2015年中考数学专题复习(根与系数的关系)
- 格式:doc
- 大小:80.60 KB
- 文档页数:3
一元二次方程根的判别及根与系数的关系知识回顾1。
一元二次方程的求根公式是什么?2。
用公式法解一元二次方程的步骤是什么?1。
一元二次方程的求根公式是什么?一般地,对于一元二次方程ax 2+bx+c=0(a ≠0)1)当b 2—4ac ≥0时,它的根是 ; 2)当b 2-4ac<0时,方程无实数根.2.用公式法解一元二次方程的步骤是什么? 1)把方程化为一般形式 2)确定 a,b ,c 的值3)计算b 2-4ac ,并判断其值与0的关系 4)若 b 2—4ac ≥0,利用求根公式 , 计算方程的根; 若 b 2-4ac <0,方程无实数根。
对于一元二次方程ax 2+bx+c=0(a ≠0) 1)当b 2-4ac ≥0时,它的根是 ; 2)当b 2-4ac <0时,方程无实数根. 谁决定了一元二次方程根的情况? (一)一元二次方程根的判别式我们把 b 2—4ac 叫做一元二次方程 ax 2+bx+c=0(a ≠0)的根的判别式, 用符号“ △ ”来表示。
242b b ac x a -±-=24b b ac x -±-=24b b ac x -±-=当△>0时,方程有两个不相等的实数根 当△= 0时,方程有两个相等的实数根 当△<0时,方程没有实数根反之,当方程有两个不相等的实数根时,△>0 当方程有两个相等的实数根时,△= 0当方程没有实数根时,△<0例1:不解方程,判别方程根的情况.(1)2x 2-6x —5 = 0 (2)2x 2= 12x-18 (3) 3x 2—5x = —4一般步骤:1、化为一般式,确定a 、b 、c 的值.2、计算△的值,确定△的符号。
3、判别根的情况,得出结论。
例2:不解方程,判别方程根的情况。
22110x ax a -++=()22-30x x k +=()例3:m 为任意实数,试说明关于x 的方程x 2—(m-1)x-3(m+3)= 0恒有两个不相等的实数根.练习:已知:a 、b 、c 为实数,求证:关于x 的一元二次程(x —a)(x —b)+(x —b )(x —c )+(x-c)(x-a)=0恒有实数根.例4:(1)已知:关于x 的方程2(1)04kkx k x +++=有两个不相等的实数根,求k 的取值范围.2)已知:关于x 的方程2(1)04kkx k x +++=有实数根.求k 的取值范围。
中考数学专项练习一元二次方程系数与根的关系(含解析)一、单选题1.若、是一元二次方程的两根,则的值是()A.-2B.2C.3D.12.一元二次方程x2+3x﹣a=0的一个根为﹣1,则另一个根为()A.﹣2B.2C.4D.﹣33.已知方程x2-5x+2=0的两个解分别为m,n,则m+n-mn的值是()A.-7B.-3C.7D.34.若关于x一元二次方程x2﹣x﹣m+2=0的两根x1 ,x2满足(x1﹣1)(x2﹣1)=﹣1,则m的值为()A.3B.-3C.2D.-25.下列方程中:①x2-2x-1=0,②2x2-7x+2=0,③x2-x+1=0两根互为倒数有()A.0个B.1个C.2个D.3个6.设x1 ,x2是一元二次方程-2x-3=0的两根,则=()A.6B.8C.1D.127.一元二次方程x2+x-2=0的两根之积是()A.-1B.-2C.1D.28.方程x2+2x-4=0的两根为x1 ,x2 ,则x1+x2的值为()A.2B.-2C.D.-9.若矩形的长和宽是方程x2﹣7x+12=0的两根,则矩形的对角线之和为()A.5B.7C.8D.1010.假如a,b是一元二次方程x2﹣2x﹣4=0的两个根,那么a3b﹣2a2b 的值为()A.-8B.8C.-16D.1611.假如是一元二次方程的两个实数根,那么的值是()A.B.C.D.二、填空题12.设x1、x2是方程x2-4x+3=0的两根,则x1+x2=________.13.定义新运算“*”,规则:a*b= ,如1*2=2,* .若x2+x﹣1=0的两根为x1 ,x2 ,则x1*x2=________.14.若x1、x2是方程2x2﹣3x﹣4=0的两个根,则x1•x2+x1+x2的值为________.15.若a、b是一元二次方程x2+2x﹣1=0的两个根,则的值是_____ ___.16.写出一个以2和3为两根且二项系数为1的一元二次方程,你写的是________.17.若方程x2﹣3x+1=0的两根分别为x1和x2 ,则代数式x1+x2﹣x 1x2=________.18.若一个一元二次方程的两个根分别是1、3,请写出一个符合题意的一元二次方程________.三、运算题19.已知关于的一元二次方程的两个整数根恰好比方程的两个根都大1,求的值.20.已知一元二次方程x2﹣6x+4=0的两根分别是a,b,求(1)a2+b2(2)a2﹣b2的值.四、解答题21.已知关于x的方程x2+x+a﹣1=0有一个根是1,求a的值及方程的另一个根.22.阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1 ,x2 ,则两根与方程系数之间有如下关系:x1+x2=﹣,x1•x2=.请依照该材料解题:已知x1 ,x2是方程x2+6x+3=0的两实数根,求+和x12x2+x1x22的值.答案解析部分一、单选题1.【答案】C【考点】根与系数的关系【解析】【分析】∵一元二次方程的两根分别是、,∴==3.故选C.2.【答案】A【考点】根与系数的关系【解析】【解答】解:设x1、x2是关于x的一元二次方程x2+3x﹣a=0的两个根,则x1+x2=﹣3,又﹣x2=﹣1,解得:x1=﹣2.即方程的另一个根是﹣2.故选:A.【分析】依照一元二次方程根与系数的关系x1+x2=﹣求另一个根即可.3.【答案】D【考点】根与系数的关系【解析】【分析】利用根与系数的关系求出m+n与mn的值,代入所求式子中运算即可求出值.【解答】∵x2-5x+2=0的两个解分别为m,n,∴m+n=5,mn=2,则m+n-mn=5-2=3.故选D【点评】此题考查了根与系数的关系,熟练把握根与系数的关系是解本题的关键.4.【答案】A【考点】根与系数的关系【解析】【解答】解:依照题意得x1+x2=1,x1x2=﹣m+2,∵(x1﹣1)(x2﹣1)=﹣1,∴x1x2﹣(x1+x2)+1=﹣1,∴﹣m+2﹣1+1=﹣1,∴m=3.故选A.【分析】依照根与系数的关系得到x1+x2=1,x1x2=﹣m+2,再变形等式(x 1﹣1)(x2﹣1)=﹣1得到x1x2﹣(x1+x2)+1=﹣1,则有﹣m+2﹣1+1=﹣1,然后解此一元一次方程即可.5.【答案】B【考点】一元二次方程的根与系数的关系【解析】【解答】两根互为倒数则说明两根之积为1且△≥0,即,则a=c,∴只有②是正确的,③没有实数根.故答案为:B【分析】由两根互为倒数则说明两根之积为1且△≥0,可得出答案。
