单级倒立摆系统的分析与设计
- 格式:doc
- 大小:320.50 KB
- 文档页数:12
单级倒立摆系统建模图中u 是施加于小车的水平方向的作用力,x 是小车的位移,θ是摆杆的倾斜角。
若不给小车施加控制力,倒摆会向左或向右倾斜,控制的目的是当倒摆出现偏角时,在水平方向上给小车以作用力,使得摆杆和小车能够迅速恢复到平衡位置(θ=0,x=0)。
为了建立倒立摆系统的简易模型又不失其实质,可先作如下假设: 1、倒立摆与摆杆均为匀质刚体。
2、可忽略摆与载体,载体与外界的摩擦,即忽略摆轴、轮轴、轮与接触面之间的摩擦力等。
系统的受力如下图示,其中小车的质量为M ,瞬时位移为x ,摆杆长度为2L ,质量为m ,瞬时位置为)sin (θL x -。
Hx小车受力图 摆杆受力图运用牛顿力学定律,小车沿x 轴方向运动有:22dtxd M H u =-摆杆重心沿x 轴方向有:22)sin (dtL x d m H θ-= 摆杆重心沿y 轴方向有:22)cos (dtL d m mg V θ=- 摆杆围绕其重心的转动运动可用力矩方程来描述:θθθcos sin HL VL I += 式中,2231)2(121mL L m I ==为摆杆围绕其重心的转动惯量。
控制中要求θ小于5弧度,即在θ很小时,θθ≈sin ,1cos ≈θ,将方程在平衡点(θ=0,x=0)附近线性化处理。
则以上各式变为:xM H u =- ① )(θL x m H -= ② 0=-mg V ③HL VL I +=θθ④ 由式①和式②得:u mL xm M =++θ )( ⑤ 由式②、③和④得:θθmgL xmL mL I =++ )(2 ⑥ 由式⑤和式⑥可得单级倒立摆方程:u MmLI m M mL MmL I m M gL M m m 22)()()(++++++=θθu MmLI m M mL I MmL I m M gL m x 22222)()(++++++=θ 对以上两式进行拉氏变换,整理得以u 为输入量,以摆杆摆角θ为输出量得传递函数G(s)=gL m M m s MmL I m M mLs U s )(])[()()(22+-++=θ控制指标共有4个,即单级倒立摆的摆角θ、摆速θ、小车位置x 、小车速度x。
一级倒立摆的系统分析一、倒立摆系统的模型建立如图1-1所示为一级倒立摆的物理模型图1-1 一级倒立摆物理模型对于上图的物理模型我们做以下假设:M:小车质量m:摆杆质量b:小车摩擦系数l:摆杆转动轴心到杆质心的长度I:摆杆惯量F:加在小车上的力x:小车位置ɸ:摆杆与垂直向上方向的夹角θ:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)图1-2是系统中小车和摆杆的受力分析图。
其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。
注意:实际倒立摆系统中的检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。
图1-2 小车及摆杆受力分析分析小车水平方向受力,可以得到以下方程:M ẍ=F-bẋ-N (1-1)由摆杆水平方向的受力进行分析可以得到以下方程:N =md 2dt 2(x +l sin θ) (1-2)即: N =mẍ+mlθcos θ−mlθ2sin θ (1-3)将这个等式代入式(1-1)中,可以得到系统的第一个运动方程: (M +m )ẍ+bẋ+mlθcos θ−mlθ2sin θ=F (1-4)为推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得出以下方程: P −mg =md 2dt 2(l cos θ) (1-5)P −mg =− mlθsin θ−mlθ2cos θ (1-6) 利用力矩平衡方程可以有:−Pl sinθ−Nl cosθ=Iθ (1-7)注意:此方程中的力矩方向,由于θ=π+ɸ,cosɸ=−cosθ,sinɸ=−sinθ,所以等式前面含有负号。
合并两个方程,约去P和N可以得到第二个运动方程:(I+ml2)θ+mgl sinθ=−mlẍcosθ (1-8)设θ=π+ɸ,假设ɸ与1(单位是弧度)相比很小,即ɸ<<1,则可以进行近似处理:cosθ=−1,sinθ=−ɸ,(dθdt )2=0。
用u来代表被控对象的输入力F,线性化后的两个运动方程如下:{(I+ml2)ɸ−mglɸ=mlẍ(M+m)ẍ+bẋ−mlɸ=u(1-9)假设初始条件为0,则对式(1-9)进行拉普拉斯变换,可以得到:{(I+ml2)Φ(s)s2−mglΦ(s)=mlX(s)s2(M+m)X(s)s2+bX(s)s−mlΦ(s)s2=U(s) (1-10) 由于输出为角度ɸ,求解方程组的第一个方程,可以得到:X(s)=[(I+ml2)ml −gs2]Φ(s) (1-11)或改写为:Φ(s)X(s)=mls2(I+ml2)s2−mgl(1-12)如果令v=ẍ,则有:Φ(s)V(s)=ml(I+ml2)s2−mgl(1-13)如果将上式代入方程组的第二个方程,可以得到:(M+m)[(I+ml2)ml −gs]Φ(s)s2+b[(I+ml2)ml+gs2]Φ(s)s−mlΦ(s)s2=U(s) (1-14) 整理后可得传递函数:Φ(s) U(s)=mlqs2s4+b(I+ml2)qs3−(M+m)mglqs2−bmglqs(1-15)其中q=[(M+m)(I+ml2)−(ml)2]假设系统状态空间方程为:X=AX+Buy=CX+Du (1-16) 方程组对ẍ,ɸ解代数方程,可以得到解如下:{ẋ=ẋẍ=−(I+ml2)bI(M+m)+Mml2ẋ+m2gl2I(M+m)+Mml2ɸ+(I+ml2)I(M+m)+Mml2uɸ=ɸɸ=−mlbI(M+m)+Mml2ẋ+mgl(M+m)I(M+m)+Mml2ɸ+mlI(M+m)+Mml2u(1-17)整理后可以得到系统状态空间方程:[ẋẍɸɸ]=[01000−(I+ml2)bI(M+m)+Mml2m2gl2I(M+m)+Mml200010−mlbI(M+m)+Mml2mgl(M+m)I(M+m)+Mml20][xẋɸɸ]+[(I+ml2)I(M+m)+Mml2mlI(M+m)+Mml2]uy=[xɸ]=[10000010][xẋɸɸ]+[0]u(1-18)由(1-9)的第一个方程为:(I+ml2)ɸ−mgl ɸ=mlẍ对于质量均匀分布的摆杆可以有:I=13ml2于是可以得到:(13ml2+ml2)ɸ−mgl ɸ=mlẍ化简可以得到:ɸ=3g4l ɸ+34lẍ(1-19)设X={x, ẋ, ɸ , ɸ},u=ẍ则有:[ẋẍɸɸ]=[010000000001003g4l0][xẋɸɸ]+[134l]uy=[xɸ]=[10000010][xẋɸɸ]+[0]u(1-20)以上公式推理是根据牛顿力学的微分方程验证的。
单级倒立摆系统的建模与控制器设计摘要:本文主要研究的是单级倒立摆的建模、控制与仿真问题。
倒立摆是一类典型的快速、多变量、非线性、强耦合、自然不稳定系统。
由于在实际中有很多这样的系统,因此对它的研究在理论上和方法论上均有深远的意义。
本文首先建立了单级倒立摆的数学模型,对其进行了近似线性化处理,得到了它的状态空间描述,并对系统的开环特性进行了仿真和分析。
然后,基于极点配置方法设计了单级倒立摆系统的控制器。
最后,用Matlab对系统进行了数值仿真,验证了所设计的控制算法的有效性。
