数学竞赛讲座
- 格式:doc
- 大小:291.50 KB
- 文档页数:10
第一章 函数一、基础知识定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射。
定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射。
定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射。
定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1: A →B 。
定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数。
A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y ),则y 叫做x 的象,x 叫y 的原象。
集合{f (x )|x ∈A }叫函数的值域。
通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}.定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1: A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域。
例如:函数y =x -11的反函数是y =1-x1(x ≠0).定理1 互为反函数的两个函数的图象关于直线y =x 对称。
定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。
定义7 函数的性质。
(1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有f (x 1)<f (x 2)(f (x )>f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间。
初一数学竞赛讲座第3讲奇偶分析我们知道,全体自然数按被2除的余数不同可以划分为奇数与偶数两大类。
被2除余1的属于一类,被2整除的属于另一类。
前一类中的数叫做奇数,后一类中的数叫做偶数。
关于奇偶数有一些特殊性质,比如,奇数≠偶数,奇数个奇数之和是奇数等。
灵活、巧妙、有意识地利用这些性质,加上正确的分析推理,可以解决许多复杂而有趣的问题。
用奇偶数性质解题的方法称为奇偶分析,善于运用奇偶分析,往往有意想不到的效果。
例1 右表中有15个数,选出5个数,使它们的和等于30,你能做到吗?为什么?分析与解:如果一个一个去找、去试、去算,那就太费事了。
因为无论你选择哪5个数,它们的和总不等于30,而且你还不敢马上断言这是做不到的。
最简单的方法是利用奇偶数的性质来解,因为奇数个奇数之和仍是奇数,表中15个数全是奇数,所以要想从中找出5个使它们的和为偶数,是不可能的。
例2 小华买了一本共有96张练习纸的练习本,并依次将它的各面编号(即由第1面一直编到第192面)。
小丽从该练习本中撕下其中25张纸,并将写在它们上面的50个编号相加。
试问,小丽所加得的和数能否为2000?解:不能。
由于每一张上的两数之和都为奇数,而25个奇数之和为奇数,故不可能为2000。
说明:“相邻两个自然数的和一定是奇数”,这条性质几乎是显然的,但在解题过程中,能有意识地运用它却不容易做到,这要靠同学们多练习、多总结。
例3 有98个孩子,每人胸前有一个号码,号码从1到98各不相同。
试问:能否将这些孩子排成若干排,使每排中都有一个孩子的号码数等于同排中其余孩子号码数的和?并说明理由。
解:不能。
如果可以按要求排成,每排中都有一个孩子的号码数等于同排中其余孩子号码数的和,那么每一排中各号码数之和都是某一个孩子号码数的2倍,是个偶数。
所以这98个号码数的总和是个偶数,但是这98个数的总和为1+2+…+98=99×49,是个奇数,矛盾!所以不能按要求排成。
组合不等式 讲 座组合不等式问题是数学竞赛中的热点问题,通常也是教学竞赛中难度很大的问题,同时也是针对学生思维考测的典型问题.组合不等式问题的内容非常广泛,涉及到代数、几何、数论等多个分支。
组合不等式问题有:组合数不等式、组合计数不等式、组合最值、组合几何不等式、组合数论不等式等.下面就从几个典型的组合不等式问题的研究,提高我们的思维能力.例1:对n ≥2,证明(1)n n n n C 422<<;(2)1124--<n n n C证明:(1)当n =2时,22222462<=<⨯C 不等式成立设kk k k C 422<<成立,则1+=k n 时由n k k k k k k k k k n C C C C 22222212121222==⋅>>==++++ n k k k k k k k k kk n n C C C k k C C 4444422112221222122==⋅<=⋅<++⋅<=++ 知不等式成立由归纳原理,对n ≥2不等式nn n n C 422<<恒成立(2)∑-=----=⋅==12012122212122124n k k n n n n C nn n k n n k n C C C 121112122--=---=>=∑ 例2:在一个车厢中,任何()3≥m m 个旅客都有惟一的公共朋友(当甲是乙的朋友时,乙也是甲的朋友;任何人都不作为自己的朋友),问在这个车厢中,朋友最多的人有多少位朋友?解:设朋友最多的人有k 个朋友,显然,m k ≥,若m k >,设A 有k 个朋友B 1,B 2,…,k B ,并记{}k B B B S ,,21=.设{}121,,,-m i i i B B B 是S 的任一个1-m 元子集,则A ,121,,,-m i i i B B B 这m 个人有惟一的公共朋友,记为i C .因i C 是A 的朋友,故S C i ∈.宝义映射{}S C B B B f i i i i m ∈→-121,,,: ,则f 是从S 的所有1-m 元子集的集合到S 的一个单射.事实上,若有S 的两个不同的1-m 元子集{}121,,,-m i i i B B B和{}121,,,-m j j j B B B,二者有相同的象i C ,则因{}{}1111,,,,--m m j j i i B B B B中至少有m 个元素,这m 个人有两个公共朋友A 和i C ,此与已知矛盾.由于f 是单射,故有k C m k≤-1.另一方面,因为3≥m ,21≥-m ,所以k C C C k k m k =>≥-121,矛盾.可见,所求的最大值为m .例3:设{}10,,2,1 =S ,k A A A ,,,21 都是S 的子集且满足(1)k i A i ,,2,1,5 ==;(2)k j i A A j i ≤<≤≤1,2 .求k 的最大值.解:设k 有个子集满足题中条件(1)和(2),并设i 属于这k 子集中的i x 个集合,i =1,2,…,10.若j A i ∈ ,k A i ∈,k j ≠,则称i 为一个重复数对.于是由数i 导致的重复数对有2i x C 个.由S 中的10个元素所导致的重复数对的总数为2221021x x x C C C +++ ,k x x x 51021=+++ . 另一方面,每两个子集间至多有两个重复数对,所以k 个子集之间至多有22k C 个得复数对.因而有222221021k x x x C C C C ≤+++ ①由柯西不等式有2221021x x x C C C +++ ()()(){}1112110102211-++-+-=x x x x x x ()()102121022212121x x x x x x +++-+++= ()k x x x 25212102212-++= ()()2452552012-=-≥k k k k ②由①和②得到()1245-≤-k k ③由③解得6≤k .这表明至多有6个子集.例4:设3221,,,+n P P P 为平面上的32+n 个点,其中任何3点都不共线,任何4点都不共圆.过其中3点作圆,使其余n 2个点在圆内和圆外各有n 个点,这种圆的个数词类K ,求证2321+>n C K π.证明:首先证明对任意两点i P ,j P ,一定存在第3点k P ,使得过i P ,j P ,k P 3点的圆满足题中的要求.为此,不妨设直线i P j P 的上方的点数1+≥n m .因为任何3点不共线,任何4点不共圆,故可将直线上方的m 点按对线段i P j P 的张角从小到大排列为1k P ,2k P ,…m k P ,即有︒<∠<<∠<∠<︒180021j k i j k i j k i P P P P P P P P P m由此可知,过i P ,j P ,k P 3点的圆内的点数不多于n .若两圆中有一圆内恰有n 个点,则它就满足要求.否则,前者内部点数大于n ,后者内部点数小于n .而当顺次考察过i P ,j P ,k P (h=1,2,…,m )3点的圆时,圆内给定点的个数每次恰减少1个.故知其中必有1个圆满足题中要求.这样一来,对于{}3221,,,+n P P P 中的任意两点都可以作出1个圆满足题中要求.