专题 根与系数的关系例1. 152s ≥-且3,5s s ≠-≠ 例2. C 提示: 设三根为121,,x x ,则121x x -< 例3. 设223,A βα=+223,B αβ=+ 31004A B += ①A B -= ② 解由① ②联立的 方程组得1(4038A =-例 4. 0,s ≠Q 故第一个等式可变形为211()99()190,s s ++= 又11,,st t s ≠∴Q 是一元二次方程 299190x x ++=的两个不同实根, 则1199,19,t t s s +=-=g 即199,19.st s t s +=-=故41994519st s s st s++-+==- 例5. (1) 当a b =时, 原式=2; 当a b ≠时, 原式=-20, 故原式的值为2或-20(2) 由方程组得232,326(6),x y a z x y z az +=-=-+g 易知3,2x y 是一元二次方程22()6(6)0t a z t z az --+-+=的两个实数根,0∴∆≥, 即2223221440z az a -+-≤,由z 为实数知,22'(22)423(144)0,a a ∆=--⨯⨯-≥解得a ≥故正实数a的最小值为(3) xy 与x y +是方程217660m m -+=的两个实根,解得11,6x y xy +=⎧⎨=⎩或6,()xy 11.x y +=⎧⎨=⎩舍原式=()()222222212499x y x y xy x y +-++=. 例6 解法一:∵ac <0,2=40b ac ∆->,∴原方程有两个异号实根,不妨设两个根为x 1,x 2,且x 1<0<x 2,由韦达定理得x 1+ x 2=b a -,12cx x a =,由0=,得0b ca a +=,)12120x x x ++=,解得2x =假设2x ,由10x <推得3-不成立,故2x 假设21x ≥,1,由10x <推得10x ,矛盾.故21x <,综上所述21x <.解法二:设()2f x ax bx c =++,由条件得)b =,得)3355f a c a c=++=-++=,()1f a b c a a c⎤=++=-⎦.若a>0,0c<,则0f<,()10f>;若a<0,0c>,则0f>,()10f<.∴0ac<时,总有()10f f.<,故原方程必1之间.A级1.3 2.2 3.-2 m>2 0<m≤183提示:12x->,22x->与124x x+->,124x x⋅>不等价.4.100134016-提示:由条件得2n na b n+=+,22n na b n⋅=-,则()()()2221n na b n n--=-+,则()()211112221na b n n⎛⎫=--⎪--+⎝⎭.5.C 6.C 7.A 8.A 9.提示:(1)()2=2120m∆-+>(2)2124mx x=-≤0,m=4或m=0.10.(1)43k->且0k≠(2)存在k=4 11.由题意得2m n=,224840n m n--+<.当n=1时,m=2;当n=2时,m=4.12.设方程两根为1x,2x,则1212,.x x mnx x m n+=⎧⎨=+⎩∵m,n,1x,2x均为正整数,设121x x≥≥,1m n≥≥,则()1212x x x x mn m n+-=-+,即有()()()()1211112x x m n--+--=,则()()()()12112,1,0,110,1,2.x xm n⎧--=⎪⎨--=⎪⎩∴123,2,5,2,2,1,5,2,3,1,2,2.xxmn=⎧⎪=⎪⎨=⎪⎪=⎩故5,2,3,1;2; 2.m m mn n n===⎧⎧⎧⎨⎨⎨===⎩⎩⎩B级1.0 提示:由条件得21130x x+-=,22230x x+-=,∴2113x x=-,2223x x=-,∴()3211111111333343x x x x x x x x=-=-+=-+=-,∴原式=()()121212434319431241944x x x x x x---+=--++=++.又∵121x x+=-,∴原式=0.2.853.5 4.638-提示:()2=240a∆-+>,原式=2963632488a⎛⎫----⎪⎝⎭≤.5.D 6.C 7.B 8.B 9.()231αβαβ+-=,由根与系数关系得()241a b ab+-=,即()21a b-=,a -b =1.又由0∆≥得()2316a b ab +≥,从而()24a b +≤.由a -b =1,()24a b +≤,得满足条件的整数点对(a ,b )是(1,0)或(0,-1). 104447αβ+=,662248p αβαβ-==-,()2244227q αβαβαβ-==-.11.a +b =3,c +d =4,ab =1,cd =2,a +b +c +d =7,222219a b c d +++=.(1)原式=()()()()7a a b c d a b c d d a b c d d a b c aa b c d a b c b c d+++-+++++-+++=-++++++…+77777.b c d b c d M c d a d a b a b c +-+-+-=-++++++ (2)原式=()()()()2222a a b c d a b c d d a b c d d a b c b c da b c+++-+++++-+++=++++…+()()22227774968M a b c d M --+++=-.12.(1)m =. (2)原式=()()()22212121221212352312122m x x x x x x m m m x x x x ⎡⎤+-+⎛⎫⎣⎦=-+=-- ⎪-++⎝⎭.∵11m -≤≤,∴当m =-1时,22121211mx mx x x +--的最大值为10. 13.设20x ax b ++=的两根分别为,αβ(其中,αβ为整数且αβ≤),则方程20x cx a ++=的两根分别为1,1αβ++,又∵,(1)(1)a a αβαβ+=-++=,两式相加,得2210αβαβ+++=,即(2)(2)3αβ++=,从而2123αβ+=⎧⎨+=⎩,或2321αβ+=-⎧⎨+=-⎩,解得12αβ=-⎧⎨=⎩,或53αβ=-⎧⎨=-⎩,∴012a b c =⎧⎪=-⎨⎪=-⎩,或8156a b c =⎧⎪=⎨⎪=⎩,∴3a b c ++=-或29.。
专题04 根与系数关系阅读与思考根与系数的关系称为韦达定理,其逆定理也成立,是由16世纪的法国数学家韦达所发现的.韦达定 理形式简单而内涵丰富,在数学解题中有着广泛的应用,主要体现在: 1.求方程中字母系数的值或取值范围; 2.求代数式的值;3.结合根的判别式,判断根的符号特征; 4.构造一元二次方程; 5.证明代数等式、不等式.当所要求的或所要证明的代数式中的字母是某个一元二次方程的根时,可先利用根与系数的关系找 到这些字母间的关系,然后再结合已知条件进行求解或求证,这是利用根与系数的关系解题的基本思路,需要注意的是,应用根与系数的关系的前提条件是一元二次方程有两个实数根,所以,应用根与系数的关系解题时,必须满足判别式△≥0.例题与求解【例1】设关于x 的二次方程22(4)(21)10m x m x -+-+=(其中m 为实数)的两个实数根的倒数和为s ,则s 的取值范围是_________.【例2】 如果方程2(1)(2)0x x x m --+=的三个根可以作为一个三角形的三边长,那么,实数m 的取值范围是_________.A .01m ≤≤B .34m ≥C .314m <≤D .314m ≤≤【例3】已知α,β是方程2780x x -+=的两根,且αβ>.不解方程,求223βα+的值.【例4】 设实数,s t 分别满足22199910,99190s s t t ++=++=并且1st ≠,求41st s t++的值.【例5】(1)若实数,a b 满足258a a +=,258b b +=,求代数式1111b a a b --+--的值; (2)关于,,x y z 的方程组32236x y z axy yz zx ++=⎧⎨++=⎩有实数解(,,)x y z ,求正实数a 的最小值;(3)已知,x y 均为实数,且满足17xy x y ++=,2266x y xy +=,求432234x x y x y xy y ++++的值.