1、绪论------------------------------------------------------------- 12、单级倒立摆系统的建模与分析--------------------------------------- 32.1 单级倒立摆系统的建模---------------------------------------- 32.2 单级倒立摆系统的模型分析------------------------------------ 63、单级倒立摆系统的极点配置控制器设计------------------------------ 113.1 单级倒立摆系统控制器设计的目标----------------------------- 113.2 单级倒立摆系统的能控性分析--------------------------------- 113.3 单级倒立摆系统的极点配置控制器设计------------------------- 123.4 闭环系统仿真分析------------------------------------------- 134、PID控制器的设计与分析------------------------------------------ 184.1、PID控制的基本原理----------------------------------------- 184.2、方案设计-------------------------------------------------- 184.3、PID控制设计分析------------------------------------------- 204.4、软件仿真调试结果------------------------------------------ 204.5、与极点控制器结果对比分析---------------------------------- 225、结论------------------------------------------------------------ 23 致谢--------------------------------------------------------------- 24 参考文献----------------------------------------------------------- 251、绪论倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。
单级倒立摆课程设计一、课程目标知识目标:1. 让学生掌握单级倒立摆的基本概念、原理和数学模型;2. 使学生了解单级倒立摆在实际工程中的应用和价值;3. 引导学生运用物理知识分析单级倒立摆的动态特性及稳定性。
技能目标:1. 培养学生运用数学、物理知识解决实际问题的能力;2. 提高学生动手实践能力,学会设计、搭建和调试单级倒立摆控制系统;3. 培养学生团队协作、沟通表达及分析问题的能力。
情感态度价值观目标:1. 激发学生对物理科学研究的兴趣,培养创新意识和探索精神;2. 引导学生关注我国在倒立摆技术领域的发展,增强国家认同感;3. 培养学生严谨的科学态度和良好的学习习惯。
课程性质:本课程为物理学科实验课程,旨在通过实践操作,让学生深入理解单级倒立摆的原理和应用。
学生特点:本课程针对高中学生,他们在数学、物理基础知识方面有较好的储备,具备一定的动手能力和探究精神。
教学要求:结合学生特点,注重理论与实践相结合,引导学生主动参与,提高综合运用知识解决实际问题的能力。
将课程目标分解为具体的学习成果,便于后续教学设计和评估。
二、教学内容1. 理论知识:- 单级倒立摆的基本概念、原理及数学模型;- 倒立摆系统的动态特性分析;- 倒立摆稳定性判据及控制方法。
2. 实践操作:- 搭建单级倒立摆实验装置;- 设计并实现单级倒立摆控制系统;- 调试优化控制系统,实现倒立摆的稳定控制。
3. 教学大纲:- 第一周:单级倒立摆基本概念、原理及数学模型学习;- 第二周:倒立摆系统的动态特性分析;- 第三周:稳定性判据及控制方法学习;- 第四周:实践操作,搭建实验装置;- 第五周:设计并实现单级倒立摆控制系统;- 第六周:调试优化控制系统,总结交流。
教材章节:本教学内容参考课本第十章“自动控制”,具体涉及第1节“倒立摆控制”和第2节“倒立摆控制系统设计”。
教学内容安排和进度:按照教学大纲,每周安排一次课,共计6周。
理论教学与实践操作相结合,保证学生充分理解并掌握单级倒立摆相关知识。
一、直线一级倒立摆建模1、微分方程的推导对于倒立摆系统,经过小心假设忽略掉一些次要因素后,倒立摆系统就是一个典型的刚体运动系统,可以在惯性坐标系统内应用景点力学理论建立系统的动力学方程。
微分方程的推导:在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图1所示.图1做如下假设:M 小车质量m 摆杆质量b 小车摩擦系数L 摆杆转动轴心到杆质心的长度I 摆杆惯量F 加在小车上的力x 小车位置φ摆杆与垂直向上方向的夹角θ摆杆与垂直向下方向的夹角(考虑带摆杆初始位置为竖直向下)图2图2是系统中小车和摆杆的受力分析图。
其中,N和P为小车和摆杆的相互作用力的水平和垂直方向的分量。
在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,所以矢量方向定义如图2所示,图示方向为矢量的正方向。
分析小车水平方向所受合力,可以得到方程:(式1)由摆杆水平方向的受力进行分析可以得到下面等式:= (式2、式3)将式3代入式1可得系统第一个运动方程:(式4)为了推出系统第二个运动方程,对摆杆垂直向上的合力进行分析可得方程:= (式5 式6)力矩平衡方程如下:(式7)式中:合并式6、式7得第二个运动方程:(式8)设θ = π +φ(φ是摆杆与垂直向上方向之间的夹角),假设φ与1(单位是弧度)相比很小,即φ <<1,则可以进行近似处理:用u来代表被控对象的输入力F,线性化后两个运动方程如下:(式9)对式(3-9)进行拉普拉斯变换(推导传递函数时假设初始条件为0。
):(式10)整理后得到传递函数:(式11)其中:2、状态空间方程设系统状态空间方程为:(式12)方程组对解代数方程,得到解如下:(式13)整理后得到系统状态空间方程:(式14)3、实际系统模型假定系统物理参数设计如下:M 小车质量 1.08Kg m 摆杆质量 0.1Kgb 小车摩擦系数 0.1N/m/sec l 摆杆转动轴心到杆质心的长度 0.3mI 摆杆惯量 0.0027Kg*m*m将上述参数带入,可以得到以外界作用力作为输入的系统状态方程:======+++++++=⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅u x x x y u x x x x 000100001034577.20914849.0008966.26234577.0010000689655.00914849.000010φφφφφφφ二、对象的性能分析1、分析系统的单位阶跃响应:a=[0 1 0 0;0 -0.0914849 0.689655 0;0 0 0 1;0 -0.234577 26.8966 0] b=[0;0.914849;0;2.34577] c=[1 0 0 0;0 0 1 0] d=[0;0] a =0 1.0000 0 0 0 -0.0915 0.6897 0 0 0 0 1.0000 0 -0.2346 26.8966 0b =0.91482.3458c =1 0 0 00 0 1 0d =利用传递函数得到如下响应曲线[num,den]=ss2tf(a,b,c,d)num =0 -0.0000 0.9148 0.0000 -22.98860 -0.0000 2.3458 -0.0000 0 den =1.0000 0.0915 -26.8966 -2.2989 0 step(num,den)从图上可知其阶跃响应不稳定。
专业实验报告摆杆受力和力矩分析θmg VH θX V X H图2 摆杆系统摆杆水平方向受力为:H 摆杆竖直方向受力为:V 由摆杆力矩平衡得方程:cos sin Hl Vl I φφθθπφθφ⎧-=⎪=-⎨⎪=-⎩(1) 代入V 、H ,得到摆杆运动方程。