于是共可得到232+n C 个圆.但在这个计数过程中,每个圆可被计数3次,故得232232131++>≥n n C C K π. 例5:10人到书店去买书,已知(1)每人都买了3种书;(2)任何两人所买的书中,都至少有一种相同.问购买人数最多的一种书最少有几个人购买?说明理由.解:右图中,由正五边形的中心和两个相领顶点构成的三角形共有5个,由正五边形的3个不全相连的顶点构成的三角形也共有5个.不难看出,这10个三角形中的任何两个都至少有一个公共顶点.将这些三角形的顶点号码组写出来并让10人所买的书号依次为这10个三角形的顶点号码组:(123),(134),(145),(156),(162),(245),(356),(426),(523),(634). 显然,每种书都有人购买.故知所求的最小值示超过5.设所求的最小值为4,10人共买了n 种书且第i 种书有i m 人购买,于是4≤i m 且3021=+++n m m m .当两人买同一种书时,称之为一个“书对”.由已知,每两人之间至少有1个书对,于是至少共有45210=C 个书对.另一方面,由第i 种书形成的书对有2i m C 个,共有22221nmm m C C C +++ 个书对.从而有 4522221≥+++nm m m C C C ①因为624=C ,323=C ,122=C ,故又有437222422221=+≤+++C C C C C nm m m ②由于①与②矛盾,故知所求的最小值为5.例6:在1980×1981的方格表的每个方格中都写有+1,-1和0之一,且表中所有数之和等于0.试证存在两行和两列,使得位于它们交点处的4个数之和为0.证明:若不然,则任何一个边在网格线上的矩形的4个角格中的4数之和均不为零. (1)考察数表中0的个数.设表中1981列中0的个数依次为198121,,,k k k .因为不能有两行两列之交的4个方格中同时为0,故有197999019811219802⨯=≤∑=i ki C C.①因为990245=C ,946244=C ,故表中0的个数不超过1980×45个.1980×1936,故-1的个数与+1的个数都不少于1980×968.若有某行中有1015个-1,则因有+1最多的一行至少有968个+1,故必有两个-1与两个+1同列,此与反证假设矛盾,故知每行中-1的个数和+1的个数均不超过1014.设第i 行有ni 个-1,mi 个+1,1980,,2,1 =i .因为不能有两行两列之我的4格中的数之和为0,故必有∑=⨯=≤19801219819901981i Cnimi ,②其中∑=⨯≥198019681980i ni ,∑=⨯≥198019681980i mi ,ni ,1014≤mi ,1980,,2,1 =i .由排序不等式知在②式中可设{}ni 递增而{}mi 递减且在容许条件下前面的mi 尽可能大,前面的ni 尽可能地小.从而有∑=⨯≥19801210141800i nimi ③③与②矛盾,这就完成了反证的证明.例7:在某项竞赛中,共有a 名参赛选手与b 位裁判员,其中3≥b 为奇数,每位裁判对每名选手的评分都只有“合格”与“不合格”两种,设N k ∈,任何两位裁判至多可对k 名选手有完全相同的评分,求证bb a k 21-≥. 证明:当两位裁判对一名选手的评分相同时,称之为一个“相同评分对”下面对相同评分对的个数进行换序求和.一方面,每名运动员都获得b 位裁判的各一个评分.设第i 名选手获得xi 个合格与xi b -个不合格,于是由第i 名选手产生的相同评分对的个数为22i ix b x C C -+,a i ,,2,1 =.从而所有相同评分对的个数为()()221122m m ai x b x C C a C Ci i +≥++=-∑()()()2112am m m m m a=-++=, 其中12+=m b ,N m ∈. 另一方面,任何两位裁判所产生的相同评分对至多k 对,故所有相同评分对的个数不超过2b kC . 结合起来,得到()21222am C C kC ai x b x bii ≥+≥∑=-, ()2121am b b k ≥-⋅, 21-⋅=≥b a am kb , bb a k 21-≥. 例8:n 个平面最多可以将空间分成多少个部分区域?解:为求这个最大值,我们先证如下的引理,平面上的n 条直线,最多可以把平面分成121++n C 个部分.显然,当这n 条直线两两相交且任何三条都不共点时,把平面分成的部分最多.设平面被k 条直线分成的部分数的最大值为k m ,然后加入第1+k 条直线,它与前k 条直线中的每一条都相交,共得到k 个交点,这k 个点将第1+k 条直线分成1+k 段,其中每一段都把它所穿过的区域一分为二.故知由于第1+k 条直线的加入而新增加的小区域数与第1+k .这样,我们得到递推公式11++=+k m m k k由此递推即得211--+-+=+=n n n m n n n m m1112121111+=++++-+=+++-+=+n C n n m n n这就完成了引理的证明,下面利用引理来解原题.设空间中的k 个平面最多能把空间分成k υ个区域,然后考察当第1+k 个平面加入时,新增加的小区域的个数.这时,第1+k 个平面与前k 个平面中的每个平面都交于1条直线,在第1+k 号平面上共得到k 条直线.由引理知,这k 条直线最多能把平面分成121++k C 个部分,其中每部分都把它所穿过的区域一分为二,故得递推关系式mk k k +=+υυ1由此递推即得1121υυ++++=--m m m n n n()2122212+-++++=-n C C C n n 131++=+n C n ,即空间中的n 个平面最多可以把空间分成131+++n C n 个部分,这个最大值当任何3个平面都共点,任何四个平面都不共点时取得.例9:设{}n S ,4,3,2,1=项的数列n a a a ,,,21 具有下列性质:对于S 的任何一个非空子集B (集B 的元数记为B ),在该数列中都有相邻的B 项恰好组成集合B .求项数n 的最小值.解:对于每个S i ∈,它都可以与S 中的另外3个元素各组成一个二元子集,即共有3个含i 的二元子集,若i 在数列中仅出现1次,则含i 的相邻两项组至多两个,所认i 在数列中至少出现两次,由于1,2,3,4都至少出现两次,故数列至少有8项,即8≥n .另一方面,容易验证,8项数列3,1,2,3,4,1,2,4满足题中条件. 综上可知,数列项数n 的最小值为8.例10:给定平面的n 的相异点,证明其中距离为单位长的点对少于32n 对. 证:对于平面上的点集{}n P P ,,1 .令i e 表示与i P 相距为单位长的点j P 的个数,不妨设1≥i e ,则相距为单位长的点对的对数是221ne e e E +++=设i C 是以点i P 为圆心,以1为半径的圆.因为每对圆至多有2个交点,故所有的i C 至多有()122-=n n C n 个交点.点i P 作为j C 的交点出现2j e C 次,因此()∑=≥-nj e j C n n 121()()∑∑==-≥-=n j j nj j j e e e 12112121 ①由柯西不等式及①式得()()∑∑==-⋅≤⎥⎦⎤⎢⎣⎡-n j j n j j e n e 122111()3212n n n n <-⋅≤于是有()∑=⋅<-nj jn e132121∑==nj jeE 33222n n n <+<.于是问题得证.例11:设A 是一个n 元集合,A 的m 个子集m A A A ,,,21 两两互不包含,试证(1)∑=≤mi in A C 111;(2)∑=≥mi i nm A C12,其中i A 表示i A 所含元素的个数 证:按定义有()!!!1n A n A A C i i i n -=, 由此可见,为证(1),只须证明等价不等式()∑=≤-mi iin A n A 1!!!.①对于每个i A ,利用i A 构造集A 中的n 个元素的排列如下:前i A 个位置是i A 中的所有元素的一个排列,后()i A n -个位置是i A 的补集ci A 中的所有元素的一个排列,这样的排列称之为从属于iA的排列,按乘法定理知,这样的排列数是()!!i i A n A -.当i j ≠时,不妨设i j A A ≥,如果有一个A 的元素的排列既从属于i A ,又从属于j A ,则其中的前i A 个元素都属于i A ,前j A 个元素都属于i A ,从而有j i A A ⊂,此与已知矛盾,这表明从属于不同子集的任何两个排列互不相同,因为A 中n 个元素的所有排列总数为!n ,故得不等式①.对于任何m 个正数m a a a ,21,,由柯西不等式有⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛≤⎪⎪⎭⎫ ⎝⎛⋅=∑∑∑===m i i m i i m i i i a a a a m 1121211. ②在②中令iA ni C a =,m i ,,2,1 =,由已证的不等式(1)即得∑∑∑===≤⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛≤m i An mi A n m i An i i iC C C m 11121 例12:已知一个由0和1组成的数列n x x x ,,,21 ,A 为等于(0,1,0)或(1,0,1)的三元数组()k j i x x x ,,的个数,其中i j x x k j i ≠≤<<≤1的j 的个数.