【例6】 ,,a b c 为实数,0ac <0++=,证明一元二次方程20ax bx c ++=有大于1的根.能力训练A 级1.已知m ,n 为有理数,且方程20x mx n ++=2,那么m n += .2.已知关于x 的方程230x x m -+=的一个根是另一个根的2倍,则m 的值为 . 3.当m = 时,关于x 的方程228(26)210x m m x m -+-+-=的两根互为相反数; 当 时,关于x 的方程22240x mx m -+-=的两根都是正数;当 时,关于m的方程23280x x m ++-=有两个大于2-的根.4.对于一切不小于2的自然数n .关于x 的一元二次方程22(2)20x n x n -+-=的两根记为,n n a b (2)n ≥则223320072007111(2)(2)(2)(2)(2)(2)a b a b a b +++=------ .5.设12,x x 是方程222(1)(2)0x k x k -+++=的两个实根,且12(1)(1)8x x ++=,则k 的值为( )A .31-或B .3-C .1D .12k ≥的一切实数 6.设12,x x 是关于x 的一元二次方程22x x n mx ++-=的两个实数根,且1210,30x x x <-<,则 ( ) A .12m n >⎧⎨>⎩ B .12m n >⎧⎨<⎩ C .12m n <⎧⎨>⎩ D .12m n <⎧⎨<⎩7.设12,x x 是方程220x x k +-=的两个不等的实数根,则22122x x +-是( )A .正数B .零C .负数D .不大于零的数8.如图,菱形ABCD 的边长是5,两对角线交于O 点,且AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的根,那么m 的值是( )A .3-B .5C .53-或D .53-或9.已知关于x 的方程:22(2)04m x m x --=. (1)求证:无论m 取什么实数值,方程总有两个不相等的实数根;(2)若这个方程的两个根是12,x x ,且满足212,x x =+求m 的值及相应的12,x x .10.已知12,x x 是关于x 的一元二次方程2430kx x +-=的两个不相等的实数根. (1)求k 的取值范围;(2)是否存在这样的实数k ,使12123222x x x x +-=成立?若存在,求k 的值;若不存在,说明理由.11.如图,已知在△ABC 中,∠ACB =90°,过C 点作CD ⊥AB 于D ,设AD =m ,BD =n ,且AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值.DBAC12.已知,m n 是正整数,关于x 的方程2()0x mnx m n -++=有正整数解,求,m n 的值.B 级1.设1x ,2x 是二次方程032=-+x x 的两根,则3212419x x -+= .2.已知1ab ≠,且有25199580a a ++=及28199550b b ++=则ab= . 3.已知关于x 的一元二次方程2610x x k -++=的两个实数根是12,x x ,且221224x x +=,则k = .4.已知12,x x 是关于x 的一元二次方程22x ax a ++=的两个实数根,则1221(2)(2)x x x x --的最大值为 .5.如果方程210x px ++=(p >0)的两根之差为1,那么p 等于( )A .2B .4CD 6.已知关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12,x x ,且22127x x +=,则212()x x -的值是 ( )A .1B .12C .13D .257.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是 ( ) A .23 B .25C .5D .2 8.设213a a +=,213b b +=且a b ≠,则代数式2211a b +的值为( ) A .5 B .7 C .9 D .119.已知,a b 为整数,a b >,且方程233()40x a b x ab +++=的两个根,αβ满足关系式(1)(1)(1)(1)ααββαβ+++=++.试求所有整数点对(,)a b .10.若方程2310x x ++=的两根,αβ也是方程620x px q -+=的两根,其中,p q 均为整数,求,p q 的值.11.设,a b 是方程2310x x -+=的两根,c ,d 是方程2420x x -+=的两根,已知a b c dM b c d c d a d a b a b c+++=++++++++.求证:(1)222277a b c d M b c d c d a d a b a b c +++=-++++++++; (2)33334968a b c d M b c d c d a d a b a b c+++=-++++++++.12.设m 是不小于1-的实数,使得关于x 的一元二次方程222(2)310x m x m m +-+-+=有两个不相等实数根12,x x .(1)若22126x x +=,求m 的值;(2)求22121211mx mx x x +--的最大值.13.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.专题 04 根与系数的关系例1. 152s ≥-且3,5s s ≠-≠ 例2. C 提示: 设三根为121,,x x ,则121x x -<例 3. 设223,A βα=+223,B αβ=+ 31004A B += ①A B -= ② 解由① ②联立的 方程组得1(4038A =-例 4.0,s ≠故第一个等式可变形为211()99()190,s s ++= 又11,,st t s ≠∴是一元二次方程299190x x ++=的两个不同实根, 则1199,19,t t s s+=-=即199,19.st s t s +=-=故41994519st s s st s++-+==-例5. (1) 当a b =时, 原式=2; 当a b ≠时, 原式=-20, 故原式的值为2或-20(2) 由方程组得232,326(6),x y a z x y z az +=-=-+易知3,2x y 是一元二次方程22()6(6)0t a z t z az --+-+=的两个实数根,0∴∆≥, 即2223221440z az a -+-≤,由z 为实数知,22'(22)423(144)0,a a ∆=--⨯⨯-≥解得a ≥故正实数a(3) xy 与x y +是方程217660m m -+=的两个实根,解得11,6x y xy +=⎧⎨=⎩或6,()xy 11.x y +=⎧⎨=⎩舍原式=()()222222212499x y x y xy x y +-++=.例6 解法一:∵ac <0,2=40b ac ∆->,∴原方程有两个异号实根,不妨设两个根为x 1,x 2,且x 1<0<x 2,由韦达定理得x 1+ x 2=b a -,12c x x a =,由0c =,得0b ca a =,即)12120x x x x +=,解得2x =,假设2x,则,由10x <推得3-不成立,故2x 21x ≥1,由10x <推得10x ,矛盾.故21x <21x <.解法二:设()2f x ax bx c =++,由条件得)b =,得)3355f a c a c =+=++=, ()1f a b c a a c ⎤=++=-⎦.