当0φ→时,cos 1θ=,sin φθ=-,线性化运动方程:2()I ml mgl mlx θθ+-=1.2 传递函数模型以小车加速度为输入、摆杆角度为输出,令,进行拉普拉斯变换得到传递函数:22()()mlG s ml I s mgl=+- (2) 倒立摆系统参数值:M=1.096 % 小车质量 ,kg m=0.109 % 摆杆质量 ,kg0.1β= % 小车摩擦系数g=9.8 % 重力加速度,l=0.25 % 摆杆转动轴心到杆质心的长度,m I= 0.0034 % 摆杆转动惯量,以小车加速度为输入、摆杆角度为输出时,倒立摆系统的传递函数模型为:20.02725()0.01021250.26705G s s =- (3) 1.3 倒立摆系统状态空间模型以小车加速度为输入,摆杆角度、小车位移为输出,选取状态变量:(,,,)x x x θθ= (4)由2()I ml mgl mlx θθ+-=得出状态空间模型001001000000001330044x x x x x g g lμθθθθ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦(5) μθθθ'⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001 xx x y (6) 由倒立摆的参数计算出其状态空间模型表达式:(7)010000001000100029.403x x x x x μθθθθ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦(8)00x μθθ⎤⎥⎡⎤⎥'+⎢⎥⎥⎣⎦⎥⎥⎦作用)增大,系统响应快,对提高稳态精度有益,但过大易作用)对改善动态性能和抑制超调有利,但过强,即校正装Ax B Cx μ+= 1n x ⎥⎥⎥⎦,1n x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,1111n n nn a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ , 1n B b ⎥⎥⎥⎦,]n C c =。
摘要倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,对倒立摆的控制研究无论在理论上和方法上都有深远的意义。
本论文以实验室原有的直线一级倒立摆实验装置为平台,重点研究其PID控制方法,设计出相应的PID控制器,并将控制过程在MATLAB上加以仿真。
本文主要研究内容是:首先概述自动控制的发展和倒立摆系统研究的现状;介绍倒立摆系统硬件组成,对单级倒立摆模型进行建模,并分析其稳定性;研究倒立摆系统的几种控制策略,分别设计了相应的控制器,以MATLAB为基础,做了大量的仿真研究,比较了各种控制方法的效果;借助固高科技MATLAB实时控制软件实验平台;利用设计的控制方法对单级倒立摆系统进行实时控制,通过在线调整参数和突加干扰等,研究其实时性和抗千扰等性能;对本论文进行总结,对下一步研究作一些展望。
关键词:一级倒立摆,PID,MATLAB仿真目录第1章MATLAB仿真软件的应用 (9)1.1 MA TLAB的基本介绍 (9)1.2 MA TLAB的仿真 (9)1.3 控制系统的动态仿真 (10)1.4 小结 (12)第2章直线一级倒立摆系统及其数学模型 (13)2.1 系统组成 (13)2.1.1 倒立摆的组成 (14)2.1.2 电控箱 (14)2.1.3 其它部件图 (14)2.1.4 倒立摆特性 (15)2.2 模型的建立 (15)2.2.1 微分方程的推导 (16)2.2.2 传递函数 (17)2.2.3 状态空间结构方程 (18)2.2.4 实际系统模型 (20)2.2.5 采用MA TLAB语句形式进行仿真 (21)第3章直线一级倒立摆的PID控制器设计与调节 (34)3.1 PID控制器的设计 (34)3.2 PID控制器设计MA TLAB仿真 (36)结论 (41)致谢 (42)参考文献 (43)第1章 MATLAB仿真软件的应用1.1 MATLAB的基本介绍MTALAB系统由五个主要部分组成,下面分别加以介绍。
一阶倒立摆控制系统设计matlab一、控制系统简介控制系统是指通过对某些物理系统或过程的改变以获取期望输出或行为的一种系统。
其中涉及到了对系统的建模、分析以及控制方法的选择和设计等多方面的问题。
控制系统可以通过标准的数学和物理模型来描述,并可以通过物理或者仿真实验进行验证。
本文将围绕一阶倒立摆控制系统设计和仿真展开。
主要内容包括:1.一阶倒立摆系统简介2.系统建模3.系统分析4.设计控制器5.仿真实验及结果分析一阶倒立摆(controlled inverted pendulum)是一种比较常见的控制系统模型。
它的系统模型简单,有利于系统学习和掌握。
一般而言,一阶倒立摆系统是由一个竖直的支杆和一个质量为$m$的小球组成的。
假设球只能在竖直方向上运动,当球从垂直平衡位置偏离时,支杆会向相反的方向采取动作,使得小球可以回到平衡位置附近。
为了控制一阶倒立摆系统,我们首先需要对其进行建模。
由于系统并不是非常复杂,所以建模过程相对简单。
假设支杆长度为$l$,支杆底端到小球的距离为$h$,支杆与竖直方向的夹角为$\theta$,小球的质量为$m$,地球重力为$g$,该系统的拉格朗日方程可以表示为:$L =\frac{1}{2}m\dot{h}^{2}+\frac{1}{2}ml^{2}\dot{\theta}^{2}-mgh\cos{\theta}-\frac{1}{2}I\dot{\theta}^{2}$$I$表示支杆的惯性矩,它可以通过支杆的质量、长度以及截面积等参数计算得出。
$h$和$\theta$分别表示小球和支杆的位置。
我们可以通过拉格朗日方程可以得出系统的动力学方程:$b$表示摩擦系数,$f_{c}$表示对支杆的控制力。
由于一阶倒立摆会发生不稳定的倾斜运动,即未受到外部控制时会继续倾斜。
我们需要对系统加上控制力,使得系统保持在稳定的位置上。
在进行控制器设计之前,我们需要对系统进行分析,以便更好地了解系统在不同条件下的特性表现。
单级倒立摆系统课程设计一、课程目标知识目标:1. 理解单级倒立摆系统的基本原理,掌握其数学模型和动力学特性;2. 学会分析单级倒立摆系统的稳定性,并掌握相应的控制策略;3. 掌握利用传感器和执行器实现单级倒立摆系统的实时控制方法。
技能目标:1. 能够运用所学的理论知识,设计并搭建单级倒立摆实验系统;2. 能够编写程序,实现对单级倒立摆系统的实时控制,使系统保持稳定;3. 能够分析实验数据,优化控制参数,提高系统性能。
情感态度价值观目标:1. 培养学生对物理系统控制原理的兴趣,激发学生探索科学技术的热情;2. 培养学生的团队协作意识和解决问题的能力,增强学生的自信心;3. 引导学生关注科技创新,认识到所学知识在实际应用中的价值。
课程性质:本课程为理论与实践相结合的课程,旨在帮助学生将所学的理论知识应用于实际系统中,提高学生的实践能力和创新能力。
学生特点:学生具备一定的物理、数学基础,对控制原理有一定了解,但实践经验不足。
教学要求:注重理论与实践相结合,鼓励学生动手实践,培养解决实际问题的能力。
在教学过程中,注重引导学生自主学习,培养学生的创新意识和团队协作精神。
通过本课程的学习,使学生能够将所学知识应用于实际系统,提高自身综合素质。
二、教学内容1. 理论知识:- 单级倒立摆系统的基本原理及数学模型;- 单级倒立摆系统的稳定性分析;- 控制策略及控制算法在单级倒立摆系统中的应用;- 传感器和执行器在单级倒立摆系统中的作用及选型。
2. 实践操作:- 搭建单级倒立摆实验系统;- 编写程序实现实时控制;- 调试优化控制参数;- 分析实验数据,提高系统性能。
3. 教学大纲:- 第一周:介绍单级倒立摆系统基本原理,学习数学模型,进行稳定性分析;- 第二周:学习控制策略及控制算法,探讨其在单级倒立摆系统中的应用;- 第三周:了解传感器和执行器,学习其在单级倒立摆系统中的作用及选型;- 第四周:分组搭建单级倒立摆实验系统,进行程序编写和实时控制;- 第五周:调试优化控制参数,分析实验数据,提高系统性能。
基于双闭环PID控制的一阶倒立摆控制系统设计一、设计目的倒立摆是一个非线性、不稳定系统,经常作为研究比较不同控制方法的典型例子。
设计一个倒立摆的控制系统,使倒立摆这样一个不稳定的被控对象通过引入适当的控制策略使之成为一个能够满足各种性能指标的稳定系统。
二、设计要求倒立摆的设计要使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。
当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。
实验参数自己选定,但要合理符合实际情况,控制方式为双PID控制,并利用 MATLAB进行仿真,并用simulink对相应的模块进行仿真。