(1)求证:222321nd d d n C C C C A ----= ; 给定奇数n ,求A 的最大值.解:对于n i ,,2,1 =,令{}n j i x x i j x x x D i j i j j i ≤<≠<≤==,;1,,于是有i i d D =,在i D 中任取二元与i x 共3项,按下标从小到大的顺序排成三元数组,所有这样数组的集合记为i S ,显示然,2i d i C S =,将所有不满足题中要求的三元数组的集合记为T ,则T S i ⊂,n i ,,2,1 =且诸i S 两两不交,实际上,若()i k j i S x x x ∈,,,则k j i x x x =≠;若()j k j i S x x x ∈,,,则k j i x x x ≠=;若()k k j i S x x x ∈,,,则k j i x x x ==,由此可知诸i S 两两不交.另一方面,对于T 中任一个三元数组()k j i x x x ,,,必为下列6种情形之一:(0,0,1),(0,1,0),(0,1,1),(1,0,0),(0,0,0),(1,1,1),按定义,前两种情形属于j S ,中间两种情形属于i S ,后两种情形属于k S ,故有 ni iST 1=⊂,从而得到ni i S T 1==⊂由此即得2223321nd d d n n C C C C T C A ----=-= 再解(2)按i D 和i d 的定义,对任一个二元数组()j i x x ,,n j i ≤<≤1,若j i x x =,则j i D x ∈并在j d 中计数一次;若j i x x ≠,则j x 恰在i d 中计数一次,由此可见,所有i d 之和恰为所有二元数组的个数,即有∑==ni n iC d12.为求A 的最大值,只须求∑=ni d jC12的最小值,这时,由柯西不等式有∑∑==≤⎪⎭⎫⎝⎛ni i n i i d n d 1221①所以有()∑∑∑∑====⎪⎭⎫ ⎝⎛-=-=ni ni n i n i i i i i d d d d d C i11112221121 ⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛≥∑∑==n i i n i i d d n 121121 ⎪⎭⎫ ⎝⎛-=∑∑==112111n i i n i i d n d ()()3181--=n n n ②因为12+=k n ,所以k n 21=-,223-=-k n ,()181-n n()()21213k nC k nk n =-=-,代入②式即得212k ni d nC C i ≥∑= ③由①知,③式中等号成立当且仅当()12121-====n d d d n ,容易验证,当数列中奇数项均为0而偶数项均为1时,所有i d 都相等,这表明③式右端所表示的最小值是可以取得的,从而知A 的最大值为()()()()()1241318121612230-=-----=-=n n n n n n n n nC C A k n . 例13:圆周上有800个点,依顺时针表为800,,3,2,1 。
初一数学竞赛讲座(一)自然数的有关性质一、一、知识要点1、1、最大公约数定义1如果a1,a2,…,a n和d都是正整数,且d∣a1,d∣a2,…,d∣a n,那么d叫做a1,a2,…,a n 的公约数。
公约数中最大的叫做a1,a2,…,a n的最大公约数,记作(a1,a2,…,a n).如对于4、8、12这一组数,显然1、2、4都是它们的公约数,但4是这些公约数中最大的,所以4是它们的最大公约数,记作(4,8,12)=4.2、2、最小公倍数定义2如果a1,a2,…,a n和m都是正整数,且a1∣m, a2∣m,…, a n∣m,那么m叫做a1,a2,…,a n的公倍数。
公倍数中最小的数叫做a1,a2,…,a n的最小公倍数,记作[a1,a2,…,a n].如对于4、8、12这一组数,显然24、48、96都是它们的公倍数,但24是这些公倍数中最小的,所以24是它们的最小公倍数,记作[4,8,12]=24.3、3、最大公约数和最小公倍数的性质性质1 若a∣b,则(a,b)=a.性质2 若(a,b)=d,且n为正整数,则(na,nb)=nd.性质3 若n∣a, n∣b,则()nbanbna,,=⎪⎭⎫⎝⎛.性质4 若a=bq+r (0≢r<b),则(a,b)= (b,r) .性质4 实质上是求最大公约数的一种方法,这种方法叫做辗转相除法。
性质5若b∣a,则[a,b]=a.性质6若[a,b]=m,且n为正整数,则[na,nb]=nm.性质7若n∣a, n∣b,则[]nbanbna,,=⎥⎦⎤⎢⎣⎡.4、4、数的整除性定义3对于整数a和不为零的整数b,如果存在整数q,使得a=b q 成立,则就称b整除a或a被b整除,记作b∣a,若b∣a,我们也称a是b倍数;若b不能整除a,记作b a5、5、数的整除性的性质性质1 若a∣b,b∣c,则a∣c性质2 若c∣a,c∣b,则c∣(a±b)性质3 若b∣a, n为整数,则b∣n a6、6、同余定义4设m是大于1的整数,如果整数a,b的差被m整除,我们就说a,b关于模m同余,记作a≡b(mod m)7、7、同余的性质性质1 如果a≡b(mod m),c≡d(mod m),那么a±c≡b±d(mod m),ac≡bd(mod m)性质2 如果a≡b(mod m),那么对任意整数k有ka≡kb(mod m)性质3 如果a≡b(mod m),那么对任意正整数k有a k≡b k(mod m)性质4如果a≡b(mod m),d 是a ,b 的公约数,那么()⎪⎪⎭⎫ ⎝⎛≡d m,m mod d b d a 二、二、例题精讲例1 设m 和n 为大于0的整数,且3m+2n=225.如果m 和n 的最大公约数为15,求m+n 的值(第11届“希望杯”初一试题)解:(1) 因为 (m,n)=15,故可设m=15a ,n=15b ,且(a,b)=1因为 3m+2n=225,所以3a+2b=15因为 a,b 是正整数,所以可得a=1,b=6或a=b=3,但(a,b)=1,所以a=1,b=6 从而m+n=15(a+b)=15⨯7=105评注:1、遇到这类问题常设m=15a ,n=15b ,且(a,b)=1,这样可把问题转化为两个互质数的求值问题。
第一讲因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一:它被广泛地应用于初等数学之中:是我们解决许多数学问题的有力工具.因式分解方法灵活:技巧性强:学习这些方法与技巧:不仅是掌握因式分解内容所必需的:而且对于培养学生的解题技能:发展学生的思维能力:都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上:对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中:我们学过若干个乘法公式:现将其反向使用:即为因式分解中常用的公式:例如:(1)a2-b2=(a+b)(a-b):(2)a2±2ab+b2=(a±b)2:(3)a3+b3=(a+b)(a2-ab+b2):(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2:(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca):(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数:(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1):其中n为偶数:(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1):其中n为奇数.运用公式法分解因式时:要根据多项式的特点:根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4:(2)x3-8y3-z3-6xyz:(3)a2+b2+c2-2bc+2ca-2ab:(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)=-2x n-1y n[(x2n)2-2x2n y2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形:直接使用公式(5):解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性:现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式:本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式:用它可以推出很多有用的结论:例如:我们将公式(6)变形为a3+b3+c3-3abc显然:当a+b+c=0时:则a3+b3+c3=3abc:当a+b+c>0时:则a3+b3+c3-3abc ≥0:即a3+b3+c3≥3abc:而且:当且仅当a=b=c时:等号成立.