若a >0,0c <,则0f <,()10f >;若a <0,0c >,则0f >,()10f <.∴0ac <时,总有()10f f .<与1之间.A 级 1.3 2.2 3.-2 m >2 0<m ≤183提示:12x ->,22x ->与124x x +->,124x x ⋅>不等价.4.100134016-提示:由条件得2n n a b n +=+,22n n a b n ⋅=-,则()()()2221n n a b n n --=-+,则()()211112221n a b n n ⎛⎫=-- ⎪--+⎝⎭.5.C 6.C 7.A 8.A 9.提示:(1)()2=2120m ∆-+> (2)2124m x x =-≤0,m =4或m =0. 10.(1)43k ->且0k ≠ (2)存在k =4 11.由题意得2m n =,224840n m n --+<.当n =1时,m =2;当n =2时,m =4. 12.设方程两根为1x ,2x ,则1212,.x x mn x x m n +=⎧⎨=+⎩∵m ,n ,1x ,2x 均为正整数,设121x x ≥≥,1m n ≥≥,则()1212x x x x mn m n +-=-+,即有()()()()1211112x x m n --+--=,则()()()()12112,1,0,110,1,2.x x m n ⎧--=⎪⎨--=⎪⎩∴123,2,5,2,2,1,5,2,3,1,2,2.x x m n =⎧⎪=⎪⎨=⎪⎪=⎩故5,2,3,1;2; 2.m m m n n n ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩ B 级 1.0 提示:由条件得21130x x +-=,22230x x +-=,∴2113x x =-,2223x x =-,∴()3211111111333343x x x x x x x x =-=-+=-+=-,∴原式=()()121212434319431241944x x x x x x ---+=--++=++.又∵121x x +=-,∴原式=0. 2.853.5 4.638- 提示:()2=240a ∆-+>,原式=2963632488a ⎛⎫---- ⎪⎝⎭≤. 5.D 6.C 7.B 8.B9.()231αβαβ+-=,由根与系数关系得()241a b ab +-=,即()21a b -=,a -b =1.又由0∆≥得()2316a b ab +≥,从而()24a b +≤.由a -b =1,()24a b +≤,得满足条件的整数点对(a ,b )是(1,0)或(0,-1). 104447αβ+=,662248p αβαβ-==-,()2244227q αβαβαβ-==-. 11.a +b =3,c +d =4,ab =1,cd =2,a +b +c +d =7,222219a b c d +++=.(1)原式=()()()()7a a b c d a b c d d a b c d d a b c aa b c d a b c b c d+++-+++++-+++=-++++++…+77777.b c d b c d M c d a d a b a b c +-+-+-=-++++++ (2)原式=()()()()2222a a b c d a b c d d a b c d d a b c b c da b c+++-+++++-+++=++++…+()()22227774968M a b c d M --+++=-.12.(1)m =. (2)原式=()()()22212121221212352312122m x x x x x x m m m x x x x ⎡⎤+-+⎛⎫⎣⎦=-+=-- ⎪-++⎝⎭.∵11m -≤≤,∴当m =-1时,22121211mx mx x x +--的最大值为10. 13.设20x ax b ++=的两根分别为,αβ(其中,αβ为整数且αβ≤),则方程20x cx a ++=的两根分别为1,1αβ++,又∵,(1)(1)a a αβαβ+=-++=,两式相加,得2210αβαβ+++=,即(2)(2)3αβ++=,从而2123αβ+=⎧⎨+=⎩,或2321αβ+=-⎧⎨+=-⎩,解得12αβ=-⎧⎨=⎩,或53αβ=-⎧⎨=-⎩,∴012a b c =⎧⎪=-⎨⎪=-⎩,或8156a b c =⎧⎪=⎨⎪=⎩,∴3a b c ++=-或29.。
根与系数关系专练学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知α,β方程x 2+3x ﹣8=0的两个实数根,则为x 1、x 2,则α2+β2的值为( ) A .﹣7 B .25 C .17 D .1【答案】B 【分析】根据韦达定理可得α+β=-3,αβ=-8,再根据完全平方公式变形即可求解. 【详解】解:∵α,β方程x 2+3x ﹣8=0的两个实数根, ∴α+β=-3,αβ=-8,∴α2+β2=(α+β)2-2αβ=9+16=25, 故选:B . 【点睛】本题主要考查根与系数的关系,若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,则x 1+x 2=−b a,x 1x 2=c a .2.一元二次方程240x kx +-=的一个根是1x =-,则另一个根是( ) A .4 B .-1 C .-3 D .-2【答案】A 【分析】设方程的另一个根为m ,由根与系数的关系即可得出关于m 的一元一次方程,解之即可得出结论. 【详解】解:设方程的另一个根为m , 则有m ×(-1)=-4, 解得:m =4. 故选:A . 【点睛】本题考查了根与系数的关系以及解一元一次方程,牢记两根之积等于ca是解题的关键.3.已知,m n 是方程2310x x +-=的两根,则24m m n ++的值为( )A .2-B .2C .3-D .4【答案】A 【分析】,m n 是方程2310x x +-=的两根,则有2310m m +-=,3m n +=-,将原式变形代入求解即可. 【详解】解:∵,m n 是方程2310x x +-=的两根 ∴2310m m +-=,3m n +=- ∴231m m +=∴22+4+=3=132m m n m m m n +++-=- 故选:A 【点睛】本题考查一元二次方程根与系数的关系,以及方程解的定义,根据所对应的代数式进行适当的变形是解题关键.4.若x 1,x 2是一元二次方程x 2+x ﹣1=0的两根,则x 12﹣2017x 1﹣2018x 2的值为( ) A .2020 B .2019 C .2018 D .2017【答案】B 【分析】根据一元二次方程的解的定义可得21110x x +-=,根与系数的关系求得12x x +1=-,代入求解即可. 【详解】x1,x 2是一元二次方程x 2+x ﹣1=0的两根,∴21110x x +-=,12x x +1=-,()()2111220181201812019x x x x ∴=+-+=-⨯-=原式.故选B . 【点睛】本题考查了一元二次方程的定义,根与系数的关系,掌握以上知识是解题的关键. 5.已知实数a ,b 满足a ≠b ,且a 2-4a =b 2-4b =2,则a 2+b 2的值为( ) A .16 B .20 C .25 D .30【答案】B 【分析】根据题意可得则,a b 为2x 4x 2-=的两根,进而根据一元二次方程根与系数的关系以及完全平方公式的变形求值即可. 