥H -ACF =2×3×1-4×13×12×3×2×1=6-4=2,故t =2.1.(2013·四川高考)如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( )A .AB .BC .CD .D解析:选B 因为x +y i 的共轭复数是x -y i ,故选B.2.(2013·福建质检)执行如图所示的程序框图,若输入的x 值为2,则输出的x 值为( )A .3B .126C .127D .128解析:选C 若输入的x =2,则x =22-1=3,而3<126,故x =23-1=7,而7<126,故x =27-1=127.因为127>126,所以输出的x 值为127.3.(2013·郑州质量预测)若复数z =2-i ,则z +10z=( ) A .2-i B .2+i C .4+2iD .6+3i解析:选D ∵z =2-i ,∴z +10z =(2+i)+102-i =(2+i)+10(2+i )(2-i )(2+i )=6+3i.4.(2013·江西高考)阅读如下程序框图,如果输出i =5,那么在空白矩形框中应填入的语句为( )A .S =2*i -2 B.S =2*i -1 C .S =2*iD.S =2*i +4解析:选C 此框图依次执行如下循环:第一次:i =1,S =0,i =1+1=2,i 是奇数不成立,S =2*2+1=5,继续循环; 第二次:i =2+1=3,i 是奇数成立,继续循环;第三次:i =3+1=4,i 是奇数不成立,S =2*4+1=9,继续循环;第四次:i =4+1=5,i 是奇数成立,由题意知此时应跳出循环,输出i =5,即S <10不成立.故应填S =2*i (此时S =10<10不成立).若填S =2*i +4,则在第二次循环中就跳出循环.故选C. 5.(2013·河南洛阳模拟)执行如图所示的程序框图,任意输入一次x (0≤x ≤1)与y (0≤y ≤1),则能输出数对(x ,y )的概率为( )A.14B.13C.23D.34解析:选B 依题意,不等式组⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤1表示的平面区域的面积等于12=1;不等式组⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤1,y ≤x 2表示的平面区域的面积等于∫10x 2d x =13x 310=13,因此所求的概率为13.6.若数列{a n }是等差数列,则数列{b n }b n =a 1+a 2+…+a nn也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( )A .d n =c 1+c 2+…+c nnB .d n =c 1·c 2·…·c nnC .d n = n c n 1+c n 2+…+c nnnD .d n =nc 1·c 2·…·c n解析:选D 若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n (n -1)2d ,∴b n =a 1+(n -1)2d =d 2n +a 1-d2,即{b n }为等差数列;若{c n }是等比数列,则c 1·c 2·…·c n=c n 1·q 1+2+…+(n -1)=c n 1·q 12n n (-),∴d n =nc 1·c 2·…·c n =c 1·q12n -,即{d n }为等比数列,故选D.7.已知复数z =1-i ,则z 2-2zz -1=________.解析:z 2-2z z -1=(z -1)2-1z -1=z -1-1z -1=(-i)-1-i =-i -i -i·i=-2i.8.(2013·山东高考)执行下面的程序框图,若输入的ε的值为0.25,则输出的n 的值为________.解析:逐次计算的结果是F 1=3,F 0=2,n =2;F 1=5,F 0=3,n =3,此时输出, 故输出结果为3.答案:39.(2013·福建质检)观察下列等式: 13+23=1; 73+83+103+113=12; 163+173+193+203+223+233=39; ……则当m <n 且m ,n ∈N 时,3m +13+3m +23+3m +43+3m +53+…+3n -23+3n -13=________(最后结果用m ,n 表示).