如果令x=a3≥0:y=b3≥0:z=c3≥0:则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项:从最高次项x15开始:x的次数顺次递减至0:由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1):所以说明在本题的分解过程中:用到先乘以(x-1):再除以(x-1)的技巧:这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时:整理、化简常将几个同类项合并为一项:或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时:需要恢复那些被合并或相互抵消的项:即把多项式中的某一项拆成两项或多项:或者在多项式中添上两个仅符合相反的项:前者称为拆项:后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多:这里只介绍运用拆项、添项法分解的几种解法:注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出:用拆项、添项的方法分解因式时:要拆哪些项:添什么项并无一定之规:主要的是要依靠对题目特点的观察:灵活变换:因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3:(2)(m2-1)(n2-1)+4mn:(3)(x+1)4+(x2-1)2+(x-1)4:(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目:由于分解后的因式结构较复杂:所以不易想到添加+ab-ab:而且添加项后分成的三项组又无公因式:而是先将前两组分解:再与第三组结合:找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在:同学们需多做练习:积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体:并用一个新的字母替代这个整体来运算:从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开:是关于x的四次多项式:分解因式较困难.我们不妨将x2+x看作一个整体:并用字母y来替代:于是原题转化为关于y 的二次三项式的因式分解问题了.解设x2+x=y:则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体:比如今x2+x+1=u:一样可以得到同样的结果:有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式:然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2:则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y:则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知:用换元法分解因式时:不必将原式中的元都用新元代换:根据题目需要:引入必要的新元:原式中的变元和新变元可以一起变形:换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体:但并没有设立新元来代替它:即熟练使用换元法后:并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母:且当互换这两个字母的位置时:多项式保持不变:这样的多项式叫作二元对称式.对于较难分解的二元对称式:经常令u=x+y:v=xy:用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u:xy=v:则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.练习一1.分解因式:(2)x10+x5-2:(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4:(2)x4-11x2y2+y2:(3)x3+9x2+26x+24:(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1:(2)x4+7x3+14x2+7x+1:(3)(x+y)3+2xy(1-x-y)-1:(4)(x+3)(x2-1)(x+5)-20.。
第一讲 速算与巧算(一)我们已经学过四则运算的定律和性质等基础知识。
这一讲主要介绍基本定律和性质在加减法中的灵活运用,以便提高计算的技能技巧。
一、运用加法运算定律巧算加法1.直接利用补数巧算加法如果两个数的和正好可以凑成整十、整百、整千,那么我们就可以说这两个数互为补数,其中的一个加数叫做另一个加数的补数。
如:28+52=80,49+51=100,936+64=1000。
其中,28和52互为补数;49和51互为补数;936和64互为补数。
在加法计算中,如果能观察出两个加数互为补数,那么根据加法交换律、结合律,可以把这两个数先相加,凑成整十、整百、整千,……再与其它加数相加,这样计算起来比较简便。
例1 巧算下面各题:(1)42+39+58;(2)274+135+326+265。
解:(1)原式=(42+58)+39=100+39=139(2)原式=(274+326)+(135+265)=600+400=10002.间接利用补数巧算加法如果两个加数没有互补关系,可以间接利用补数进行加法巧算。
例2 计算986+238。
解法1:原式=1000-14+238=1000+238-14=1238-14=1224解法2:原式=986+300-62=1286-62=1224以上两种方法是把其中一个加数看作整十、整百、整千……,再去掉多加的部分(即补数),所以可称为“凑整去补法”。
解法3:原式=(62+924)+238=924+(238+62)=924+300=1224解法4:原式=986+(14+224)=(986+14)+224=1224以上方法是把其中一个加数拆分为两个数,使其中一个数正好是另一个加数的补数。
所以可称为“拆分凑补法”。
3.相接近的若干数求和下面的加法算式是若干个大小相接近的数连加,这样的加法算式也可以用巧妙的办法进行计算。
例3 计算71+73+69+74+68+70+69。
解:经过观察,算式中7个加数都接近70,我们把70称为“基准数”。
数学竞赛初级讲座二项式定理竞赛园地★数学竞赛初级讲座二项式定理江苏省海安高级中学李红二项式定理是证明代数问题的重要工具之一,是组合数学的基础,它具有一定的技巧和难度,且灵活性、综合性强,对学生运算能力的培养和思维灵活性的训练都具有重大的作用.因此,它在国内外数学竞赛中出现的频率较高.一、基础知识1.(a +b )n =C 0n a n +C 1n a n -1b +C 2n a n -2b 2+…+C r n a n -r br +…+C n n bn=∑nr =0C r n a n -r b r (r =0,1,2,…,n ).21通项公式:T r +1=C r n a n -r b r(0≤r ≤n ).31二项式系数的性质:(1)在二项展开式中,与首末两端“等距离”的两项的二项式系数相等.(2)如果n 为偶数,中间一项的二项式系数最大;如果n 为奇数,中间两项的二项式系数相等且最大.(3)所有项的二项式系数和等于2n .(4)奇数项的二项式系数和等于偶数项的二项式系数和,即C 0n +C2n +…=C 1n +C 3n +…=2n -1.例1 设f (x )=(x 2+x -1)9(2x +1)4,试求:(1)f (x )的展开式中所有项的系数和;(2)f (x )的展开式中奇数次项的系数和.导析:设f (x )可展开为a 0+a 1x +a 2x 2+…+a 22x22,则f (1)=a 0+a 1+a 2+…+a 22即为所有项的系数和.若令x =1,得a 0+a 1+a 2+…+a 22=f (1)=81;令x =-1,得a 0-a 1+a 2-…+a 22=f (-1)=-1.两式相减除以2,得a 1+a 3+…+a 21=41.例2 求证:∑kr =0C r m C k -rn=C k m +n .导析:C r m 和C k -rn可分别看做是(1+x )m和(1+x )n二项展开式中x r 和x k -r 的二项式系数,于是构造恒等式(1+x )m (1+x )n =(1+x )m +n ,比较两边x k的系数,得∑kr =0C r m C k -r n =C km +n .