【详解】242a a -=,242b b -=,则,a b 为2x 4x 2-=的两根 2420x x --=, 4,2a b ab ∴+==-,()222216420a b a b ab ∴+=+-=+=,故选B 【点睛】本题考查了一元二次方程根的定义,一元二次方程根与系数的关系,完全平方公式的变形求值,理解,a b 为2x 4x 2-=的两根是解题的关键.6.等腰三角形三边长分别为a 、b 、4,且a 、b 是关于x 的一元二次方程x 2﹣12x +k +2=0的两根,则k 的值为( ) A .30 B .34或30C .36或30D .34【答案】D 【分析】分三种情况讨论,①当a =4时,②当b =4时,③当a=b 时;结合一元二次方程根与系数的关系即可求解; 【详解】解:当4a =时,440448b -=<<+=时,a b 、是关于x 的一元二次方程21220x x k -++=的两根, 412b ∴+=, 8b ∴=不符合;当4b =时,440448a -=<<+=,a b 、是关于x 的一元二次方程21220x x k -++=的两根, 412a ∴+=,8a ∴=不符合;当a b =时,a b 、是关于x 的一元二次方程21220x x k -++=的两根, 1222a b ∴==, 6a b ∴==,236k ab ∴+==,34k ∴=; 故选D . 【点睛】本题考查一元二次方程根与系数的关系;根据等腰三角形的性质进行分类讨论,结合一元二次方程根与系数的关系和三角形三边关系进行解题是关键. 7.方程2x 2+(k +1)x -6=0的两根和是-2,则k 的值是( ) A .k =3 B .k =- 3 C .k =0 D .k =1【答案】A 【分析】设方程22(1)60x k x ++-=的两根分别为1x ,2x ,则由题意得12122k x x ++=-=-,解方程即可. 【详解】解:设方程22(1)60x k x ++-=的两根分别为1x ,2x , ∵方程22(1)60x k x ++-=的两根之和是-2, ∴12122k x x ++=-=-, ∴3k =, 故选A . 【点睛】本题主要考查了一元二次方程根与系数的关系,解题的关键在于能够熟练掌握一元二次方程根与系数的关系. 8.点(),A a b 在反比例函数9y x=上的点图象上,且a ,b 是关于的一元二次方程260x x m -+=的两根,则点A 坐标是( )A .(1,9)B .92,2⎛⎫⎪⎝⎭C .(3,3)D .(-3,-3)【答案】C 【分析】根据点(),A a b 在反比例函数9y x=上的点图象上,可得9ab = ,再利用一元二次方程根与系数的关系,可得ab m =,从而得到9m = ,然后解出方程,即可求解. 【详解】解:∵点(),A a b 在反比例函数9y x=上的点图象上, ∴9ab = ,∵a ,b 是关于的一元二次方程260x x m -+=的两根, ∴ab m =, ∴9m = ,∴方程260x x m -+=为2690x x -+=, 解得:123x x == , 即3a b == , ∴点A 坐标是()3,3 . 故选:C 【点睛】本题主要考查了反比例函数的性质,一元二次方程根与系数的关系,熟练掌握反比例函数的性质,一元二次方程根与系数的关系是解题的关键.二、填空题9.设a ,b 是方程x 2+x ﹣2021=0的两个实数根,则a 2+2a +b 的值为____. 【答案】2020 【分析】由于a 2+2a +b =(a 2+a )+(a +b ),故根据方程的解的意义,求得(a 2+a )的值,由根与系数的关系得到(a +b )的值,即可求解. 【详解】解:∵a ,b 是方程x 2+x −2021=0的两个实数根, ∴a 2+a −2021=0,即a 2+a =2021,a +b =ba-=−1,∴a 2+2a +b =a 2+a +a +b =2021−1=2020, 故答案为:2020. 【点睛】本题综合考查了一元二次方程的解的定义及根与系数的关系,要正确解答本题还要能对代数式进行恒等变形.10.若方程x 2﹣3x +1=0的两根是x 1,x 2,则x 1(1+x 2)+x 2的值为___. 【答案】4 【分析】根据根与系数的关系可得出x 1+x 2=3、x 1x 2=1,将其代入x 1(1+x 2)+x 2=(x 1+x 2)+x 1x 2中即可求出结论. 【详解】解:∵方程x 2﹣3x +1=0的两根是x 1,x 2, ∴x 1+x 2=3,x 1x 2=1,∴x 1(1+x 2)+x 2=x 1+x 1x 2+x 2=(x 1+x 2)+x 1x 2=3+1=4. 故答案为:4. 【点睛】本题考查了根与系数的关系,牢记两根之和等于-b a、两根之积等于ca 是解题的关键.11.设a ,b 是方程x 2+x ﹣2021=0的两个实数根,则(a +1)(b +1)的值为_______. 【答案】-2021 【分析】首先根据一元二次方程根与系数的关系得出1,2021a b ab +=-=-,然后整体代入求解即可. 【详解】∵a ,b 是方程x 2+x ﹣2021=0的两个实数根, 1,2021a b ab ∴+=-=-,()()()()1112021112021a b ab a b ∴++=+++=-+-+=-,故答案为:-2021. 【点睛】本题主要考查代数式求值,掌握一元二次方程根与系数的关系是关键.12.已知方程3x 2﹣x ﹣1=0的两根分别是x 1和x 2,则x 1+x 2﹣x 1x 2的值为_________. 【答案】23【分析】根据一元二次方程的解的定义以及根与系数的关系可得x 1+x 2=13,x 1x 2=13-,再将它们代入x 1+x 2﹣x 1x 2,计算即可. 【详解】解:∵方程3x 2﹣x ﹣1=0的两根分别是x 1和x 2,∴x 1+x 2=13,x 1x 2=13-,∴x 1+x 2﹣x 1x 2=13﹣1()3-=23.故答案为:23.【点睛】本题考查了根与系数的关系:x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=﹣b a,x 1•x 2=ca .将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.也考查了一元二次方程的解的定义.13.设x 1,x 2是方程2x 2+3x ﹣4=0的两个实数根,则4x 12+4x 1﹣2x 2的值为 ______. 【答案】11 【分析】先根据一元二次方程根的定义得到2x 12=﹣3x 1+4,则4x 12+4x 1﹣2x 2化为﹣2(x 1+x 2)+8,再根据根与系数的关系得到x 1+x 2=﹣32,然后利用整体代入的方法计算.【详解】解:∵x 1是方程2x 2+3x ﹣4=0的根, ∴2x 12+3x 1﹣4=0, ∴2x 12=﹣3x 1+4,∴4x 12+4x 1﹣2x 2=2(﹣3x 1+4)+4x 1﹣2x 2=﹣2(x 1+x 2)+8, ∵x 1,x 2是方程2x 2+3x ﹣4=0的两个实数根, ∴x 1+x 2=﹣32,∴4x 12+4x 1﹣2x 2=﹣2(x 1+x 2)+8=﹣2×(﹣32)+8=11.故答案为:11. 【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根,则12bx x a +=-,12c x x a=.14.设α、β是方程x 2+2x ﹣2021=0的两根,则α2+3α+β的值为______. 【答案】2019 【分析】先根据一元二次方程的解的定义得到α2+2α-2021=0,则α2+2α=2021,于是α2+3α+β可化为2021+α+β,再利用根与系数的关系得到α+β=-2,然后利用整体代入的方法计算求解即可. 