解析:由13+23=1,知m =0,n =1,1=12-02;由73+83+103+113=12,知m =2,n =4,12=42-22; 由163+173+193+203+223+233=39,知m =5,n =8,39=82-52; ………依此规律可归纳,3m +13+3m +23+3m +43+3m +53+…+3n -23+3n -13=n 2-m 2.10.已知复数z1满足(z1-2)(1+i)=1-i(i为虚数单位),复数z2的虚部为2,且z1·z2是实数,求z2.解:∵(z1-2)(1+i)=1-i,∴z1=2-i.设z2=a+2i,a∈R,则z1·z2=(2-i)(a+2i)=(2a+2)+(4-a)i.∵z1·z2∈R,∴a=4.∴z2=4+2i.11.(2013·郑州质量预测)每年的3月12日,是中国的植树节.林管部门在植树前,为保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两种树苗中各抽测了10株树苗的高度,规定高于128厘米的树苗为“良种树苗”,测得高度如下(单位:厘米):甲:137,121,131,120,129,119,132,123,125,133;乙:110,130,147,127,146,114,126,110,144,146.(1)根据抽测结果,画出甲、乙两种树苗高度的茎叶图,并根据你填写的茎叶图,对甲、乙两种树苗的高度作比较,写出对两种树苗高度的统计结论;(2)设抽测的10株甲种树苗高度平均值为x,将这10株树苗的高度依次输入按程序框图进行运算(如图),问输出的S大小为多少?并说明S的统计学意义;(3)若小王在甲种树苗中随机领取了5株进行种植,用样本的频率分布估计总体分布,求小王领取到的“良种树苗”的株数X的分布列.解:(1)茎叶图如图所示:统计结论:①甲种树苗的平均高度小于乙种树苗的平均高度;②甲种树苗比乙种树苗长得更整齐;③甲种树苗高度的中位数为127,乙种树苗高度的中位数为128.5;④甲种树苗的高度基本上是对称的,而且大多数集中在均值附近,乙种树苗的高度分布较为分散.(2)依题意,x =127,S =35.S 表示10株甲种树苗高度的方差,是描述树苗高度的离散程度的量. S 值越小,表示树苗长得越整齐,S 值越大,表示树苗长得越参差不齐.(3)由题意可知,领取一株甲种树苗得到“良种树苗”的概率为12,则X ~B ⎝⎛⎭⎫5,12, 所以随机变量X 的分布列为12.(2013·北京高考)已知A ,B ,C 是椭圆W :x 24+y 2=1上的三个点,O 是坐标原点.(1)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积; (2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由. 解:(1)椭圆W :x 24+y 2=1的右顶点B 的坐标为(2,0).因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分. 所以可设A (1,m ),代入椭圆方程得14+m 2=1,即m =±32.所以菱形OABC 的面积是12|OB |·|AC |=12×2×2|m |= 3.(2)四边形OABC 不可能为菱形.理由如下: 假设四边形OABC 为菱形.因为点B 不是W 的顶点,且直线AC 不过原点, 所以可设AC 的方程为y =kx +m (k ≠0,m ≠0).由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m 消y 并整理得 (1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m1+4k 2. 所以AC 的中点为M ⎝⎛⎭⎫-4km 1+4k 2,m1+4k 2.因为M 为AC 和OB 的交点,所以直线OB 的斜率为-14k.因为k ·⎝⎛⎭⎫-14k ≠-1,所以AC 与OB 不垂直. 所以四边形OABC 不是菱形,与假设矛盾.所以当点B不是W的顶点时,四边形OABC不可能是菱形.。