例3 试证:大于(1+3)2n (n ∈N )的最小整数能被2n +1整除.(第六届普特南竞赛题)导析:由(1+3)2n 联想到其对偶式(1-3)2n ,且0<(1-3)2n<1,考虑它们的和(1+3)2n+(1-3)2n=2(3n+3n -1C 22n+3n -2C 42n+…)为偶数,记作2k (k ∈N ),所以大于(1+3)2n 的最小整数必为2k.同理可证(2+3)n +(2-3)n 也为偶数,记作2k 1(k 1∈N ),又因为2k =(1+3)2n +(1-3)2n =(4+23)n +(4-23)n =2n [(2+3)n+(2-3)n ]=2n2k 1=2n +1k 1,所以2n +1|2k.二、综合应用例4 设n =1990,求2-n (1-3C 2n +32C 4n -33C 6n+…+3994C 1988n -3995C 1990n)的值.(1990年全国联赛题)导析:考察各项的绝对值(12)1990?3r ?C 2r1990,它可以写成C 2r1990(12)1990-2r (32)2r ,再注意到虚数单位i 乘方的性质i 2=-1,i 4=1,就不难发现原式是复数(1+3i 2)1990的实部.而(1+3i 2)1990=(-1-3i 2)1990=-1-3i 2,∴原式=-12.例5 已知3|n ,求证:2|C 0n +C 3n +C 6n +…+C nn .导析:由(1+x )n =∑nk =1C k n x k,注意到单位根的周期性,令x =1、ω、ω2(ω=-12+32i ),得(1+1)n =C 0n +C 1n +C 2n +…+C n n ,(1+ω)n=C 0n +C 1n ω+C 2n ω2+…+C n n ωn ,(1+ω2)n=C 0n +C 1n ω2+C 2n ω4+…+C n nω2n .三式相加,得2n +(-ω2)n +(-ω)n =3(C 0n+C 3n +C 6n +…+C n n ).∵3|n ,∴2[2n -1+(-1)n -1]=3(C 0n +C 3n+C 6n +…+C n n ).又(2,3)=1,∴2|C 0n +C 3n +C 6n +…+C n n .例6 设a ,b ∈R +,且1a+1b=1,试证对于每个n ∈N ,都有(a +b )n-a n -b n ≥22n -2n +1.(1988年全国联赛题)导析1:由1=1a+1b≥2ab,得ab ≥4.则左边=C1n a n-1b+C2n a n-2b2+…+C n-2na2b n-2+C n-1n ab n-1=12[(a n-1b+ab n-1)C1n+(a n-2b2+a2b n-2)C2n+…]≥(ab)n(C1n+C2n+…+C n-1n)≥2n(2n-2)=22n-2n+1.导析2:由1a +1b=1,可令a=1+1t,b=1+t(t∈R+),结合a+b=ab,立得左边=a n b n-a n-b n=(a n-1)(b n-1)-1=[(1+1t)n-1][(1+t)n-1]-1=(t-1C1n+t-2C2n+…+t-n C n n)?(tC1n+t2C2n +…+t n C n n)-1≥(C1n+C2n+…+C n n)2-1=(2n-1)2-1=22n-2n+1.例7 已知实数a0、a1、a2、…满足a i-1+a i+1 =2a i(i=1,2,…),求证:对于任何自然数n,P(x) =a0C0n(1-x)n+a1C1n x(1-x)n-1+a2C2n x2(1-x)n-2+…+a n-1C n-1nx n-1(1-x)+a n C n n x n是x的一次多项式或常数.(1986年全国联赛二试题)导析:特殊值探路.令a0=a1=a2=…=a n,则P(x)=a0[C0n(1-x)n+C1n(1-x)n-1x+…+ C n n x n]=a0[(1-x)+x]n=a0为常数.对于一般情况,由已知,{a k}是等差数列,可设a k=a0+kd,k为公差(k∈Z-),则P(x)=a0C0n(1-x)n+a1C1n(1-x)n-1x+…+a n C n n x n=a0[C0n(1-x)n+C1n(1-x)n-1x+…+C n n x n]+d[1?C1n(1-x)n-1x+2C2n(1 -x)n-2x2+…+kC k n(1-x)n-k x k+…+nC n n x n]= a0+d[nC0n-1(1-x)n-1x+nC1n-1(1-x)n-2x2+…+nC k-1n-1(1-x)n-k x k+…+nC n-1n-1x n]=a0+dnx[(1-x)+x]n-1=a0+dnx是x的一次多项式.例8 已知数1978n与1978m的最后三位数相等,试求出正整数n和m,使得m+n取最小值,这里n>m≥1.(20届国际数学奥林匹克题) 导析:因1978n与1978m的最后三位数相等,所以1000|(1978n-1978m),又1978n-1978m=1978m (1978n-m-1),故23?53|2m?989m(1978n-m-1).又因为989m与1978n-m-1都是奇数,所以23|2m,则m≥3.而2m与989m中都不含因数5,所以53| (1978n-m-1),由二项式定理可知1978n-m=(2000 -22)n-m=1000k+(-22)n-m,这里k∈Z+,所以53 |[(-22)n-m-1].又因为22l(l∈Z+)的末位数字只能是2,4,8,6的循环,所以仅当4|n-m时, (-22)n-m-1能被25整除,不妨设n-m=4p(p∈N),则(-22)4p=4842p=(500-16)2p=(1000k1+256)p=(125k2+6)p(k1,k2∈Z+).由二项式定理知只要53|6p-1.又6p-1=(5+1)p-1,从而只要C2p ?52+C1p?5能被125整除即可,即52|p?5p-32.但5不整除5p-32,所以52|p,即p=25q(q∈N).于是,n -m=4p=100q,n-m至少等于100(当q=1时取到),因此,m+n的最小值是n-m+2m=106(当m =3,n=103时取到).三、强化训练1.求值:2n-C1n2n-1+C2n2n-2-…+(-1)n-1C n-1n2+(-1)n.2.计算:∑lk=0C k n C l-km.3.证明:∑nk=0(C k n)2=C n2n.4.证明:2n=(C0n-C2n+C4n-…)2+(C1n-C3n +C5n-…)2.(1980年安徽赛题)51试证:对任意的n∈N,不等式(2n+1)n≥(2n)n+(2n-1)n成立.61设自然数a、b的末位数字是3或7,试证对任意自然数m和n,a4n+2m-b2m是20的倍数.答案或提示11提示:逆用二项式定理.21C l m+n.提示:考察(1+x)m(1+x)n的展开式中x l的系数.31提示:C n2n为(1+x)2n展开式中x n的系数,而(1+x)2n=(1+x)n(1+x)n,对右边分别运用二项式定理展开,再求出x n的系数即可.41提示:左边=(1+1)n=(1+i)n(1-i)n= [(C0n-C2n+C4n-…)+(C1n-C3n+C5n-…)i]?[(C0n -C2n+C4n-…)-(C1n-C3n+C5n-…)i]=右边.5.原不等式等价于(1+12n)n≥1+(1-12n)n.则(1+12n)n-(1-12n)n=2[C1n?12n+C3n?(12n)3+…]≥2C1n?12n=1.6.不妨设a=10a1+7,b=10a1+3,则a4n+2m-b2m=[(10a1+7)2]2n+m-[(10b1+3)2]m=[20(5a12+7a1+2)+9]2n+m-[20(5b12+3b1)+9]m=(20a2 +9)2n+m-(20b2+9)m.由二项式定理可知只要证: 92n+m-9m是20的倍数即可,而92n+m-9m=9m ?[(80+1)n-1],运用二项式定理得证,其它情况同理可证.参考文献1 单土尊.数学竞赛研究教程.南京:江苏教育出版社2 胡炳生.国际数学奥林匹克(IMO)30年.中国展望出版社3 梅向明.中学数学奥林匹克丛书—组合基础.。
全国初中数学竞赛辅导(初三)讲座(5)1、求函数值和函数表达式:例1:已知()44551912-+=-x x x f ,求()x f 。
例2:若函数()21x x g -= ,()[]221x x x g f -=,求⎪⎭⎫ ⎝⎛43f 。
例3:已知函数()535++-=x bx ax x f ,其中a 、b 为常数,若()75=f ,求()5-f 。
例4:函数()x f 的定义域是全体实数,并且对任意实数x 、y ,有()()xy f y x f =+,若()9919=f ,求()1999f 。
2、建立函数关系式:例5:直线l 1过点A (0,2),B (2,0),直线l 2:b mx y +=过点C (1,0),且把ΔAOB 分成两部分,其中靠近原点的那部分是一个三角形,设此三角形的面积为S ,求S 关于m 的函数解析式,并画出图象。