【详解】解:根据题意知,α2+2α﹣2021=0,即α2+2α=2021. 又∵α+β=﹣2.所以α2+3α+β=α2+2α+(α+β)=2021﹣2=2019. 故答案是:2019. 【点睛】此题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,1212,b cx x x x a a+=-=,也考查了一元二次方程的解.解题的关键是熟练掌握一元二次方程的解以及根与系数的关系.三、解答题15.已知关于x 的方程240x x m -+=的一个根为2+ (1)求m 的值及方程的另一个根; (2)设方程的两个根为1x ,2x ,求20212022121x xx +的值.【答案】(1)m =1,(2)4 【分析】(1)设方程的另一个根为a ,则由根与系数的关系得:a ,(a =m ,求出即可.(2)根据一元二次方程根与系数的关系得到x 1+x 2=4,x 1•x 2=1,根据积的乘方把原式变形,代入计算即可. 【详解】解:(1)设方程的另一个根为a ,则由根与系数的关系得:a ,(a =m ,解得:a m =1,即m =1,方程的另一个根为 (2)x 1,x 2是方程x 2-4x +1=0的两个根, 则x 1+x 2=4,x 1•x 2=1,∴x 12021x 22022+x 1=(x 1x 2)2021x 2+x 1=x 2+x 1=4. 【点睛】本题考查的是一元二次方程根与系数的关系、完全平方公式的应用,x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=ba -,x 1x 2=c a ,反过来也成立.16.已知关于x 的方程221(2)04x m x m --+=有两个不相等的实数根x 1,x 2.(1)求m 的取值范围;(2)是否存在实数m ,使方程的两个实数根互为相反数?如果存在,求出m 的值;如果不存在,说明理由.【答案】(1)m <1;(2)不存在;理由见解析. 【分析】(1)由题意根的判别式大于0即可求解;(2)根据互为相反数的两数和等于0得方程,求解并判断即可. 【详解】解:(1)∵关于x 的方程221(2)04x m x m --+=有两个不相等的实数根,∴Δ=(m -2)2-2144m ⨯ >0即:4-4m >0 m <1(2)由题意,x 1+x 2=()214m ---=4m -8, 若方程两实数根互为相反数,则4m -8=0, 解得,m =2, 因为m <1,所以m =2时,原方程没有实数根,所以不存在实数,使方程两实数根互为相反数. 【点睛】本题考查了一元二次方程根的判别式、根与系数的关系.(2)易错,只关注求m 的值而忽略m 的范围.17.定义:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个实数根为12,x x (12x x <),分别以12,x x 为横坐标和纵坐标得到点M (12,x x ),则称点M 为该一元二次方程的奇特点. (1)若方程为x 2=3x ,写出该一元二次方程的奇特点M 的坐标;(2)若关于x 的一元二次方程x 2﹣(2m +1)x +2m =0(m <0)的奇特点为M ,过点M 向x 轴和y 轴作垂线,两垂线与坐标轴恰好围成一个正方形,求m 的值; (3)是否存在b ,c ,使得不论k (k ≠0)为何值,关于x 的一元二次方程x 2+bx +c =0的奇特点M 始终在直线y =3kx ﹣2(k ﹣2)上,若存在请算出b ,c 的值,若不存在请说明理由.【答案】(1)()0,3 ;(2)12m =- ;(3)存在,148,33b c ==【分析】(1)先解出一元二次方程,再根据奇特点M 的定义,即可求解;(2)先解出一元二次方程,再根据奇特点M 的定义,可得奇特点M 的坐标为()2,1m ,再由过点M 向x 轴和y 轴作垂线,两垂线与坐标轴恰好围成一个正方形,可得到关于m 的方程,解出即可;(3)将直线解析式变形,可得直线过定点2,43⎛⎫⎪⎝⎭,从而得到一元二次方程x 2+bx +c =0的两个根为122,43x x == ,即可求解.【详解】解:(1)23x x = ,整理得: 230x x -=,即()30x x -=,解得:120,3x x == , ∴奇特点M 的坐标为()0,3 ; (2)x 2﹣(2m +1)x +2m =0, ∴()()210x m x --= , 解得:122,1x m x == , ∵m <0, ∴21m < ,∴奇特点M 的坐标为()2,1m ,∵过点M 向x 轴和y 轴作垂线,两垂线与坐标轴恰好围成一个正方形, ∴21m -= ,解得:12m =- ;(3)存在,理由如下:∵()()322324y kx k k x =--=-+ ,∴当320x -= ,即23x =时,4y = , ∴直线y =3kx ﹣2(k ﹣2)过定点2,43⎛⎫⎪⎝⎭ ,∵一元二次方程x 2+bx +c =0的奇特点M 始终在直线y =3kx ﹣2(k ﹣2)上,一元二次方程x 2+bx +c =0的两个根为122,43x x == , ∴224,433b c +=-⨯= , 解得:148,33b c == . 【点睛】 本题主要考查了一元二次方程根与系数的关系,正方形的性质,一次函数的性质,理解新定义是解题的关键.18.已知方程2x ﹣(m ﹣3)x ﹣3m =0有一个根为4,求它的另一个根.【答案】﹣3【分析】直接把4代入方程即可求得m 的值,然后利用根与系数关系求另一个根即可.【详解】解:把4代入已知方程得:24﹣4(m ﹣3)﹣3m =0,解得m =4,∴两根之积为﹣3m =﹣12,∴另一个根为:﹣12÷4=﹣3.【点睛】本题考查了一元二次方程根的定义,根与系数关系定理,熟练掌握根与系数关系定理是解题的关键.19.利用根与系数的关系,求下列方程的两根之和、两根之积:(1)(31)10x x --=; (2)(25)(1)7x x x ++=+.【答案】(1)1213x x +=,1213x x =-;(2)123x x +=-,121x x =-. 【分析】将原式整理为一元二次方程一般式,然后根据根与系数的关系:1212,b c x x x x a a+=-⋅=,求解即可.【详解】解:(1)原式整理为:2310x x --=,∴3,1,1a b c ==-=-, ∴1213b x x a +=-=,1213c x x a ⋅==-; (2)原式整理为:2310x x +-=,∴1,3,1a b c ===-, ∴123b x x a +=-=-,121c x x a⋅==-. 【点睛】本题考查了一元二次方程根与系数的关系,熟知一元二次方程根与系数的关系是解题的关键.20.求下列方程两个根的和与积:(1)25100x x --=; (2)22710x x ++=;(3)23125x x -=+; (4)(1)37x x x -=+.【答案】(1)125x x +=,x x ⋅=-1210;(2)1272x x +=-,1212x x ⋅=;(3)1223x x +=,122x x ⋅=-;(4)124x x +=,x x ⋅=-127 【分析】(1)直接根据根与系数的关系求解;(2)直接根据根与系数的关系求解;(3)先把方程化为一般式为23260x x --=,然后根据根与系数的关系求解; (4)先把方程化为一般式为2470x x --=,然后根据根与系数的关系求解.【详解】解:(1)设方程的两根为1x ,2x ,则125x x +=,x x ⋅=-1210 .