第2讲复数本章内容主要是复数的概念、复数的运算.引入虚数,这是中学阶段对数集的最终扩充.需要掌握复数的概念、弄清实数与复数的关系,掌握复数代数形式的运算(包括加、减、乘、除),了解复数的几何表示.由于向量已经单独学习,因此复数的向量形式与三角形式就不作要求,主要解决代数形式.【知识要点】1.复数的概念中,重要的是复数相等的概念.明确利用“转化”的思想,把虚数问题转化为实数问题加以解决,而这种“转化”的思想是通过解实数的方程(组)的方法加以实现.2.复数的代数形式:z=a+bi(a,b∈R).应该注意到a,b∈R是与z=a+bi为一个整体,解决虚数问题实际上是通过a,b∈R在实数集内解决实数问题.3.复数的代数形式的运算实际上是复数中实部、虚部(都是实数)的运算.【复习要求】1.了解数系的扩充过程.理解复数的基本概念与复数相等的充要条件.2.了解复数的代数表示法及其几何意义.3.能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义.【例题分析】1.将下列各式的运算结果在复平面中表示,在第四象限的为()A.1ii+B.1ii+-C.1ii-D.1ii--【答案】A【考点】复数的代数表示法及其几何意义【专题】转化思想;定义法;数系的扩充和复数;数学运算【分析】利用复数的运算分别求出四个选项中复数的代数形式,判断其对应的点所在的象限即可.【解答】解:对于A,由11iii+=-,故对应的点在第四象限,所以A正确;对于B,11iii+=-+-,故对应的点在第二象限,所以B不正确;对于C,11iii-=--,故对应的点在第三象限,所以C不正确;对于D,11iii-=+,故对应的点在第一象限,所以D不正确.故选:A.【点评】本题考查了复数的几何意义的运用,主要考查了复数的四则运算法则的运用,属于基础题.2.若复数z 满足|1||12|z i i -+=-,其中i 为虚数单位,则z 对应的点(,)x y 满足方程( )A .22(1)(1)5x y -+-=B .22(1)(1)5x y -++=C .22(1)(1)5x y ++-=D .22(1)(1)5x y +++= 【答案】B【考点】复数的代数表示法及其几何意义;复数的模【专题】函数思想;转化法;数系的扩充和复数;数学运算【分析】由已知求得z ,代入|1||12|z i i -+=-,求模整理得答案.【解答】解:设z x yi =+,|1||12|z i i -+=-,|(1)(1)||12|x y i i ∴-++=-, ∴2222(1)(1)1(2)x y -+++-,故22(1)(1)5x y -++=,故选:B .【点评】本题考查复数模的求法,是基础题.3.已知复数2i z i =+,则其共轭复数z 的虚部为( ) A .25 B .25- C .25i D .25i - 【答案】B【考点】复数的运算【专题】转化思想;定义法;数系的扩充和复数;数学运算 【分析】利用复数的四则运算求出z ,结合共轭复数的定义求出z ,即可得到其虚部. 【解答】解:(2)21122(2)(2)555i i i i z i i i i ⋅-+====+++-,则1255z i =-, 所以共轭复数z 的虚部为25-. 故选:B .【点评】本题考查了复数的运算,主要考查了复数的四则运算以及共轭复数的应用,属于基础题.4.复数12z i =+,213z i =-,其中i 为虚数单位,则12z z z =⋅在复平面内的对应点位于()A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【考点】复数的代数表示法及其几何意义【专题】转化思想;综合法;数系的扩充和复数;数学运算【分析】利用复数的运算法则、几何意义即可得出.【解答】解:复数12z i =+,213z i =-,则12(2)(13)23(16)55z z z i i i i =⋅=+-=++-=-,z 在复平面内的对应点(5,5)-位于第四象限,故选:D .【点评】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.5.已知i 是虚数单位,则1||1i i +=- 1 . 【答案】1.【考点】复数的模;复数的运算 【专题】对应思想;转化法;数系的扩充和复数;数学运算【分析】化简1|||||1i i i+=-,求出模即可. 