中科院随机过程最新课件第7-8讲
- 格式:pdf
- 大小:364.19 KB
- 文档页数:23
第一章 概率论基础知识1. 事件、概率和概率空间1.1 随机事件的运算和概率1.2 σ代数(域)和Borel 集设全集为, 为一些的子集构成的集类,若满足 ΩF ΩF 1)F ∈Ω2) 对任意F ∈A ,F ∈A3)对任意有限或至多可数的{}F ⊂n A ,F ∈n nA U则称为一个F σ代数(域)给定一个集合Ω,就可以构造一个包含它的一个σ代数。
推广:给定一个集类,可以构造一个的一个C F C ⊂σ代数。
包含C 的最小的F σ代数,称为由C 生成的σ代数,记作()C σ。
例如设R =Ω,{}R b a a b b a R A A ∈∞−∞==,),,(),(),[:任意或或或C为R 上的一个集类,()C σ中的集合称为Borel 集,()C σ称为直线上的Borel 域,记为。
)(R B1.3 Kolmogorov 概率公理化定义给定全集和其子集构成的一个Ωσ代数,若定义在上的函数满足F F )(⋅P 1) 任意,F ∈A 1)(0≤≤A P ;2) ; 1)(=ΩP 3)对任意两两不交的至多可数集{}F ⊂n A ,∑=⎟⎠⎞⎜⎝⎛nn n n A P A P )(U 称为上的概率测度,)(⋅P F ),,(P F Ω称为概率空间。
1.4 随机变量的概念定义:设为一概率空间,(P ,,F Ω))(w X X =为Ω上的一个实值函数,若对任意实数x ,,则称()F ∈−∞−),(1x X X 为()P ,,F Ω上的一个(实)随机变量。
称()()()),()),(()(1x X P x X P x X P x F −∞=−∞∈=<=−为随机变量X 的分布函数。
随机变量实质上是到()F ,Ω())(,R R B 上的一个可测映射(函数)。
记{}F B ⊂∈=−)()()(1R B B X X σ,称)(X σ为随机变量X 所生成的σ域。
推广到多维情形,随机向量是T n X X X X ),,(21L =()F ,Ω到())(,n n R R B 上的一个可测映射。
第七章统计量及其分布数理统计学的任务在实际问题中,经常遇到要确定一个随机变量的概率分布或它的某些数字特征。
例确定某厂年生产灯泡的次品率。
灯泡的质量通常用寿命这个指标来衡量,若规定,寿命低于1000小时者为次品,那么确定该厂生产灯泡的次品率可以归结为求灯泡的寿命x这个随机变量的分布函数F(x),因为若F(x)已知,则X(FP=<就是所要确定()10001000)的次品率。
如何确定灯泡寿命x的分布函数呢?一个很自然的想法是:把每个灯泡的寿命都测试出来,根据测试的结果,就可以确定x的分布函数。
然而这种做法在实际中是不可行的,因为灯泡的寿命试验具有破坏性,一旦我们获得所有灯泡的寿命数据,这些灯泡也就全部报废了。
因此,在灯泡寿命试验中,一般只能从整批灯泡中选取若干个来进行测试,这样就产生一个问题,如何从试验所得的部分数据推断整批灯泡的寿命x的分布函数呢?例确定某半导体厂生产的三极管的电流放大倍数X的平均值。
这个问题就是确定X的数字特征E(X)。
此时,测试三极管电流放大倍数虽不会遇到上例中的破坏性问题,但想通过逐个测试来计算算术平均值求得E(X)也是不可取的,因为逐个测试需要耗费大量的人力、物力和时间。
因此,在实际工作中,也只能对其中一部分三极管进行测试。
这样又产生与上例相类似的问题,即如何从试验所得到的部分数据来推断三极管电流放大倍数的平均值呢?从以上两例可以看到,在实际问题中经常需要通过试验所得的部分(或局部)数据来推断整体的种种性质(如分布、数字特征等)。
怎样进行合理的推断呢?这就是数理统计所要解决的主要任务。
由于这种从局部观察去推断整体的方法有着普遍的意义,因此数理统计的方法应用非常广泛,目前已应用于教育科学、工程技术、管理科学、自然科学以及社会科学等领域。
例如,教育科学中的教学质量评估、预测以及试卷质量的评价,工业生产中的产品质量控制于抽样检查,气象学中的天气预报,地震学中地震预报,医学中的疾病分析、药品疗效检验,农业生产中的产品估计于种子优选,人口学中的优生学和人口控制等等都渗透了数理统计的方法。
第一章 概率论基础1.从传统的长度概念说起1.1 区间(a,b )、[a,b]等都有长度,用字母L 表示,而且知道L (a,b)=b-a我们进而认为(*)L 是一种(函数)运算,自变量*为一维数轴上的区间,显然,(*)L 应满足:(1) L(*)0≥非负性;(2)有限可加性;(3)甚至要求满足可列可加性∑∞=∞==11)()(n n n n I L I L我们提出问题1:区间I 作为R 的子集,具有长度,那么R 的一般子集E 也有长度吗?答案是否定的。
因为传统长度是集合的右端点与左端点之差值,而只有区间这种集合才有端点。
问题2:是否可以推广L 为某*L 作为一般点集E 的长度呢?当然可以适当推广L 成为某种运算*L ,用以作为更广泛的一类集合(包含全体区间)的“长度”。
但是,事实表明,无论怎样改进*L ,都无法适应R 的全体子集。
1.2长度L 向某*L 推广的直接动力是,人们发现了Riemann积分的缺陷并希望加以改进。
Riemann 积分的缺陷1:()ba f x dx ⎰也可写成[,]()ab f x dx ⎰,积分符号的右下角就是积分区间,也就是积分范围,此范围不可以是一般的实数点集,只能是区间。
缺陷2:按照黎曼积分的定义(工科高数教材):(1)分割区间[,]a b 成为若干小区间1[,]k k xx -,1,2,,k n = (2)任意取小区间1[,]k k x x -的点k ξ,求值()k f ξ,进而得到第k 个小矩形的面积()k k x f ξ∆(3)做和1()n k k k x f ξ=∆∑,也即全体小矩形面积之和(4)01lim ()n k k k x f λξ→=∆∑,这一步是对前三步工作的无穷细化。
这种方法的核心思想是微小范围内以直代曲,例如,第k 个小矩形的面积应是()k x f x dx ∆⎰,但这里却以()k k x f ξ∆加以代替,依据是在很小区间1[,]k k x x -上,函数()f x 的变化不大,可以近似看成常数()kf ξ。