(2)设方程的两根为1x ,2x ,则1272x x +=-,1212x x ⋅=. (3)原方程化为23260x x --=,设方程的两根为1x ,2x ,则1223x x +=,122x x ⋅=-. (4)原方程化为2470x x --=,设方程的两根为1x ,2x ,则124x x +=,x x ⋅=-127.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=−b a,x 1x 2=c a . 21.根据一元二次方程的根与系数的关系,求下列方程两个根12,x x 的和与积: (1)26150x x --=(2)23790x x +-=(3)2514x x -=【答案】(1)12126,15x x x x +==-;(2)12127,33x x x x +=-=-;(3)121251,44x x x x +== 【分析】(1)根据如果一元二次方程20ax bx c ++=的两根为,1x 和2x ,那么12b x x a +=-,12c x x a=进行求解即可得到答案; (2)根据如果一元二次方程20ax bx c ++=的两根为,1x 和2x ,那么12b x x a +=-,12c x x a=进行求解即可得到答案; (3)根据如果一元二次方程20ax bx c ++=的两根为,1x 和2x ,那么12b x x a +=-,12c x x a=进行求解即可得到答案. 【详解】解:(1)∵26150x x --=,∴1a =,6b =-,15c =-, ∴126b x x a +=-=,1215c x x a==-; (2)∵23790x x +-=,∴3a =,7b =,9c =-, ∴1273b x x a +=-=-,123c x x a==-; (3)∵2514x x -=,即24510x x -+=∴4a =,5b =-,1c =, ∴1254b x x a +=-=,1214c x x a ==. 【点睛】本题主要考查了一元二次方程根与系数的关系,解题的关键在于能够熟练掌握一元二次方程根于系数的关系.22.已知1x ,2x 是一元二次方程22210x x m -++=的两个实数根.(1)求实数m 的取值范围;(2)如果1x ,2x 满足不等式2121246()x x x x +>+,且m 为整数,求m 的值.【答案】(1)12m;(2)1-或0 【分析】(1)由题意得一元二次方程判别式Δ≥0,进而求解.(2)由根与系数的关系用含m 的代数式表示12x x +与12x x ⋅,进而求解.【详解】解:(1)方程22210x x m -++=有两个实数根,∴Δ0,即2(2)42(1)0m --⨯+, 解得12m , ∴实数m 的取值范围是12m; (2)1x ,2x 是一元二次方程22210x x m -++=的两个实数根,121x x ∴+=,121(1)2x x m ⋅=+,2121246()x x x x +>+,2146(1)12m ∴+⨯+>, 解得2m >-, 12m 且m 为整数, m ∴的值为1-或0.【点睛】本题考查一元二次的判别式及根与系数的关系,解题关键是掌握一元二次方程根的情况与Δ的关系,掌握12b x x a +=-,12c x x a=. 23.已知关于x 的方程 (k 2+1)x 2+(2k 2+1)x +k 2−1=0.(1)证明:无论k 取何值,方程都有两个不相等的实数根;(2)是否存在实数k ,使方程两实数根互为相反数?如果存在,求出k 的值,如不存在,说明理由.【答案】(1)见解析;(2)不存在符合条件的实数k ,理由见解析【分析】(1)根据方程各项的系数结合根的判别式即可得出Δ=4k 2+5>0,由此可得出无论k 为何值,方程总有两个不相等的实数根;(2)设方程(k 2+1)x 2+(2k 2+1)x +k 2−1=0的两根分别为x 1、x 2,利用根与系数的关系结合x 1、x 2互为相反数,可得出关于k 的方程,解之即可求出k 值,再由(1)中k 的取值范围,即可得出不存在符合条件的k 值.【详解】(1)证明:Δ=(2k 2+1)2-4×(k 2+1)×(k 2-1) =4k 4+4k 2+1-4k 4+4=4k 2+5,∴k 2+1>0,4k 2+5>0,∴无论k 为何值,这个方程总有两个不相等的实数根;(2)不存在符合条件的实数k ,理由如下:设方程(k 2+1)x 2+(2k 2+1)x +k 2−1=0的两根分别为x 1、x 2,由根与系数关系得:x 1+x 2=-22211k k ++. ∵x 1、x 2互为相反数,∴x 1+x 2=0,即-222101k k +=+, ∵k 2≥0,∴2k 2+1≥1,∴不存在符合条件的k 值.【点睛】本题考查了根与系数的关系、一元二次方程的定义、相反数以及根的判别式,解题的关键是:(1)根据非负数的性质得到根的判别式Δ>0,方程有两个不相等的实数根;(2)根据根与系数的关系结合x 1、x 2互为相反数,求出k 值.24.关于x 的方程2210x x k -++=的两个实数根是1x ,2x .(1)求k 的取值范围;(2)若k 为整数,且满足12124x x x x +-<,求k 的值.【答案】(1)0k ≤;(2)2k =-,1-,0【分析】(1)根据“方程2210x x k -++=有两个实数根,”可得0∆≥,即可求解;(2)根据“k 为整数,且满足12124x x x x +-<,”可得3k >-,结合(1)0k ≤,即可求解.【详解】解:(1)∵方程2210x x k -++=有两个实数根,∴0∆≥,即()244410b ac k -=-+≥,解得0k ≤;(2)∵122x x +=,121x x k =+,∴214k --<,由(1)0k ≤,可得30k -<≤,∵k 为整数,∴2k =-,1-,0.【点睛】本题主要考查了一元二次方程的根的判别式,根与系数的关系,熟练掌握一元二次方程的根的判别式24b ac ∆=-,根与系数的关系12b x x a+=-,12c x x a =是解题的关键.。
中考数学专题复习-一元二次方程的根与系数的关系(含解析)一、单选题1.设方程x2﹣5x+k=0的一个根比另一个根的2倍少1,则k的值为()A. B. 6 C. -6 D. 152.已知a、b是一元次方程x2﹣2x﹣3=0的两个根,则a2b+ab2的值是()A. -1B. -5C. -6D. 63.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则x1•x2等于()A. ﹣4B. ﹣1C. 1D. 44.设方程的两个根为、,那么的值等于( )。