例6:已知矩形的长大于宽的2倍,周长为12,从它的一个顶点作一条射线,将矩形分成一个三角形和一个梯形,且这条射线与矩形一边所成角的正切值等于0.5,设梯形的面积为S ,梯形中较短的底的长为x ,试写出梯形面积S 关于x 的函数关系式。
3、含绝对值的函数:例7:作函数|1||3|-+-=x x y 的图象。
例8:作函数|65|2+-=x x y 的图象。
例9:点(x ,y )满足方程2|2||1|=++-y x ,求它的图象所围成区域的面积。
例10:m 是什么实数时,方程05||42=+-x x 有四个互不相等的实数根?解答:(1)()3093192++=x x x f ;(2)3;(3)3;(4)99;(5)()0221<≤--=m m S ;(6)()604329222<<++-=x x x S CD AE (7)略。
(8)略。
(9)8。
(10)51<<m 。
练习:1、填空:(1)已知()44551912-+=-x x x f ,则()x f 。
数论定理一. 知识要点1. 欧拉定理和费尔马小定理缩系的定义:设m 为正整数,一个模m 的剩余类称为与模m 互素的余类,如果它中的数与m 互素.在与模m 互素的各个剩余类中分别取一个代表所构成的集合称为模m 的一组缩系.很显然,缩系具有以下性质:(1)模m 的缩系中含有ϕ(m )个数(ϕ(m )是小于m 的正整数中且与m 互素的个数).(2)设()m r r ϕ ,1是ϕ(m )个与m 互素的整数,则()m r r ϕ ,1模m 两两不同余.(3)设()1,=m a ,且()m r r ϕ ,1是模m 的一组缩系,则()m ar ar ar ϕ,,,21 是模m 的一组缩系.欧拉(Euler )定理:设m 是大于1的整数,a 为整数,且()1,=m a ,则()()m a m mod 1≡ϕ.For personal use only in study and research; not for commercial use解:设()m x x x ϕ,,,21 是模m 的缩系.因为()1,=m a ,所以()m ax ax ax ϕ,,,21 也是模m 的缩系.这两个缩系分别乘起来得()()()m x x x ax ax ax m m mod ·2121ϕϕ ≡,且()()1,21=m x x x m ϕ .从而()()m a m mod 1≡ϕ )()m a m mod 1≡ϕ.特别地,取m 为质数p ,有费尔马(Fermat )小定理:设p 为质数,a 为整数,p a ,则()p a p mod 11≡-.它也常常写成()p a a p mod ≡.这里不需假定p a ,但p 应为素数.For personal use only in study and research; not for commercial use2. 中国剩余定理(孙子定理)中国剩余定理:设k m m m ,,21是两两互质的正整数,k a a a ,,,21 是任意整数,则同余方程组()()()⎪⎪⎩⎪⎪⎨⎧≡=≡.mod ,mod ,mod 2211k k m a x m a x m a x 对模k m m m 21有唯一解. 解:设()k i m m m m M iki ,,2,121 ==.依题设,有()1,=i i m M ,由裴蜀定理知,存在整数i b ,使得()i i i m b M mod 1≡,k i ,2,1=.对k k k M b a M b a M b a x +++= 222111,其中i i i M b a 能被k i i m m m m ,,,,111+-整除,而被i m 除的余数恰为i a .从而∑==ki i i i M b a x 1是同余方程组的解.又设x ,y 均为同余方程组的解,则有y x m -1,y x m -2,…,y x m k -,即y x m m m k - 21,亦即()k m m m y x 21mod ≡.所以同余方程组对模k m m m 21有唯一解.3. 威尔逊(wilson )定理威尔逊(wilson )定理:设p 为质数,则()()p p mod 1!1-≡-.解:对于任意整数a ,且1≤a ≤p -1,由裴蜀定理知,存在整数a ’,使得()p aa mod 1'≡.称a ’为a 的数论倒数,且不妨设1≤a ’≤p -1.若有整数b ,满足()p ba mod 1'≡,则将此式两边同乘以a ,有()p a b mod ≡.这说明对于不同整数a ,1≤a ≤p -1,对应着不同的数论倒数a ’.又若整数a 的数论倒数是它自身,则()p a a mod 1≡⋅,亦即()()()p a a mod 011≡-+,故1≡a 或()p mod 1-.当2=p 时,显然有()()p p mod 1!1-≡-.当p >2时,有2,3,…,p -2这p -3个数恰好配成互为数论倒数的23-p 对数,故它们的积()()p p p mod 1123223≡≡-⨯⨯⨯- .于是()()()p p p mod 1111!1-≡-⨯⨯≡-.4. 拉格朗日定理设p 为质数,n 是非负整数,多项式()01a x a x a x f n n +++= 是一个模p 为n 次的整系数多项式(即p a n ),则同余方程()()p x f mod 0≡ (※),至多有n 个解(在模p 的意义下).证明:我们对n 用归纳法.当0=n 时,()0a x f =,因为p a 0,故同余方程(※)无解,命题成立.设当l n =时命题成立,则当1+=l n 时,若命题不成立,即同余方程(※)至少有2+l 个解,设为()p c c c x l mod ,,,221+≡ ①,我们考虑多项式()()()()()11111111c x a c x a c x a c f x f l l l l l l -++-+-=-+++ )()111c x a c l l-++- ()()()()x h c x x a c x l l 111-=+-=+ ②,其中()x h 是l 次多项式并且首项系数1+l a ,满足1+l a p ,从而由归纳假设知l 次同余方程()()p x h mod 0≡ ③,至多有个l 个解,但由①,②可知同余方程③至少有l +1个解.()p c c c x l mod ,,,232+≡ ,矛盾!故当1+=l n 时命题成立.综上所述,命题得证.二. 典型例题例1. 已知正整数k ≥2,k p p p ,,,21 为奇质数,且()1,21=k p p p a .证明:()()()111121----k p p p a 有不同于k p p p ,,21的奇质因数.证明:由()1,21=k p p p a ,有()1,1=p a .由费尔马小定理,()11mod 11p ap ≡-.又k ≥2,p p p ,,,32 k p p p ,,,32 为奇质数,则()()()211121---k p p p 为正整数,从而()()()()12111mod 121p ak p p p ≡--- ,即()()()12111121----k p p p ap .同理,()()()1211121--⋯--k p p p a能被P 2,P 3,…P k 整除,从而()()()1211121+-⋯--k p p p a不能被k p p p p ,,,,321 整除.注意到()()()211121---k p p p 是一个偶数,则()()()0211121≡---k p p p a或1(mod4),因此4不整除()()()1211121+---k p p p a,故()()()1211121+---k p p p a异于k p p p ,,,21 的奇质因数.所以()()()()()()⎪⎪⎭⎫ ⎝⎛-=-------1121111112121k k p p p p p p a a()()()⎪⎪⎭⎫⎝⎛+---1211121k p pp a有异于k p p p ,,,21 的奇质因数.例2. 对于自然数n ,如果对于任何整数a ,只要1-n a n ,就有12-na n ,则称n 具有性质P .(34届IMO预)(1)求证:每个素数n 都具有性质P . (2)求证:有无穷多个合数也都具有性质P .证:(1)设p n =为素数且1-p a p ,于是()1,=p a .由费尔马小定理知11--p a p ,而()()1111-+-=--a a a a p p .故1-a p ,即()p a m o d 1≡.因此,()p a i mod 1≡,1,,2,1,0-=p i .上述p 个同余式累和,得()p p a a a p p mod 0121≡≡++++-- .故()()11212++++---a a a a p p p ,即12-pa p .(2)设n 是具有性质P 的合数.若1-na n ,则()1,=a n .由欧拉定理,有()()n a n mod 1≡ϕ,又因()n a n mod 1≡,由阶的性质知,()()()n a n n mod 1,≡ϕ.如果()()1,=n n ϕ,则()n a mod 1≡,于是利用(1)中证明可得12-na n .因此,问题化为求无穷多个合数n ,使()()1,=n n ϕ.