【解答】解:21(1)21(1)(1)2i i i i i i i ++===--+, 故1||||11i i i+==-, 答案为:1.【点评】本题考查了复数求模问题,是基础题.6.函数()(*n n f n i i n N -=+∈,i 是虚数单位)的值域可用集合表示为 {2-,0,2} .【答案】{2-,0,2}.【考点】虚数单位i 、复数【专题】转化思想;定义法;数系的扩充和复数;数学运算【分析】对n 进行赋值,发现函数()f n 的周期为4,从而得到函数的值域.【解答】解:因为f (1)0=,f (2)2=-,f (3)0=,f (4)2=,f (5)0=,f (6)2=-,f (7)0=,f (8)2=,⋯所以函数()f n 的周期为4,故函数()f n 的值域为{2-,0,2}.故答案为:{2-,0,2}.【点评】本题考查了虚数单位i 的理解和应用,解题的关键是判断出()f n 是周期为4的函数,属于基础题.7.已知复数z 满足(2)34(z i i i +=+是虚数单位),则||z5 . 5.【考点】复数的模【专题】转化思想;综合法;数系的扩充和复数;数学运算【分析】把已知等式变形,再由商的模等于模的商求解. 【解答】解:由(2)34z i i +=+,得342i z i+=+, 34||||525i z i +∴===+ 5.【点评】本题考查复数模的求法,考查数学转化思想方法,是基础题.8.已知z ∈C 且z ﹣2+|z |=2+12i ,求z 的值.【考点】复数的运算;复数的模.【专题】方程思想;转化法;数系的扩充和复数;数学运算.【答案】z =3+4i .【分析】设z =a +bi ,a ,b ∈R ,根据条件得到关于a ,b 的方程,求出a ,b 的值,即可得到z .【解答】解:设z =a +bi ,a ,b ∈R ,则,即 因此,解得, ∴z =3+4i .【点评】本题考查了复数的运算法则,复数相等,考查了推理能力与计算能力,属于基础题。
第一讲算法、复数、推理与证明[考情分析]1.程序框图是每年高考的必考内容,主要考查循环结构的程序框图的输出功能以及判断框内循环体结束条件的填充,多为选择题或填空题,试题难度不大;2.对复数的考查,难度一般为容易,常在选择题或填空题的前两题的位置呈现.一般考查三个方面:一是复数的概念,如实部、虚部、模、共轭复数等;二是复数的四则运算;三是复数的几何意义;3.推理与证明考查频次较低.[真题自检]1.(2016·高考全国卷Ⅰ)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=( ) A.-3 B.-2C.2 D.3解析:由题意知(1+2i)(a+i)=a-2+(1+2a)i,则a-2=1+2a,解得a=-3,故选A.答案:A2.(2016·高考全国卷Ⅱ)设复数z 满足z +i =3-i ,则z =( ) A .-1+2i B .1-2i C .3+2iD .3-2i解析:由z +i =3-i 得z =3-2i ,∴z =3+2i ,故选C. 答案:C3.(2016·高考全国卷Ⅲ)若z =4+3i ,则z|z |=( ) A .1 B .-1 C.45+35i D.45-35i 解析:∵z =4+3i ,∴z =4-3i ,|z |=42+32=5,∴z|z |=4-3i 5=45-35i. 答案:D4.(2016·高考全国卷Ⅰ)执行如图所示的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5x解析:输入x =0,y =1,n =1,运行第一次,x =0,y =1,不满足x 2+y 2≥36; 运行第二次,x =12,y =2,不满足x 2+y 2≥36;运行第三次,x =32,y =6,满足x 2+y 2≥36,输出x =32,y =6.由于点⎝ ⎛⎭⎪⎫32,6在直线y =4x 上,故选C. 答案:C5.(2016·高考全国卷Ⅱ)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2.”乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1.”丙说:“我的卡片上的数字之和不是5.”