三、设计原理倒立摆控制系统的工作原理是:由轴角编码器测得小车的位置和摆杆相对垂直方向的角度,作为系统的两个输出量被反馈至控制计算机。
计算机根据一定的控制算法,计算出空置量,并转化为相应的电压信号提供给驱动电路,以驱动直流力矩电机的运动,从而通过牵引机构带动小车的移动来控制摆杆和保持平衡。
四、设计步骤首先画出一阶倒立摆控制系统的原理方框图一阶倒立摆控制系统示意图如图所示:分析工作原理,可以得出一阶倒立摆系统原理方框图:一阶倒立摆控制系统动态结构图下面的工作是根据结构框图,分析和解决各个环节的传递函数!1.一阶倒立摆建模在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中: M :小车质量 m :为摆杆质量 J :为摆杆惯量 F :加在小车上的力 x :小车位置θ:摆杆与垂直向上方向的夹角l :摆杆转动轴心到杆质心的长度根据牛顿运动定律以及刚体运动规律,可知: (1) 摆杆绕其重心的转动方程为(2) 摆杆重心的运动方程为得sin cos ..........(1)y x J F l F l θθθ=-2222(sin ) (2)(cos ) (3)x y d F m x l d td F mg m l d t θθ=+=-(3)小车水平方向上的运动为22..........(4)x d xF F M d t-=联列上述4个方程,可以得出一阶倒立精确气模型:()()()()()()()2222222222222222sin .sin cos cos cos .sin cos .lg sin cos J ml F ml J ml m l g x J ml M m m l ml F m l M m m m l M m J ml θθθθθθθθθθθθ⎧+++-⎪=++-⎪⎨+-+⎪=⎪-++⎩式中J 为摆杆的转动惯量:32ml J =若只考虑θ在其工作点附近θ0=0附近(︒︒≤≤-1010θ)的细微变化,则可以近似认为:⎪⎩⎪⎨⎧≈≈≈1cos sin 02θθθθ ⎪⎪⎩⎪⎪⎨⎧++-+=++-+=2..2222..)(lg )()()(Mml m M J mlF m m M Mml m M J g l m F ml J x θθθ 若取小车质量M=2kg,摆杆质量m=1kg,摆杆长度2 l =1m,重力加速度取g=2/10s m ,则可以得 一阶倒立摆简化模型:....0.44 3.330.412x F F θθθ⎧=-⎪⎨⎪=-+⎩即 G 1(s)= ; G 2(s)=一阶倒立摆环节问题解决!2.电动机驱动器选用日本松下电工MSMA021型小惯量交流伺服电动机,其有关参数如下:222()0.4()12() 1.110()s F s s x s s s s θθ-⎧=⎪-⎪⎨-+⎪=⎪⎩驱动电压:U=0~100V 额定功率:PN=200W 额定转速:n=3000r/min 转动惯量:J=3×10-6kg.m2 额定转矩:TN=0.64Nm 最大转矩:TM=1.91Nm 电磁时间常数:Tl=0.001s 电机时间常数:TM=0.003s经传动机构变速后输出的拖动力为:F=0~16N ;与其配套的驱动器为:MSDA021A1A ,控制电压:UDA=0~±10V 。
单级倒立摆系统的分析与设计小组成员:武锦张东瀛杨姣李邦志胡友辉一.倒立摆系统简介倒立摆系统是一个典型的高阶次、多变量、不稳定和强耦合的非线性系统。
由于它的行为与火箭飞行以及两足机器人行走有很大的相似性,因而对其研究具有重大的理论和实践意义。
由于倒立摆系统本身所具有的上述特点,使它成为人们深入学习、研究和证实各种控制理论有效性的实验系统。
单级倒立摆系统(Simple Inverted Pendulum System)是一种广泛应用的物理模型,其结构和飞机着陆、火箭飞行及机器人的关节运动等有很多相似之处,因而对倒立摆系统平衡的控制方法在航空及机器人等领域有着广泛的用途,倒立摆控制理论产生的方法和技术将在半导体及精密仪器加工、机器入技术、导弹拦截控制系统、航空器对接控制技术等方面具有广阔的开发利用前景。
倒立摆仿真或实物控制实验是控制领域中用来检验某种控制理论或方法的典型方案。
最初研究开始于二十世纪50年代,单级倒立摆可以看作是一个火箭模型,相比之下二阶倒立摆就复杂得多。
1972年,Sturgen等采用线性模拟电路实现了对二级倒立摆的控制。
目前,一级倒立摆控制的仿真或实物系统已广泛用于教学。
二.系统建模1.单级倒立摆系统的物理模型图1:单级倒立摆系统的物理模型单级倒立摆系统是如下的物理模型:在惯性参考系下的光滑水平平面上,放置一个可以在平行于纸面方向左右自由移动的小车(cart ),一根刚性的摆杆(pendulum leg )通过其末端的一个不计摩擦的固定连接点(flex Joint )与小车相连构成一个倒立摆。
倒立摆和小车共同构成了单级倒立摆系统。
倒立摆可以在平行于纸面180°的范围内自由摆动。
倒立摆控制系统的目的是使倒立摆在外力的摄动下摆杆仍然保持竖直向上状态。
在小车静止的状态下,由于受到重力的作用,倒立摆的稳定性在摆杆受到微小的摄动时就会发生不可逆转的破坏而使倒立摆无法复位,这时必须使小车在平行于纸面的方向通过位移产生相应的加速度。
单级倒立摆控制系统设计及simulink仿真摘要:倒立摆系统是一个典型的多变量、非线性、强藕合和快速运动的自然不稳定系统。
因此倒立摆在研究双足机器人直立行走、火箭发射过程的姿态调整和直升机飞行控制领域中有重要的现实意义,相关的科研成果己经应用到航天科技和机器人学等诸多领域。
单级倒立摆系统是一种广泛应用的物理模型。
控制单级倒立摆载体的运动是保证倒立摆稳定性的关键因素。
为了避免常用的物理反馈分析方法和运动轨迹摄像制导控制方法的某些缺点,本文从力学的角度提出对倒立摆的运动进行纯角度制导分析,完成了对倒立摆载体的角度制导运动微分方程的数学建模,设计了该模型的模糊控制系统,并利用 Matlab\simulink软件工具对倒立摆的运动进行了计算机仿真。
实验表明,这种模糊控制配合代数解析方法的运算速度和计算机仿真的效果均较物理反馈制导控制方法有了一定的提高。
该方法可以有效地改善单级倒立摆控制系统的性能。
本论文的主要工作是研究了直线一级倒立摆系统的模糊控制问题,用Matlab和Simulink对一级倒立摆模糊控制系统进行了仿真,验证了设计的可行性。
本文论述了一级倒立摆数学建模方法,推导出他们的微分方程,以及线性化后的状态方程。
讨论了单级倒立摆系统的模糊控制方法和操作步骤。
用Simulink实现了单级倒立摆模糊控制仿真系统,分别给出一级倒立摆系统控制量的响应曲线。
通过仿真说明控制器的有效性和实现性。
关键词:单级倒立摆;仿真;模糊控制;运动;建模;SimulinkDesign of single stage inverted pendulum control systemand Simulink simulationAbstract: inverted pendulum system is unstable system with a typical multi variable, nonlinear, strong coupled and fast motion. So the research on the attitude adjustment of the double foot robot and the attitude adjustment of the rocket launching process and the helicopter flight control field have practical,significance. The related scientific research achievements have been applied to many fields such as aerospace science and robotics. Single inverted pendulum system is a widely used physical model. Controlling the movement of the single inverted pendulum is the key factor to guarantee the stability