对任何素数p ≥5,取p -2的素因数q ,并令pq n =.这时()()()11--=q p n ϕ.因为()2-p q ,所以q (p -1).又因q ≤p -2<p ,故p (q -1).因此,有()()1,=n n ϕ.对于每个这样的合数n ,若()1-na n ,则()1-a n ,因而()n a k mod 1≡,,2,1,0=k .故()12-n a n .因为对于每个素数p ≥5都可按上述程序得到具有性质P 的相应合数()p n ,且p <()p n <p 2,所以,有无穷多个合数n 具有性质P .例3. 求所有整数n ≥2,满足:对所有的整数a ,b ,且()()1,,==n b n a ,()n b a mod ≡的充分必要条件是()n ab mod 1≡.(第41届IMO 预选题)解:若n 有奇素因子p ,设n p a||,记1n p n a⋅=,N a ∈.由中国剩余定理知,存在Z x ∈,使()n x mod 1≡,()a p x mod 2≡,则()1,=n x .取x b a ==,即知()n x mod 12≡,从而()a p mod 14≡,故3=p ,且1=a .因此()1,5=n .取5==b a ,即知()n mod 125≡,从而24n ,故,12,8,6,4,3,2=n 24,12,8,6,4,3,2.下证:当n 取上述值时,满足条件.注意到,当2 a 时,有()8mod 12≡a ;当3 a 时,有()3mod 12≡a ,又24n ,32243⨯=,故必有()n a mo d 12≡(因为()1,=n a ).对Z b a ∈,,且()()1,,==n b n a ,()n b a mod ≡,则()n ab mod 1≡.对Z b a ∈,,且()()1,,==n b n a , ()n ab mod 1≡,则()n ab a mod 12≡≡.从而()a b a n -又()1,=n a ,有()b a n -,即()n b a mod ≡.综上,所求n 的值为2,3,4,6,8,12,24.例4. 求所有正整数n ,满足对所有的正整数n ,存在一个整数m ,使12-n是92+m 的因子.(第39届IMO 预选题)解:引理1:若p 为4k -1(k ≥2)型质数,则不存在Z m ∈,使()p m mod 92-≡.证明:设)p m m mod 31≡()p m m mod 31≡(∵()13,=p ,∴m 1存在),N m ∈1.又∵()p m mod 912-≡, ∴)(mod 121p m -≡.由费马小定理知,()()()p m m p p p mod 11121212111-=-≡=≡---,矛盾.引理2:当1≤i <j 时,有()112,1222=++ji )112,12=++j,且()13,122=+i .证明:∵()()()()12mod 211121222222+≡+-≡+=+--i i j ij ij ,∴()()12,1212,12222=+=++ij i )()12,1212,122=+=++i j.又∵()()3mod 2111222≡+-≡+i i ,∴()()13,23,122==+i.对于原题,若()()9122+-m n,n ≥2.设t n S ⋅=2,2 t .若t ≥3,则()()1212-+n t ,从而()()9122+-m t .又必存在4k -1型素数p ,且3≠p ,()12-tp (否则,()4mod 1111121≡⨯⨯⨯≡-≡- t ,矛盾).此时()92+m p ,与引理1矛盾.故t =1,从而S n 2=,且()()()1212123121212222+++⋅=--S S.由引理2及中国剩余定理知,存在N m ∈1,使()()12m o d 22211+≡-ii m ,i =1,2,…,s -1.故()((2m o d0121222211≡+≡+-i m )()()12mod 0122221+≡+≡-ii .令13m m =,有()()()12mod 013922122-≡+=+Sm m .因此,()()9122+-m n .综上,所求正整数n 为2的幂次2i (i =1,2,…).数论中存在性问题是最常见的,除了运用数论存在性定理来解决外,还需要有直接构造的能力.例5. 证明:每个正有理数能被表示成3333d c b a ++的形式,且其中a ,b ,c ,d 是正整数.(40届IMO 预选题)证明:设该正有理数为p .(1)当⎪⎭⎫⎝⎛∈2,21p 时,()()()()333321121p p p p p -++-++=,其中2p -1,2-p ,p +1+∈Q .(2)当p ≥2时,由于⎪⎭⎫ ⎝⎛∈⎪⎭⎫ ⎝⎛1,41323,故有N n ∈,使⎪⎭⎫ ⎝⎛∈⋅⎪⎭⎫ ⎝⎛2,21323p n,由(1)有333333333322132132213223⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛=p p p p p n n n n n .(3)当⎥⎦⎤ ⎝⎛∈21,0p 时,由于()4,1233∈⎪⎭⎫ ⎝⎛,故有N n ∈,使⎪⎭⎫ ⎝⎛∈⋅⎪⎭⎫ ⎝⎛2,21233p n ,由(1)有333333333232123123212332⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛=p p p p p n n n n n .综上,总有+∈Q d c b a m 1111,,,,,使()()31313131313131313d c mb ma d c b a m p ++=++⋅=,设ma 1,mb 1,c 1,d 1的分母公倍数为n ,则取N mna a ∈=1,N mnb b ∈=,N nc c ∈=1,N nd d ∈=1,且3333dc b a p ++=.结论成立. 说明:这里是直接构造证明,首先发现恒等式()()()()333321121p p p p p -++-++=,进一步对p ≥2,或0<p ≤21构造.例6. 证明:不存在非负整数k 和m ,使得()mk k !14848+=+.证明:注意到0=k 或0=m 时,上述不定方程无解,于是,可设满足上述方程的k ,m 为正整数.(1)若1+k 为合数,设pq k =+1,2≤p ≤q ,注意到,应有48 | k !.故k≥6,于是1<2p ≤k ,故(1+k )| k !,进而(1+k )| 48,结合1+k ≥7,可知1+k =8,12,24或48,分别代入,两边约去48后,可得矛盾.(2)若1+k 为质数,由威尔逊定理,可知k !()1mod 1+-≡k ,于是,1+k | 47,进而1+k =47,这要求46!+48=48×47m ①,从而m >1,两边除以48可知m 47148!46=+,两边模4,可知()()4mod 11≡-m ,故m 为偶数.设m =2k ,则由①可知2()()14714748!46+-=k k ,由232 |48!46,而()23mod 2147≡+k,故232 | 147-k,利用二项式定理()()223mod 146123247+≡+⨯=k k,从而23 | k ,进而m ≥46,这时,①式右边比左边大.矛盾.注:一般地,若n >4,且n 为合数,则n |(n -1)!,依此可以证明威尔逊定理的逆定理也成立. 例7. 设p 是质数,证明:存在一个质数q ,使得对任意整数n ,数p n p-不是q 的倍数.(第44届IMO 试题)证明:由于()212mod 1111p p p p p p p p p +≡++++=--- .则11--p p p 中至少有一个质因子q ,满足q 对2p 的模不等于1。
数学竞赛讲座1抽屉原则抽屉原则的常见形式一,把n+k (k ≥1)个物体以任意方式全部放入n 个抽屉中,一定存在一个抽屉中至少有两个物体。
二,把mn+k (k ≥1)个物体以任意方式全部放入n 个抽屉中,一定存在一个抽屉中至少有m+1个物体。
三,把m 1+m 2+…+m n +k (k ≥1)个物体以任意方式全部放入n 个抽屉中,那么后在一个抽屉里至少放入了m 1+1个物体,或在第二个抽屉里至少放入了m 2+1个物体,……,或在第n 个抽屉里至少放入了m n +1个物体四,把m 个物体以任意方式全部放入n 个抽屉中,有两种情况:①当n|m 时(n|m 表示n 整除m ),一定存在一个抽屉中至少放入了nm个物体;②当n 不能整除m 时,一定存在一个抽屉中至少放入了[nm]+1个物体([x]表示不超过x 的最大整数) 五,把无穷多个元素分成有限类,则至少有一类包含无穷多个元素。
注:背下来上面的几种形式没有必要,但应当清楚这些形式虽然不同,却都表示的一个意思。
理解它们的含义最重要。
在各种竞赛题中,往往抽屉原则考得不少,但一般不会很明显的让人看出来,构造抽屉才是抽屉原则中最难的东西。
一般来说,题目中一旦出现了“总有”“至少有”“总存在”之类的词,就暗示着我们:要构造抽屉了。
2容斥原理容斥原理常常使用,其实说简单点,就是从多的往下减,减过头了在加回来,又加多了再减,减多了再加……,最终得到正确结果。