则甲的卡片上的数字是________.解析:法一:由题意得丙的卡片上的数字不是2和3.若丙的卡片上的数字是1和2,则由乙的说法知乙的卡片上的数字是2和3,则甲的卡片上的数字是1和3,满足题意;若丙的卡片上的数字是1和3,则由乙的说法知乙的卡片上的数字是2和3,则甲的卡片上的数字是1和2,不满足甲的说法. 故甲的卡片上的数字是1和3.法二:因为甲与乙的卡片上相同的数字不是2,所以丙的卡片上必有数字2.又丙的卡片上的数字之和不是5,所以丙的卡片上的数字是1和2.因为乙与丙的卡片上相同的数字不是1,所以乙的卡片上的数字是2和3,所以甲的卡片上的数字是1和3. 答案:1和3算法与程序框图[方法结论]算法的两种基本逻辑结构(1)循环结构分为当型和直到型两种.(2)当型循环在每次执行循环体前对控制循环的条件进行判断,当条件满足时执行循环体,不满足时则停止.(3)直到型循环在执行了一次循环体后,对控制循环的条件进行判断,当条件不满足时执行循环体,满足则停止.[题组突破]1.(2017·合肥模拟)执行如图所示的程序框图,则输出的n 为( )A .9B .11C .13D .15解析:由程序框图可知,S 是对1n 进行累乘,直到S <12 017时停止运算,即当S =1×13×15×17×19×111<12 017时循环终止,此时输出的n =13,故选C. 答案:C2.(2017·昆明七校调研)阅读如图所示的程序框图,运行相应的程序,若输出S 的值为1,则判断框内为( )A .i >6?B .i >5?C .i ≥3?D .i ≥4?解析:依题意,执行程序框图,进行第一次循环时,S =1×(3-1)+1=3,i =1+1=2;进行第二次循环时,S =3×(3-2)+1=4,i =2+1=3;进行第三次循环时,S =4×(3-3)+1=1,i =4,因此当输出的S 的值为1时,判断框内为“i ≥4?”,选D. 答案:D [误区警示]程序框图中的填充框图问题,最常见的要求补充循环结构的判断条件,求解时最易出现失误,解决此类问题的方法:创造函数的判断条件为“i >n ?”或“i <n ?”,然后找出运算结果与条件的关系,反解出条件即可.复 数[方法结论]1.复数z =a +b i(a ,b ∈R )的分类 (1)z 是实数⇔b =0; (2)z 是虚数⇔b ≠0; (3)z 是纯虚数⇔a =0且b ≠0. 2.共轭复数复数a +b i(a ,b ∈R )的共轭复数是a -b i(a ,b ∈R ). 3.复数的四则运算法则(1)(a +b i)±(c +d i)=(a ±c )+(b ±d )i ; (2)(a +b i)(c +d i)=(ac -bd )+(bc +ad )i ; (3)(a +b i)÷(c +d i)=ac +bd c 2+d 2+bc -adc 2+d 2i(a ,b ,c ,d ∈R ). 提醒:记住以下结论,可提高运算速度 (1)(1±i)2=±2i;(2)1+i 1-i =i ;(3)1-i 1+i =-i ;(4)a +b i i=b -a i ;(5)i 4n =1,i 4n +1=i ,i 4n +2=-1,i4n +3=-i(n ∈N ).[题组突破]1.(2017·高考全国卷Ⅱ)(1+i)(2+i)=( ) A .1-i B .1+3i C .3+iD .3+3i解析:依题意得(1+i)(2+i)=2+i 2+3i =1+3i ,选B. 答案:B2.(2017·长沙模拟)在复平面内,复数3i1-i 对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:3i1-i =3+-+=-3+3i2,故其对应的点在第二象限,选B. 答案:B3.(2017·西安模拟)设(a +i)2=b i ,其中a ,b 均为实数.若z =a +b i ,则|z |=( ) A .5B. 5C .3D. 3解析:由(a +i)2=b i 得a 2-1+2a i =b i ,所以⎩⎪⎨⎪⎧a 2-1=02a =b,即⎩⎪⎨⎪⎧a 2=1b 2=4,故复数z =a +b i 的模|z |=a 2+b 2=1+4=5,选B. 答案:B4.(2017·惠州模拟)若复数z 满足z ·i=1+i(i 是虚数单位),则z 的共轭复数是________. 