A. B. C. D.5.已知一元二次方程x2﹣3x﹣3=0的两根为α与β,则的值为()A. -1B. 1C. -2D. 26.设x1、x2是一元二次方程x2+x﹣3=0的两根,则x13﹣4x22+15等于()A. -4B. 8C. 6D. 07.若、是一元二次方程x2+5x+4=0的两个根,则的值是().A. -5B. 4C. 5D. -48.已知x=1是方程x2+bx-2=0的一个根,则方程的另一个根是( ).A. 1B. 2C. -2D. -19.一元二次方程的两实数根相等,则的值为()A. B. 或 C. D. 或10.若方程x2+x﹣2=0的两个实数根分别是x1、x2,则下列等式成立的是()A. x1+x2=1,x1•x2=﹣2B. x1+x2=﹣1,x1•x2=2C. x1+x2=1,x1•x2=2D. x1+x2=﹣1,x1•x2=﹣211.下列一元二次方程两实数根和为﹣4的是()A. x2+2x﹣4=0B. x2﹣4x+4=0C. x2+4x+10=0D. x2+4x﹣5=012.已知x1,x2是一元二次方程x2+4x﹣3=0的两个实数根,则x1+x2﹣x1x2的值是()A. 6B. 0C. 7D. -113.若方程x2+x﹣1=0的两实根为α、β,那么下列式子正确的是()A. α+β=1B. αβ=1C. α2+β2=2D. =1二、填空题14.写出以2,﹣3为根的一元二次方程是________.15.一元二次方程的两根和是________;16.已知α,β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α2+2αβ+β2的值为________.17.已知关于x的方程x2+2kx+k2+k+3=0的两根分别是x1、x2,则(x1﹣1)2+(x2﹣1)2的最小值是________18.若关于x的一元二次方程为ax2+bx+c=0的两根之和为3,则关于x的方程a(x+1)2+b(x+1)+c=0的两根之和为________.三、计算题19.已知关于的一元二次方程的两个整数根恰好比方程的两个根都大1,求的值.20.设方程4x2﹣7x﹣3=0的两根为x1,x2,不解方程求下列各式的值:(1)x12x2+x1x22.(2)+ .21.已知是方程的两个根,利用根与系数的关系,求下列各式的值:(1);(2)22.已知一元二次方程x2﹣6x+4=0的两根分别是a,b,求(1)a2+b2(2)a2﹣b2的值.23.已知a、b是一元二次方程x2﹣2x﹣1=0的两个根且a2﹣2a﹣1=0,求a2﹣a+b+3ab的值.四、解答题24.关于x的方程(k﹣1)x2﹣x+1=0有实根.(1)求k 的取值范围;(2)设x1、x2是方程的两个实数根,且满足(x1+1)(x2+1)=k﹣1,求实数k的值.25.若关于x的一元二次方程x2+kx+3x+k=0的一个根是﹣2,求方程另一个根和k的值.26.若关于x的方程x2+6x+m=0的一个根为3﹣,求方程的另一个根及m的值.五、综合题27.已知关于x的方程x2﹣5x+3a+3=0(1)若a=1,请你解这个方程;(2)若方程有两个不相等的实数根,求a的取值范围.28.已知抛物线的不等式为y=﹣x2+6x+c.(1)若抛物线与x轴有交点,求c的取值范围;(2)设抛物线与x轴两个交点的横坐标分别为x1,x2.若x12+x22=26,求c的值.(3)若P,Q是抛物线上位于第一象限的不同两点,PA,QB都垂直于x轴,垂足分别为A,B,且△OPA与△OQB全等.求证:c>﹣.答案解析部分一、单选题1.设方程x2﹣5x+k=0的一个根比另一个根的2倍少1,则k的值为()A. B. 6 C. -6 D. 15【答案】B【考点】根与系数的关系【解析】【解答】解:设方程x2﹣5x+k=0另一个根为a,则一个根为2a﹣1,则a+2a﹣1=5,解得a=2,2×2﹣1=3因此k=2×3=6.故选:B.【分析】设方程的另一个根为a,则一个根为2a﹣1,根据根与系数的关系得出a+2a﹣1=5,得出a=3,另一个跟为5,进一步利用两根的积得出k的数值即可.2.已知a、b是一元次方程x2﹣2x﹣3=0的两个根,则a2b+ab2的值是()A. -1B. -5C. -6D. 6【答案】C【考点】根与系数的关系【解析】【解答】解:∵a、b是一元次方程x2﹣2x﹣3=0的两个根,∴ab=﹣3,a+b=2,∴a2b+ab2=ab(a+b)=﹣3×2=﹣6,故选C.【分析】根据根与系数的关系,可得出ab和a+b的值,再代入即可.3.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则x1•x2等于()A. ﹣4B. ﹣1C. 1D. 4【答案】C【考点】根与系数的关系【解析】【解答】解:根据题意得x1•x2=1.故选C.【分析】直接根据根与系数的关系求解.4.设方程的两个根为、,那么的值等于( )。
2015年中考数学专题复习 (根与系数的关系)
一元二次方程根的判别式和根与系数的关系是今年中考数学必考题,需要敏一定的阅读
理解能力和计算能力,合理利用已知条件,构建参数(方程中的字母常数)方程,通过严密的思维完整的解决问题。
教学目标:1.了解一元二次方程根的判别式,会判断一元二次方程根的情况;
2.了解一元二次方程根与系数的关系并能简单应用.
重点难点:重点是根的判别式、根与系数关系,难点是根的判别式及根与系数关系的应用 教学过程:
20.(8分)(2014•扬州)已知关于x 的方程()()04
1
112
=+
---x k x k 有两个相等的实数根,求k 的值.
22.(2010湖北孝感,22,10分)关于x 的一元二次方程x 2
﹣x+p ﹣1=0有两实数根x 1,x 2, (1)求p 的取值范围;
(2)若[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求p 的值.
22、(2011•孝感)已知关于x 的方程x 2﹣2(k ﹣1)x+k 2
=0有两个实数根x 1,x 2. (1)求k 的取值范围;
(2)若|x 1+x 2|=x 1x 2﹣1,求k 的值.
24.(2012•孝感24,12分)已知关于x 的一元二次方程x 2
+(m +3)x +m +1=0.
(1)求证:无论m 取何值,原方程总有两个不相等的实数根;
(2)若x 1、x 2是原方程的两根,且|x 1-x 2|=22,求m 的值和此时方程的两根.
24.(2013•孝感24,10分)已知关于x 的一元二次方程x 2﹣(2k+1)x+k 2
+2k=0有两个实数根x 1,x 2.
(1)求实数k 的取值范围; (2)是否存在实数k 使得
≥0成立?若存在,请求出k 的值;若不存
在,请说明理由. 22.(2014•孝感)(本题满分10分)
已知关于x 的方程2
2
(23)10x k x k --++=有两个不相等的实数根1x 、2x . (1)求k 的取值范围;(3分) (2)试说明10x <,20x <;(3分)
(3)若抛物线22(23)1y x k x k =--++与x 轴交于A 、B 两点,点A 、点B 到原点
的距离分别为OA 、OB ,且23OA OB OA OB +=⋅-,求k 的值.(4分)
20.(2014•鄂州市)(本题满分8分)一元二次方程2220mx mx m -+-= ⑴(4分)若方程有两实数根,求m 的范围.
⑵(4分)设方程两实根为12,x x ,且121x x -=,求m.
23.(2014•荆门市)(本题满分10分)已知:函数y=ax2-(3a+1)x+2a+1(a为常数).
(1)若该函数图象与坐标轴只有两个交点,求a的值;
(2)若该函数图象是开口向上的抛物线,与x轴相交于点A(x1,0),B(x2,0)两点,与y 轴相交于点C,且x2-x1=2.
①求抛物线的解析式;
②作点A关于y轴的对称点D,连结BC,DC,求sin∠DCB的值.
24.(2014•荆州)(本题满分12分已知:函数y=ax2﹣(3a+1)x+2a+1(a为常数).
(1)若该函数图象与坐标轴只有两个交点,求a的值;
(2)若该函数图象是开口向上的抛物线,与x轴相交于点A(x1,0),B(x2,0)两点,与y轴相交于点C,且x2﹣x1=2.
①求抛物线的解析式;
②作点A关于y轴的对称点D,连结BC,DC,求sin∠DCB的值.
21.(2014•十堰)(本题满分7分)已知关于x的一元二次方程x2+2(m+1)x+m2﹣1=0.(1)若方程有实数根,求实数m的取值范围;
(2)若方程两实数根分别为x1,x2,且满足(x1﹣x2)2=16﹣x1x2,求实数m的值.。