对于计数中容易出现重复的题目,我们常常采用容斥原理,去掉重复的情况。
容斥原理基本形式:()n n nk j i k jini nj i jii n A A A A AA AA A A A A ⋂⋂-+-⋂⋂+⋂-=⋃⋃+≤<<≤=≤<≤∑∑∑211111211||其中|A|表示集合A 中元素的个数。
3递推方法许多竞赛题目正面计算十分困难,于是我们避开正面计算,先考虑n-1时的情况,在计算n 时的情况比n-1时的情况增添了多少,然后写出一个递推式,这样就可以利用数列的知识进行解决,但一般要求根据递推式求通项的能力要比较强,是和擅长数列的同学使用。
没什么具体解释,多多练习吧 4映射计数个人认为映射计数绝对是计数方法中最经典的一种,常常能将复杂至极的问题简单化,变成人人都会做的普通题目。
但是想熟练掌握往往是不容易的,要求有大量的习题积累,才能形成建立映射的能力。
明确概念:对于y=f(x)单射:不同的x 对应不同的y ,即|x|≤|y| 满射:每个y 至少有一个x 映射,即|x|≥|y| 双射:即是单射又是满射,即|x|=|y| 倍数映射:|x|=m|y| 1,≠∈+m N m注:双射即通常说的一一映射,有的人将双射理解为m=2的倍数映射或其他映射,这是不对的。
不要从感觉上去理解。
双射应当是“单射”“满射”的综合。
利用映射解题,一般是建立双射,将要证明的问题转化为其他的问题,但是计算总数不变。
而我们不仅要会建立双射,也应会建立单射和满射,因为显然建立单射和满射是证明不等关系的极好方法,不可以忽略。
利用倍数映射解决的题目,我目前还没遇到多少,但还是要时刻记着有这样一种方法。
一,建立双射集合{1,2,……,2004}有多少个元素和为奇数的子集?将正整数n 写成若干个1与若干个2之和,和项的顺序不同认为是不同的写法,所有写法的种数记为A(n);将正整数n 写成若干个大于1的正整数之和,和项顺序不同认为是不同的写法,所有写法的种数记为B(n),求证:A(n)=B(n+2)注:此题即为很好的映射计数例子。
因为即便不用映射我们可以把A(n)求出来,再把B(n+2)求出来,然后比较后会发现两者相等,但这显然是超大工作量,如果使用了映射计数,我们只需用一些技巧,在A(n)和B(n+2)中建立双射,此题即得到证明。
二,建立单射或满射注:映射计数可能会有一定难度,如果觉得掌握不了也不要灰心,只要多练,时间一长自然就会了。
不等式与最值1平均不等式n n n n G A G H ≤≤≤等号成立当且仅当n a a a === 21注意:运用平均不等式需注意各项均为正数! 题外话:有很多同学十分“痛恨”∏∑这两个符号,总是看不懂,其实这两个符号是绝对好用的,并且以后会常常遇到,在大学课本中更是家常便饭,多看几次自然也就习惯了。
例,,且1,,,=+++∈+d c b a R d c b a 求证:614141414<+++++++d c b a 分析:为了凑出a+b+c+d ,以便充分利用条件,将4a+1,4b+1,4c+1,4d+1视作整体,利用平均不等式。
2柯西不等式及其变形设R b a i i ∈,(i=1,2,…,n),则 ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛∑∑∑===n i i n i i n i i i b a b a 121221其中等号成立,当且仅当iib a 为定值 注:这个式子在竞赛中极为常用,只需简记为“积和方小于方和积”。
等号成立条件比较特殊,要牢记。
此外应注意在这个式子里不要求各项均是正数,因此应用范围较广。
常用变形一:+∈∈R b R a i i ,若(i=1,2,…,n),则∑∑∑===⎪⎭⎫ ⎝⎛≥ni ni in i i ii b a b a 11212 注:要求b i 为正数常用变形二:若+∈R b a i i ,(i=1,2,…,n),则 ∑∑∑===⎪⎭⎫ ⎝⎛≥ni ii n i i ni ii b a a b a 1211注:要求a i ,b i 均为正数。
当然,这两个式子虽常用,但是记不记并不太重要,只要将柯西不等式原始的式子记得很熟,这两个式子其实是一眼就能看出来的,这就要求我们对柯西不等式要做到活学活用。
例:若222252314765d c b a d c b a +++=+-+,求的最小值。
并指出等号成立的条件。
分析:由于a,b,c,d 各项系数不同,而且既有1次项,又有2次项,显然要用柯西不等式。
而且使用柯西不等式不受-7c 这项的影响。
使用时,注意写明等号成立条件,检验最小值能否取到。
柯西不等式推广——赫尔德不等式若+∈R b a i i ,(i=1,2,…,n),p>1,q>1且111=+qp 则 qni q i pn i p i n i i i b a b a 11111⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≤∑∑∑===注:这个式子成立的前提挺多,不难看出当p=q=2时,这个式子即为柯西不等式。
3排序不等式 4琴生不等式首先来了解凸函数的定义一般的,设f(x)是定义在(a,b)内的函数如果对于定义域内的任意两数x 1,x 2都有()()222121x f x f x x f +≤⎪⎭⎫ ⎝⎛+ 则称f(x)是(a,b)内的下凸函数,一般说的凸函数,也就是下凸函数,例如y=x 2,从图像上即可看出是下凸函数,也不难证明其满足上述不等式。
如果对于某一函数上述不等式的等号总是不能成立,则称此函数为严格凸函数。
注:凸函数的定义为我们提供了极为方便地证明一个函数为凸函数的方法。
这个方法经常使用。
此外利用二阶求导也可以判断一个函数为凸函数,凸函数的二阶导数是非负数。
凸函数具有的常用性质 性质一:对于(a,b)内的凸函数f(x),有()nx f n x f ni ini i ∑∑==≤⎪⎪⎪⎪⎭⎫ ⎝⎛11 注:此即常说的琴生不等式性质二:加权的琴生不等式 对于(a,b)内的凸函数,若11=∑=ni ia,则()∑∑==≤⎪⎭⎫ ⎝⎛ni i i n i i i x f a x a f 11 注:加权琴生不等式很重要,当na i 1=时,即为原始的琴生不等式。
注:另外,对于上面有关凸函数和琴生不等式的部分,如果将不等号全部反向,则得到的便是凹函数,以及凹函数的琴生不等式。
例设x i >0(i=1,2,…,n ),∑==ni ix11,求证:∑∑==-≥-ni ni iii n x x x 1111注:不仅要用琴生不等式,注意知识综合利用。
5利用二次函数的性质一般来说,许多题目是涉及x ,y ,z 三个量的证明题,由于二次函数的性质十分好用,因此凑出一个关于其中一个字母的二次函数,进而利用二次函数的性质可以解决最值问题。
例设x,y,z ≥0,且x+y+z=1,求xy+yz+zx-3xyz 的最大最小值。
提示:将x=1-y-z 代入,整理成关于y 的二次函数,最值即为()()()()134341134222-+----z z z z z z ,整理后不难得到z=0和z=1式分别取到最大值41和最小值0,然后只需举一例证明能够取到即可。
求证:且 .1 ,0,, 1.=>xyz z y x )1(43)1)(1()1)(1()1)(1(333 ≥++++++++y x z x z y z y x2.,xyz z y x f -++=设 .1,0,,222=++≥z y x z y x 且其中求f .的最大值与最小值.10,,,.3010=≥a a a a n 且设 .2,2,2,1,0,21≥-=+≤++n n i a a a i i i 其中的最小值。
求n a a a +++ 10 4.对于给定的正整数n ,求最小的正整数λ,使得:如果 []2,1,,,21∈n a a a ,的一个排列是n n a a a b b b ,,,,,,2121 。
就有 ∑∑==≤ni ni i i i a b a 1123λ.5.设,411=a .2,)1(4121≥+=-n a a n n 求最小的实数λ使得.0,,,200221≥∀x x x 200220021a A k k ⋅≤∑=λ,其中2200211)1(21⎪⎭⎫⎝⎛+-++++-=+k k x x x kx A k k k k6.设.021≥≥≥≥n a a a 且112=∑=ni i a . 求证:.111≥-+∑=ni i i i a 7.设.,,2,1,0n i x i =>且.11=∑=ni ix00=x 设.求证:∑=-<++⋅++++≤ni ni i ix x x x x x 1121.211π8.求证:.0,,>∀z y x .1888),,(222≥+++++=xy z z xz y yyz x x z y x f 9.求证:,0,,>∀z y x .2888),,(222<+++++=xyz z xzy y yzx x z y x f对原命题加强,证明:.1,0,,=>∀abc c b a 且.2211211211<+++++cba 10.设,0,,>z y x .1222=++z y x 求xyzxz y yz x f +++++=111的最大、最小值。