解析:由z i =1+i 可得z =1+ii=+--=1-i ,所以z 的共轭复数是1+i.答案:1+i [误区警示]1.混淆复数的实部和虚部;2.计算(a +i)2,|z |时,错用运算法则.推理与证明[方法结论]1.推理(1)归纳是由特殊到一般的推理,类比是由特殊到特殊的推理,演绎推理是由一般到特殊的推理. (2)从推理的结论来看,合情推理的结论不一定正确,有待证明;演绎推理得到的结论一定正确. (3)演绎推理是证明数学结论、建立数学体系的重要思维过程.数学结论、证明思路的发现,主要靠合情推理. 2.证明的两种方法(1)直接证明:①综合法;②分析法. (2)间接证明:反证法. 3.与反证法有关的命题题型(1)易导出与已知矛盾的命题;(2)否定性命题;(3)唯一性命题;(4)“至少”“至多”型命题;(5)一些基本定理;(6)必然性命题等.[典例] (1)用反证法证明命题:“若整系数一元二次方程ax 2+bx +c =0(a ≠0)有有理根,那么a ,b ,c 中至少有一个是偶数”时,下列假设正确的是( )A .假设a ,b ,c 都是偶数B .假设a ,b ,c 都不是偶数C .假设a ,b ,c 至多有一个偶数D .假设a ,b ,c 至多有两个偶数解析:(1)“至少有一个”反面应为“没有一个”,也就是说本题应假设a ,b ,c 都不是偶数. 答案:B(2)(2017·安徽江淮十校联考)我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在 2+ 2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定x =2,则1+11+11+…=( )A.-5-12 B.5-12 C.1+52D.1-52解析:1+11+11+…=x ,即1+1x =x ,即x 2-x -1=0,解得x =1+52(x =1-52舍),故1+11+11+…=1+52,故选C. 答案:C(3)(2017·武汉调研)一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中.”乙说:“我没有作案,是丙偷的.”丙说:“甲、乙两人中有一人是小偷.”丁说:“乙说的是事实.”经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( ) A .甲 B .乙 C .丙D .丁解析:由题可知,乙、丁两人的观点一致,即同真同假,假设乙、丁说的是真话,那么甲、丙两人说的是假话,由乙说的是真话,推出丙是罪犯,由甲说假话,推出乙、丙、丁三人不是罪犯,显然两个结论相互矛盾,所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙供述可得,乙是罪犯. 答案:B [类题通法]推理问题多以选择题或填空题的形式出现,主要考查利用归纳推理、类比推理去寻求更为一般的、新的结论,而其他的主要是渗透到数学问题的求解之中;常涉及特殊、一般、部分、整体及归纳思想、类比思想等数学思想方法.[演练冲关]1.法国数学家费马观察到212+1=5,222+1=17,232+1=257,242+1=65 537都是质数,于是他提出猜想:任何形如22n +1(n ∈N *)的数都是质数,这就是著名的费马猜想.半个世纪之后,善于发现的欧拉发现第5个费马数252+1=4 294 967 297=641×6 700 417不是质数,从而推翻了费马猜想,这一案例说明( ) A .归纳推理的结果一定不正确B .归纳推理的结果不一定正确C .类比推理的结果一定不正确D .类比推理的结果不一定正确解析:法国数学家费马观察到212+1=5,222+1=17,232+1=257,242+1=65 537都是质数,于是他提出猜想;任何形如22n+1(n ∈N *)的数都是质数,这是归纳推理,由特殊到一般,但由于没有验证,结果不一定正确. 答案:B2.(2017·湖北八校联考)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( ) A .甲 B .乙 C .丙D .丁解析:根据题意,6名选手比赛结果甲、乙、丙、丁猜测如下表:答案:D3.