of the inverted pendulum. In order to avoid some shortcomings of common physical feedback analysis method and motion trajectory camera guidance control method, this paper presents a pure angle guidance analysis on the motionof the inverted pendulum, and designs the fuzzy control system of the model. Experimental results show that the operation speed and computer simulation of this kind of fuzzy control combined with algebraic analysis method are improved by the physical feedback control method. This method can effectively improve the performance of a single stage inverted pendulum control system. In this paper, the main work of this paper is to study the fuzzy control of a linear inverted pendulum system, and the Matlab and Simulink to simulate the fuzzy control system of a single inverted pendulum, verify the feasibility of the design. And a mathematical modeling method of an inverted pendulum is described, their differential equations are derived, and the equation of state is linearized. The fuzzy control method and operation steps of single stage inverted pendulum system are discussed. Using Simulink to realize the fuzzy control simulation system of a single inverted pendulum, the response curve of the control of an inverted pendulum system is given. The effectiveness and the implementation of the controller are illustrated by simulation.Keywords: Inverted pendulum; Simulation; Fuzzy control; Motion; modeling; Simulink 引言倒立摆系统是研究控制理论的一种典型实验装置,具有成本低廉,结构简单,物理参数和结构易于调整的优点,是一个具有高阶次、不稳定、多变量、非线性和强藕合特性的不稳定系统。
《自动控制原理》课程设计之二基于状态空间法单级倒立摆的控制系统设计一、 单级倒立摆介绍倒立摆系统具有高阶次、不稳定、多变量、非线性和强耦合等特性,是控制理论的典型研究对象。
如机器人行走过程中的平衡控制、火箭发射中垂直度控制和卫星飞行中的姿态控制等均涉及到倒置问题对倒立摆系统的研究在理论上和方法论上均有着深远意义。
单级倒立摆系统的原理图,如图1所示。
假设已知摆的长度为2l ,质量为m ,用铰链安装在质量为M 的小车上。
小车由一台直流电动机拖动,在水平方向对小车施加控制力u ,相对参考系差生的位移s 。
若不给小车实施控制力,则倒置摆会向左或向右倾倒,因此,它是个不稳定的系统。
控制的目的是通过控制力u 的变化,使小车在水平方向上运动,达到设定的位置,并将倒置摆保持在垂直位置上。
已知单级倒立摆的各项数据如下所示:,5.0,1.0,2m l kg m kg M ===g m g kgm I /8.9,025.02==图1 单级倒立摆模型二、 控制系统设计任务1、 查阅文献,建立单级倒立摆的状态空间数学模型。
取状态变量[]T ss x θθ =。
测试系统的开环特性。
2、用Matlab 分析系统能控性,能观性及稳定性。
3、 通过状态反馈配置改变闭环系统极点。
闭环极点自行决定。
采用极点配置后,闭环系统的响应指标满足如下要求为:● 摆杆角度和小车位移的稳定时间小于5秒● 位移的上升时间小于2秒● 角度的超调量小于20度● 位移的稳态误差小于2%。
4、 假设系统的状态[]T ss x θθ =均无法测量,为实现上述控制方案建立系统的全维观测器,观测器极点自行决定。
采用带有观察器极点配置后,闭环系统的响应指标满足如下要求为: ● 摆杆角度和小车位移的稳定时间小于5秒● 位移的上升时间小于2秒● 角度的超调量小于20度● 位移的稳态误差小于2%。
5、 假设系统的状态[]T ss x θθ =中,只用位移s 可以测量,其他状态变量均无法测量,为实现极点配置,建立系统的降维观测器,观测器极点自行决定。
自动控制原理课程设计题目单级移动倒立摆系统建模及性能分析学生姓名学号学院专业指导教师二O一O年 5 月15日南京信息工程大学本科生课程设计任务书注:此表由指导教师课程设计工作开始前填写,每位学生两份,一份发给学生,一份交学院留存。
南京信息工程大学本科生学年论文(课程设计)指导教师评阅意见表目录1 系统介绍2 单级倒立摆的数学模型3 系统稳定性分析4 分析相角裕度和截止频率5 系统动态性能分析6 系统仿真7 总结与体会参考文献摘要倒立摆系统是一个典型的非线性、强耦合、多变量和不稳定系统,作为控制系统的被控对象,通过以单级倒立摆为被控对象,来掌握控制系统的数学模型的建立方法和及控制系统的调试方法,掌握MATLAB仿真软件的使用方法。
本次课程设计包含如下几个内容:[1]研究该装置的非线性数学模型,并提出合理的线性化方法,建立该装置的线性数学模型-传递函数(以u为输入, 为输出);[2]用画根轨迹方法对系统进行稳定性分析,用BODE图求出系统的相角裕度和截止频率.[3]用Matlab求系统阶跃响应.1系统介绍单级倒立摆系统的结构示意图如图1所示。
图1 单级倒立摆系统示意图图示为一个倒立摆装置,该装置包含一个小车和一个安装在小车上的倒立摆杆。
由于小车在水平方向可适当移动,因此,控制小车的移动可使摆杆维持直立不倒。
2M kg m kg l m g m s====1,0.2,0.5,10/系统组成的框图如图2所示。
施加外力运动状态摆角θ图2 单级倒立摆系统组成框图系统通过给小车施加外力,使摆杆与小车相互作用,达到平衡,维持不倒。
2 单级倒立摆的数学模型对系统建立数学模型是系统分析、设计的前提,为了简化分析,忽略空气阻力,仅考虑小车与倒立摆之间的摩擦力。
将倒立摆系统看成简单的小车与单级摆组成的系统。
在水平方向施加控制力u,相对参考坐标系产生位移x 。
建立系统的线性数学模型-传递函数(以u为输入,θ为输出)。
设小车瞬时位置为 ,摆心瞬时位置为在水平方向,由牛顿第二定律 即:在垂直方向:惯性力矩与重力矩平衡即:2sin 0,cos 1,θθθθθ≈≈很小时,忽略项 则有:联立求解并进行拉氏变换:则传递函数为3 系统稳定性分析代入参数,M =1kg,m =0.5kg,l =0.5m,用如下程序将传递函数在MATLAB 中表示出来: num=[-1]den=[0.5,0,-7.5] sys=tf(num,den)用MATLAB 显示为:x(sin )x l θ+2222(sin )d x d M m x l u dt dtθ++=2()cos sin M m x ml ml uθθθθ++-=22(sin )cos sin d m x l l mgl dt θθθ⎡⎤+=⎢⎥⎣⎦22cos cos sin cos sin x l l g θθθθθθθ+-=)M m x ml u θ++=(x l g θθ+= 2)(1)()(Mls g M m s u s -+=θ用如下程序将传递函数的根轨迹图在MATLAB中表示出来:num=[-1]den=[0.5,0,-7.5]rlocus(num,den)用MATLAB做出的根轨迹如图3所示:图3 校正前系统根轨迹由于系统在右半平面有极点,因此为非稳定系统.4 分析相角裕度和截止频率利用下列程序MATLAB中画出BODE图,并算出相角裕度和截止频率: num=[-1]den=[0.5,0,-7.5]sys=tf(num,den)[mag,phase,w]=bode(num,den)[gm,pm,wcg,wcp]=margin(mag,phase,w)margin(sys)用MATLAB做出BODE图如图4所示:图4 校正前系统BODE图gm = Inf ,pm = Inf, wcg = NaN ,wcp = NaN其中gm为幅值裕度, pm为相角裕度,wcg为相角交界频率,wcp为截止频率.所画的BODE图没有穿过频率轴,使的没有截止频率和相角裕度.4系统阶跃响应因为求单位阶跃响应要求在闭环条件下,求出闭环传递函数为:利用如下程序在MATLAB中对系统绘制单位阶跃响应:num=[2]den=[-1,0,17]step(num,den)系统单位阶跃响应如图5所示:图5 系统单位阶跃响应因为系统为不稳定系统,所以当它时间趋于无穷时,它的幅值并不趋于输入信号,即不会趋近于1.、5系统动态性能分析(用公式计算各动态指标,根据系统的阶次)5.1延迟时间的计算5.2 上升时间的计算5.3峰值时间的计算5.4 超调量的计算5.5 调节时间的计算5.6 使用MATLAB求系统各动态性能指标num=[0,0,2.7]; %设置分子的系数den=conv([1, 0.8, 0.64],[a, 1]); %设置分母的系数G=tf(num,den);t=0:0.01:30; % 从0到30每隔0.01取一个值c=step(G, t); % 动态响应的幅值赋给变量Cplot(t,c) %绘制二维图形,横坐标取t,纵坐标取c grid % 绘制网格线[y,x,t]=step(num,den,t); %求系统单位阶跃响应maxy=max(y) % 求取响应的最大值ys=y(length(t)) %求取响应的终值pos=(maxy-ys)/ys %求取超调量n=1;while y(n)<0.5*ysn=n+1;endtd=t(n) %求取延迟时间n=1;while y(n)<ysn=n+1;endtr=t(n) %求取上升时间n=1;while y(n)<maxyn=n+1;endtp=t(n) %求取峰值时间L=length(t);while (y(L)>0.95*ys)&(y(L)<1.05*ys)L=L-1;endts=t(L) %求取调节时间title('Unit-Step Response of G(s)朱雷(1)') %设置Matlab 图的标题6系统仿真在MATLAB命令窗口中输入SIMULINK,然后点File→New→Model,在SOURCE 中选择STEP模块,在SINKS中选择SCOP模块,在CONTINUOUS中选择传递函数,双击更改极点和零点,用直线将模块连接后,点击START,双击示波器,即可看到仿真图形.系统MATLAB仿真图形如图6所示;图6 系统MATLAB仿真图形7总结与体会参考文献[1]自动控制原理,胡寿松,科学出版社,2007-7[2] 自动控制原理的MA TLAB实现,黄忠霖,国防工业出版社,2007-2[3] 自动控制原理与设计,美)富兰克林(Franklin G.F.),(美)鲍威尔(Powell J.D.),(美)那诶尼(Naeini A.E.)著,李中华,张雨浓译,人民邮电出版社,2007-11-1[4][5]。
《现代控制理论》课程综合设计单级旋转倒立摆系统1 引言单级旋转倒立摆系统一种广泛应用的物理模型,其物理模型如下:图示为单级旋转倒立摆系统原理图。
其中摆的长度1l =1m ,质量1m =0.1kg ,横杆的长度2l =1 m ,质量2m =0.1kg ,重力加速度20.98/g m s =。
以在水平方向对横杆施加的力矩M 为输入,横杆相对参考系产生的角位移1θ为输出。
控制的目的是当横杆在水平方向上旋转时,将倒立摆保持在垂直位置上。
图1 单级旋转倒立摆系统模型单级旋转倒立摆可以在平行于纸面3600的范围内自由摆动。
倒立摆控制系统的目的是使倒立摆在外力的推动下,摆杆仍然保持竖直向上状态。
在横杆静止的状态下,由于受到重力的作用,倒立摆的稳定性在摆杆微小的扰动下,就会使倒立摆的平衡无法复位,这时必须使横杆在平行于纸面的方向通过位移产生相应的加速度。
作用力与物体位移对时间的二阶导数存在线性关系,故单级倒立摆系统是一个非线性系统。
本文综合设计以以在水平方向对横杆施加的力矩M 为输入,横杆相对参考系产生的角位移1θ为输出,建立状态空间模型,在原有系统上中综合带状态观测器状态反馈系统,从而实现当横杆在旋转运动时,将倒立摆保持在垂直位置上。
2 模型建立本文将横杆和摆杆分别进行受力分析,定义以下物理量:本文将横杆和摆杆分别进行受力分析,定义以下物理量:M 为加在横杆上的力矩;1m 为摆杆质量;1l 为摆杆长度;1I 为摆杆的转动惯量;2m 为横杆的质量;2l 为横杆的长度;2I 为横杆的转动惯量;1θ为横杆在力矩作用下转动的角度;2θ为摆杆与垂直方向的夹角;N 和H 分别为摆杆与横杆之间相互作用力的水平和垂直方向的分量。
倒立摆模型受力分析如图2所示。
图2 倒立摆模型受力分析摆杆水平方向受力平衡方程:2111222(0sin )2l d N m l dt θθ=++(1θ2l —横杆的转动弧长即位移)摆杆垂直方向受力平衡方程:2111122(cos )22l l d H m g m dt θ-=-摆杆转矩平衡方程:22111222sin cos 22d l lJ H N dt θθθ=-横杆转矩平衡方程:21222d M Nl J dt θ-=考虑到摆杆在设定点12,=0θθ附近做微小振动,对上式进行线性化,即N22sin θθ≈,2cos 1θ≈ ,20θ≈&,其中23ml J =,近似线性化得到,()212222222120.10.50.98010.50.5130130d N dt H d H N dt d M N dt θθθθθ⎧=+⎪⎪-=⎪⎪⎨=⋅-⋅⋅⎪⎪⎪-=⎪⎩整理上式可得倒立摆的状态方程:21221114.71524110032M M θθθθθ∙∙∙∙∙∙∙∙⎧-+-⎪⎪⎨⎪+-=⎪⎩ 本文参数代入计算可得:12224.64211.05312.3799.474MMθθθθ∙∙⎧=-+⎪⎨=-⎪⎩&& 取状态变量如下:11213242x x x x x θθθθ∙⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦&112233440010000 4.642011.053000100012.37909.474x x x x M x x xx ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦&&&&故[]1211341000x x y x x θ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦3 稳定性和能控性分析3.1 稳定性分析判断一个系统是否稳定,只需判断该系统传递函数的极点是否都在左半平面。
单级倒立摆前言自动控制理论是研究自动控制共同规律的技术科学。
它的发展初期,是以反馈理论为基础的自动调节原理,并主要用于工业控制。
控制理论在几十年中,迅速经历了从经典理论到现代理论再到智能控制理论的阶段,并有众多的分支和研究发展方向。
控制理论的发展,起于“经典控制理论”。
早期最有代表性的自动控制系统是18世纪的蒸汽机调速器。
20世纪前,主要集中在温度、压力、液位、转速等控制。
20世纪起,应用围扩大到电压、电流的反馈控制,频率调节,锅炉控制,电机转速控制等。