(2017·贵阳模拟)已知不等式1+14<32,1+14+19<53,1+14+19+116<74,照此规律总结出第n个不等式为________.解析:由已知,三个不等式可以写成1+122<2×2-12,1+122+132<2×3-13,1+122+132+142<2×4-14, 所以照此规律可得到第n 个不等式为1+122+132+…+1n 2+1n +2<n +-1n +1=2n +1n +1.答案:1+122+132+…+1n 2+1n +2<2n +1n +1算法中的交汇问题算法是高考的一大热点,其中算法的交汇性问题已成为高考的一大亮点,这类问题常常背景新颖,并与函数、数列、不等式、统计等交汇,考查考生的信息处理能力及综合运用知识解决问题的能力.[典例] 执行如图所示的程序框图,如果输入的t ∈[-2,2],则输出的S 属于( )A.[-6,-2] B.[-5,-1]C.[-4,5] D.[-3,6]解析:由程序框图可知其值域为(-2,6]∪[-3,-1]=[-3,6],故选D.答案:D[类题通法]解决算法的交汇性问题的方法(1)读懂算法框图,明确交汇知识;(2)根据给出问题与算法框图处理问题;(3)注意框图中结构的判断.[演练冲关]1.根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是( )A.a n=2n B.a n=2(n-1)C.a n=2n D.a n=2n-1解析:由程序框图可知:a1=2×1=2,a2=2×2=4,a3=2×4=8,a4=2×8=16,归纳可得:a n=2n,故选C.答案:C2.已知函数f(x)=x2-ax的图象在点A(1,f(1))处的切线与直线x+3y+2=0垂直,执行如图所示的程序框图,输出的k值是________.解析:因为f (x )=x 2-ax ,所以f ′(x )=2x -a ,根据导数的几何意义,y =f (x )的图象在点A (1,f (1))处的切线斜率k =f ′(1)=2-a ,因为函数f (x )=x 2-ax 的图象在点A (1,f (1))处的切线与直线x +3y +2=0垂直,所以(2-a )×(-13)=-1,所以a =-1,所以f (x )=x 2+x ,所以1f x =1x 2+x =1x -1x +1,从而可知程序框图的功能是求S =12+16+112+…+1k 2+k =(1-12)+(12-13)+…+(1k -1k +1)=1-1k +1=k k +1>1415时k 的最小值,故k =15.答案:15。
第 17 讲算法、复数1.认识复数中的相关观点,掌握复数的四则运算.从过去的考察来看,近几年的高考都考察了复数,考题主假如以填空题的形式出现,难度都不大.2.认识算法的观点、流程图、基本算法语句.近几年高考都考了算法,主要考察的内容是流程图,考题主假如以填空题的形式出现,难度不是很大.1. 设复数 z 知足 i(z -1) =- 3+ 2i,则 z 的实部与虚部的和是________.答案: 62.若 i 是虚数单位,设1+i= a+ (b+ 1)i(a 、b∈R ),则复数 z= a+ bi 在复平面内对应的点2-i位于第 ________象限.答案:第四象限3.依据以下图的伪代码,当输入a、b 分别为2、3 时,最后输出的m 的值为 ________.Read a, bIf a>b Thenm← aElsem← bEnd IfPrint m答案: 34. 已知函数f(x) =|x- 3|,下边程序框图表示的是给定将该程序框图增补完好.此中①处应填________,②处应填x 值,求其相应函数值的算法.请________.答案: x< 3y= x- 3题型一例 1复数的观点与计算(1) 已知复数z1= 1+ 2i, z2= 1+ ai(i是虚数单位).若z1· z2为纯虚数,则实数a=________.3+ i,则 |z|= ________.(2) 若复数 z 知足 z+i =i答案: (1)1(2) 172分析: (1)∵ z1· z2= (1+ 2i)(1 + ai)= 1-2a+ (2+ a)i 是纯虚数,∴1- 2a= 0,∴ a=1 2+ a≠0,2.3+ i-i =- 3i+ 1- i = 1- 4i,(2) ∵ z=i∴ |z|=1+ 16= 17.