二战期间,为设计和制造飞机及船用自动驾驶仪、火炮定位系统、雷达跟踪系统及其他基于反馈原理的军用装备,促进了自动控制理论的发展。
至二战结束时,经典控制理论形成以传递函数为基础的理论体系,主要研究单输入-单输出、线性定常系统的分析问题。
经典控制理论的研究对象是线性单输入单输出系统,用常系数微分方程来描述。
它包含利用各种曲线图的频率响应法和利用拉普拉斯变换求解微分方程的时域分析法。
设计目的及意义1)、理论联系实际,加强对自动控制理论的理解。
增强分析问题、解决问题的能力。
2)、熟悉MATLAB软件,掌握它在控制系统设计当中的应用,能熟练进行系统建模、性能分析、模型仿真等操作。
3)、用单片机进行编程,实现PID的控制算法,了解控制算法的具体实现及单片机软件仿真过程。
开发创新意识,增进对科学技术的兴趣,培养严肃认真的科学态度。
1.倒立摆1.1 倒立摆的概念倒立摆是处于倒置不稳定状态,人为控制使其处于动态平衡的一种摆。
如杂技演员顶杆的物理机制可简化为一级倒立摆系统,是一个复杂、多变量、存在严重非线性、非自治不稳定系统。
常见的单级倒立摆系统一般由小车和摆杆两部分构成。
如下图图1-1 单级倒立摆装置1.2研究倒立摆稳定性的意义倒立摆的研究具有重要的工程背景。
从日常生活中所见到的任何重心在上、支点在下的控制问题,到空间飞行器和各类伺服云台的稳定,再到机器人行走。
都和倒立摆系统的稳定控制有很大相似性,故对其稳定控制在实际中有很多应用,如火箭姿态控制、卫星发射架的稳定控制、飞机安全着陆、海上钻井平台的稳定控制等。
一级倒立摆的系统分析一、倒立摆系统的模型建立如图1-1所示为一级倒立摆的物理模型图1-1 一级倒立摆物理模型对于上图的物理模型我们做以下假设:M:小车质量m:摆杆质量b:小车摩擦系数l:摆杆转动轴心到杆质心的长度I:摆杆惯量F:加在小车上的力x:小车位置ɸ:摆杆与垂直向上方向的夹角θ:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)图1-2是系统中小车和摆杆的受力分析图。
其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。
注意:实际倒立摆系统中的检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。
图1-2 小车及摆杆受力分析分析小车水平方向受力,可以得到以下方程:M ẍ=F-bẋ-N (1-1)由摆杆水平方向的受力进行分析可以得到以下方程:N =md 2dt 2(x +l sin θ) (1-2)即: N =mẍ+mlθcos θ−mlθ2sin θ (1-3)将这个等式代入式(1-1)中,可以得到系统的第一个运动方程: (M +m )ẍ+bẋ+mlθcos θ−mlθ2sin θ=F (1-4)为推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得出以下方程: P −mg =md 2dt 2(l cos θ) (1-5)P −mg =− mlθsin θ−mlθ2cos θ (1-6) 利用力矩平衡方程可以有:−Pl sinθ−Nl cosθ=Iθ (1-7)注意:此方程中的力矩方向,由于θ=π+ɸ,cosɸ=−cosθ,sinɸ=−sinθ,所以等式前面含有负号。
合并两个方程,约去P和N可以得到第二个运动方程:(I+ml2)θ+mgl sinθ=−mlẍcosθ (1-8)设θ=π+ɸ,假设ɸ与1(单位是弧度)相比很小,即ɸ<<1,则可以进行近似处理:cosθ=−1,sinθ=−ɸ,(dθdt )2=0。
用u来代表被控对象的输入力F,线性化后的两个运动方程如下:{(I+ml2)ɸ−mglɸ=mlẍ(M+m)ẍ+bẋ−mlɸ=u(1-9)假设初始条件为0,则对式(1-9)进行拉普拉斯变换,可以得到:{(I+ml2)Φ(s)s2−mglΦ(s)=mlX(s)s2(M+m)X(s)s2+bX(s)s−mlΦ(s)s2=U(s) (1-10) 由于输出为角度ɸ,求解方程组的第一个方程,可以得到:X(s)=[(I+ml2)ml −gs2]Φ(s) (1-11)或改写为:Φ(s)X(s)=mls2(I+ml2)s2−mgl(1-12)如果令v=ẍ,则有:Φ(s)V(s)=ml(I+ml2)s2−mgl(1-13)如果将上式代入方程组的第二个方程,可以得到:(M+m)[(I+ml2)ml −gs]Φ(s)s2+b[(I+ml2)ml+gs2]Φ(s)s−mlΦ(s)s2=U(s) (1-14) 整理后可得传递函数:Φ(s) U(s)=mlqs2s4+b(I+ml2)qs3−(M+m)mglqs2−bmglqs(1-15)其中q=[(M+m)(I+ml2)−(ml)2]假设系统状态空间方程为:X=AX+Buy=CX+Du (1-16) 方程组对ẍ,ɸ解代数方程,可以得到解如下:{ẋ=ẋẍ=−(I+ml2)bI(M+m)+Mml2ẋ+m2gl2I(M+m)+Mml2ɸ+(I+ml2)I(M+m)+Mml2uɸ=ɸɸ=−mlbI(M+m)+Mml2ẋ+mgl(M+m)I(M+m)+Mml2ɸ+mlI(M+m)+Mml2u(1-17)整理后可以得到系统状态空间方程:[ẋẍɸɸ]=[01000−(I+ml2)bI(M+m)+Mml2m2gl2I(M+m)+Mml200010−mlbI(M+m)+Mml2mgl(M+m)I(M+m)+Mml20][xẋɸɸ]+[(I+ml2)I(M+m)+Mml2mlI(M+m)+Mml2]uy=[xɸ]=[10000010][xẋɸɸ]+[0]u(1-18)由(1-9)的第一个方程为:(I+ml2)ɸ−mgl ɸ=mlẍ对于质量均匀分布的摆杆可以有:I=13ml2于是可以得到:(13ml2+ml2)ɸ−mgl ɸ=mlẍ化简可以得到:ɸ=3g4l ɸ+34lẍ(1-19)设X={x, ẋ, ɸ , ɸ},u=ẍ则有:[ẋẍɸɸ]=[010000000001003g4l0][xẋɸɸ]+[134l]uy=[xɸ]=[10000010][xẋɸɸ]+[0]u(1-20)以上公式推理是根据牛顿力学的微分方程验证的。
单级倒立摆系统的分析与设计小组成员:武锦张东瀛杨姣李邦志胡友辉一.倒立摆系统简介倒立摆系统是一个典型的高阶次、多变量、不稳定和强耦合的非线性系统。
由于它的行为与火箭飞行以及两足机器人行走有很大的相似性,因而对其研究具有重大的理论和实践意义。
由于倒立摆系统本身所具有的上述特点,使它成为人们深入学习、研究和证实各种控制理论有效性的实验系统。
单级倒立摆系统(Simple Inverted Pendulum System)是一种广泛应用的物理模型,其结构和飞机着陆、火箭飞行及机器人的关节运动等有很多相似之处,因而对倒立摆系统平衡的控制方法在航空及机器人等领域有着广泛的用途,倒立摆控制理论产生的方法和技术将在半导体及精密仪器加工、机器入技术、导弹拦截控制系统、航空器对接控制技术等方面具有广阔的开发利用前景。
倒立摆仿真或实物控制实验是控制领域中用来检验某种控制理论或方法的典型方案。
最初研究开始于二十世纪50年代,单级倒立摆可以看作是一个火箭模型,相比之下二阶倒立摆就复杂得多。
1972年,Sturgen等采用线性模拟电路实现了对二级倒立摆的控制。
目前,一级倒立摆控制的仿真或实物系统已广泛用于教学。
二.系统建模1.单级倒立摆系统的物理模型图1:单级倒立摆系统的物理模型单级倒立摆系统是如下的物理模型:在惯性参考系下的光滑水平平面上,放置一个可以在平行于纸面方向左右自由移动的小车(cart ),一根刚性的摆杆(pendulum leg )通过其末端的一个不计摩擦的固定连接点(flex Joint )与小车相连构成一个倒立摆。
倒立摆和小车共同构成了单级倒立摆系统。
倒立摆可以在平行于纸面180°的范围内自由摆动。
倒立摆控制系统的目的是使倒立摆在外力的摄动下摆杆仍然保持竖直向上状态。
在小车静止的状态下,由于受到重力的作用,倒立摆的稳定性在摆杆受到微小的摄动时就会发生不可逆转的破坏而使倒立摆无法复位,这时必须使小车在平行于纸面的方向通过位移产生相应的加速度。
依照惯性参考系下的牛顿力学原理,作用力与物体位移对时间的二阶导数存在线性关系,单级倒立摆系统是一个非线性系统。