型二 算法 例 2 某 球 6 名主力 在近来三 比 中投 的三分球个数以下表所示:i 1 2 3 4 5 6三分球个数a 1 a 2 a 3 a 4 a 5 a 6下 是 6 名 在近来三 比 中投 的三分球 数的程序框 , 中判断框 填 ________, 出的 s = ________.答案: i ≤6 a 1+ a 2+ ⋯+ a 6分析:本 主要考 循 构的程序框 ,要求写判断框中的条件和 六个数据乞降. 例 3 以下 所示,程序框 (算法流程 )的 出 果是 ________.答案: 15分析:本 考 算法框 的 ,考 等差数列前n 和.由算法框 可知, T = 1+ 2+3+ ⋯ + k = k (k +1),若 T = 105, k = 14, 行循2体, k = 15, T >105,所以 出的 k15.某 算机程序 行 程以下 所示:行步行内容 S1 : a ←1, b ← 9, n ← 8,i ← 0 S2 : d ←(b - a)/n S3 : x ←a+ d ×i S4出: xS5 i 增添 1 S6 假如 i ≤n, 到 S3,否 束程序(1) 写出本程序挨次 出的 果 ____.(2) 若要求挨次 出的 果 “ 1, 3,5, 7, 9”, 程序可作以下改 ____.答案: (1) 1 , 2, 3, 4, 5,6, 7, 8,9(2) S5 改 “ i 增添 2”或许 S1 改 “ a ←1,b ← 9, n ← 4, i ← 0”例 4 行如 所示的程序框 , 出的 s 的 ________.答案: 2分析:循环操作 4 次时 s 的值分别为1,-1,- 3, 2. 321. (2014江·苏卷 )已知复数2z= (5+ 2i) (i 为虚数单位 ),则 z 的实部为 ________.答案: 2122. (2014山·东卷 )已知 a、b∈R,i 是虚数单位,若a- i 与 2+ bi 互为共轭复数,则(a+ bi)=________.答案: 3+ 4i3.(2014 浙·江卷 )已知 i 是虚数单位, a、b∈R,得“a= b= 1”是“ (a+ bi) 2= 2i”的 ________( 填“充足不用要”“必需不充足”“充足必需”或“既不充足也不用要”)条件.答案:充足不用要4. (2014 江·苏卷 )下列图是一个算法流程图,则输出的n 的值是 ________.答案: 55. (2014 重·庆卷 )履行下列图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是 ________. (填序号 )①s>12② s>35③ s>107④ s>45答案:②6. (2014 陕·西卷)依据以下图的框图,对大于 2 的整数N ,输出的数列的通项公式是________.答案: a n= 2n(此题模拟高考评分标准,满分 5 分)(2014 徐·州二模 )履行以下图算法的伪代码,则输出S 的值为 ________.S←0For I From 1 To 7 Step 2S←S+ IEnd ForPrint S答案: 16分析: I=1 时 S=1;I=3 时 S=1+3;I=5 时 S=1+3+5;I= 7 时 S= 1+3+5+7= 16,结束循环,输出 S= 16.(5 分 )1. 设复数 z 知足 (1+ i)z =2,此中 i 为虚数单位,则z= ____________.答案: 1- i2. i 为虚数单位,则1+ i 2 0111- i= ______________ .答案:- i3. 履行以下图的程序框图,假如输入的N 是 6,那么输出的p 是 ________.答案: 7204. 阅读以下图的程序框图,运转相应的程序,则输出的s 值为 ________.答案:0分析:第一步得s= 1×(3-1)+ 1= 3, i= 2<4;第二步得s= 3×(3- 2)+ 1= 4,i =3< 4;第三步得s= 4×(3- 3)+ 1= 1,i =4= 4;第四步得s= 1×(3- 4)+ 1= 0,i =5>4 ;到第四步, i= 5 大于 4,所以输出,所以输出的s= 0.5.如图,当 x1=6, x2= 9,p= 8.5 时, x3= ____.答案: 86. 某程序框图以下图,则该程序运转后输出的k 的值是 ________.答案: 5。