各个参数的物理意义为:M — 小车的质量 m — 倒立摆的质量F — 作用到小车上的水平驱动力L — 倒立摆的长度 x — 小车的位置 θ— 某一时刻摆角整个倒立摆系统就受到重力、驱动力和摩擦阻力的三个外力的共同作用。
这里,驱动力F 是由连接小车的传动装置提供,控制倒立摆的稳定实际上就是依靠控制驱动力F 使小车在水平面上做与倒立摆运动相关的特定运动。
为了简化模型以利于仿真,假设小车与导轨以及摆杆与小车铰链之间的摩擦均为0。
2.单级倒立摆系统的数学模型令小车的水平位移为x ,运动速度为v ,加速度a 。
小车的动能为212kc E Mx =&,选择特定的参考平面使得小车的势能为0。
摆杆的长度为L ,某时刻摆角为θ,在摆杆上与固定连接点距离为q (0<q<l )的位置处取一质量为△m 的质元,则有 sin cos m m x x q y q θθ=+⎧⎨=⎩V V 该质元的动能为:2222211()(2cos )22k m m m E m x y m x q x q θθθ=+=++V V V &&&&&&V V 势能为:cos p m E m g q θ=⋅⋅V V , 其中 m dq ρ=⋅V ,ρ是摆杆的线密度 则系统的总动能可以通过对和从0到L 积分获得:2220111()cos 226lk kc k m E E E dq M m x ml x ml θθθ=+=+++⎰V &&&& 01cos 2l p p m E E dq mgl θ==⎰V 其中小车的动能和势能为: 212kc E Mx =& , 0pc E = 系统的拉格朗日方程可写为:2221111()cos cos 2262k p L E E M m x ml x ml mgl θθθθ=-=+++-&&&& 由欧拉—拉格朗日方程: d L L F dt x x ∂∂-=∂∂& , 0d L L dt θθ∂∂-=∂∂& 可以确定摆杆的运动方程: 211222111232()cos sin cos sin 0m M x ml ml F ml x ml mgl θθθθθθθ⎧++⋅-⋅=⎪⎨+-=⎪⎩&&&&&&&&& 为避免复杂的求解微分方程的运算,考虑摆角在θ=0附近的微小变化,倒立摆在垂直位置可以近似为:cos θ≈1,sin θ≈0,运动方程可简化为:1221132()()()0m M x ml F t ml ml x g θθθ⎧++=⎪⇒⎨+-=⎪⎩&&&&&&&& 令所有作用力、位移与角度参数为时间t 的函数,则2()[()()]t F t m M x mlθ=-+&&&& 2[()()]()032l ml F t m M x x g θ-++-=&&&& ∴ 43()()44mg x F t t m M m Mθ=-++&& 22()43()[()()]44m M mg F t F t t ml ml m M m M θθ+=--++&& 66()()()(4)(4)g m M F t t l m M l m M θ+=-+++ 将转换后的线性系统用两个2阶微分方程描述,系统的状态矢量为:令(,,,),()T x x x f F t θθ==&& ,则状态方程描述为: x Ax Bf y Cx=+⎧⎨=⎩& 将相关参数带入,得到010006()6000(4)(4)()000103400044g m M l m M l m M f t x x mgm M m M ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥++⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎢⎥⎢⎥++⎣⎦⎣⎦&01006()000(4)000130004g m M l m M A mgm M ⎡⎤⎢⎥+⎢⎥+⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥+⎣⎦ 06(4)044l m M B m M ⎡⎤⎢⎥⎢⎥-+⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦10000010C ⎡⎤=⎢⎥⎣⎦三. 控制对象的初步分析倒立摆系统的基本数据:M ——小车质量2Kgm ——摆杆质量0.5KgL ——摆杆长度 0.5m得到系统的状态方程如下:0100034.5882000 1.4118000101.72940000.4706u x x x x θ⎡⎤θ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥θ-θ⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦&&&&&&&&10000010y x x x θθθ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦&&由状态方程可知,系统的开环特征值为:开环系统有极点在右半平面,因此原系统为不稳定系统。
由能控性的定义,根据状态方程x Ax Bu =+&^2^3S=[B AB A B A B],rank(S)=4,满秩,所以系统完全能控;由能观性的定义,^2^3T P=[C CA CA CA ],rank(P)=4,满秩,所以系统完全能观。
四.控制器的设计1.控制方案的选取经典控制理论主要采用频域分析方法,能够很好地解决单输入单输出问题。
单级倒立摆系统的控制对象是一个单输入(力)两输出(角度和位移)的非最小相位系统。
根据对系统的力学分析,应用牛顿第二定律,建立小车在水平方向运动和摆杆旋转运动的方程,并进行线性化,拉氏变换,得出传递函数,从而得到零、极点分布情况。
为使闭环系统能稳定工作,需引入适当的反馈,使闭环系统特征方程的根都位于左平面上。
用经典控制理论的频域分析法设计非最小相位系统的控制器不需要十分精确的对象数学模型。
因为只要控制器使系统具有充分大的相位裕量,就能获得系统参数很宽范围内的稳定性。
与经典控制理论相比,现代控制理论有较强的系统性,从分析到设计、综合都有比较完整的理论和方法。
以单级倒立摆为例,这是一个多变量系统,应用最优状态调节器理论和状态观测器理论的控制思想,控制器采用线性定常状态反馈和观测器的结构。
控制对象(小车、摆杆)分别由传感器检测出两个位置量,然后由观测器重构系统状态,通过状态反馈,组成一个闭环系统,使不稳定系统变为稳定系统,系统的瞬态和静态性能良好。
此外,很多文献介绍了基于输出反馈的PID控制系统,但其控制效果不理想,主要原因是系统的高阶次和多变量。
以及基于模糊神经网络的倒立摆控制系统,该方法由于模糊神经网络系统的自适应能力,有效地克服了系统存在的非线性和不确定性,但该方法过分依赖人直接控制被控对象的经验。
这里我们结合《最优控制》课程的学习,选用基于状态空间设计法的LQR 最优调节器,较好地兼顾了系统的稳定性和快速性,应用实例说明了该方法的有效性。
对倒立摆系统进行控制的目的是:(1)通过状态反馈变不稳定系统为稳定系统;(2)使系统的瞬态和静态性能良好,系统的调节过程迅速,振荡不要太大。
由前面的分析可知,单级倒立摆系统是不稳定的,但系统的状态是完全可控和可观的。
根据线性系统控制理论,倒立摆经过适当的状态反馈后,所得到的闭环系统是可以稳定的,并且反馈所需的全部状态可以用状态观测器重构。
具体选择控制器方案时要考虑:在保证达到上述控制目标的前提下,控制器的设计和结构尽可能简单,容易实现。
控制器设计方案如下:(1) 应用确定性系统的控制理论,该系统为确定性系统;(2) 控制规律采用线性定常状态反馈,反馈增益由LQR 调节器理论算出;(3) 采用状态观测器重构系统状态。
2.最优调节器设计线性定常系统的状态反馈增益可由闭环系统的极点配置来确定,也可由最优控制理论计算获得,这里采用后一种方法。
单级倒立摆控制对象模型是一个单输入、双输出系统,它的状态方程为: x Ax Bu =+&设状态反馈调节器的形式为u(k)=-K x(k),1T K R B P -=通过使性能指标函数T T 0J=x (k)Qx(k)+u (k)Ru(k)∞⎰ 为最小,其中,(1) Q 为4*4对称半正定矩阵,R 是标量,R>0(2) 矩阵P 是Riccati 代数方程10T T PA A P PBR B P Q -+-+=的唯一正定解。