应用随机过程4.1 更新过程精讲
- 格式:ppt
- 大小:194.00 KB
- 文档页数:12
《应用随机过程》课程教学大纲课程代码:090541007课程英文名称:Applications Stochastic Processes课程总学时:40 讲课:40 实验:0 上机:0适用专业:应用统计学大纲编写(修订)时间:2017.6一、大纲使用说明(一)课程的地位及教学目标随机过程是现代概率论的一个重要的组成部分,其理论产生于上世纪初期,主要是由物理学、生物学、通讯与控制、管理科学等方面的需求而发展起来的。
它是研究事物的随机现象随时间变化而产生的情况和相互作用所产生规律的学科。
随机过程的理论为许多物理、生物等现象提供诸多数学模型,同时为研究这类现象提供了数学手段。
本课程为统计学专业的专业课程,通过本课程的学习,掌握随机过程的基本概念、基本理论、内容和基本方法,了解随机过程的重要应用,为后继课程学习提供知识准备,另一方面,随机过程的发展也是人们认识客观世界的一个重要组成部分,它有助于学生辩证唯物主义世界观的培养。
(二)知识、能力及技能方面的基本要求1.基本知识:通过本科程的学习,使学生掌握,要求学生掌握随机过程的基本概念、二阶矩过程的均方微积分、马尔可夫过程的基本理论、平稳过程的基本理论、鞅和鞅表示、维纳过程、Ito定理、随机微分方程等理论和方法。
2.基本能力:通过本课程的学习,使学生能较深刻地理解随机过程的基本理论、思想和方法,并能应用其解决实践中遇到的随机问题,从而提高学生的数学素质,加强学生开展科研工作和解决实际问题的能力。
3.基本技能:掌握建立随机数学模型、分析和解决问题方面的技能,为进一步自学有关专业应用理论课程作好准备。
(三)实施说明本大纲是根据沈阳理工大学关于制订本科教学大纲的原则意见专门制订的。
在制订过程中参考了其他学校相关专业应用随机过程教学大纲。
本课程思维方式独特,还需要学生有较高的微积分基础,教学中应注意概率意义的解释和学生基础情况的把握,处理好抽象与具体,偶然与必然、一维与多维,理论与实践的关系。
4.1(等待时间的和)设诚恳按照参数λ的Poisson 过程来到公交站,公交车于时刻t 发出,那么在],0[t 时间段内到达的乘客等待时间总和的期望应该如何计算那?对于某一个乘客而言,假设其到达时间为k t ,那么他等待时间就是k t t -所以乘客总的等待时间为∑=-=)(0)()(t N k k t t t S使用条件期望来处理平均等待))(|)(())((n t N t E E t S E ==对于某已成了而言,其到达时刻k t 随机],0[t 内均匀分布的随机变量。
但在车站上,乘客是先后到达次序排队,所以在n t N =)(的条件下,n t t t ,...,,21形成了独立均匀分布的顺序统计量。
不过就他们的和nt t ++...1而言,可以那他们看着顺序统计量,也可以把他们看着不排顺序的n 各独立的],0[t 内均匀分布的随机变量,所以2))((2)2)(())((22)())(|)((20t t N E t t t N E t E E nt nt nt t E nt n t N t E E nk k λ====-=-==∑=从而有4.2(数值记录)设},{N n X n ∈是一独立同分布的非负期望随机变量序列。
定义风险率)(t λ如下)(1)()(t F t f t -=λ 这里)()(t F t f 和分别是k X 的概率密度分布和分布函数。
定义随机过程)(t N 如下}),,..,m ax (:{#)(01t X X X X n t N n n n ≤>=-这里A #表示集合A 中的元素个数。
如果把)(t N 中的时间t 看做时间,那么)(t N 是一个非齐次Poisson 过程。
事实上,由于k X 彼此独立,所以)(t N 具有独立增量性。
很明显0)0(=N ,于是只需要检查一个时间微元内)(t N 的状态。
假定t ∆充分小,在0,...,X X n 中只有n X 在],(t t t ∆+上,因此111-11-11111))())(()((),...,(]),((),...,],,(()),...,max(],,(()),...,max(],,(()1)()((--∞=-∆+∆=≤≤∆+∈=≤≤∆+∈=>∆+∈>∆+∈==-∆+∑n n n n n n n n n n n n t F t o t t f t X t X P t t X P t X t X t t X P X X X t t X P X X X t t X P t N t t N P所以)()()(1)()())(())()(()1)()((21t o t t t F t o t t f x F t o t t f t N t t N P n n ∆+∆=-∆+∆=∆+∆==-∆+∑∞=-λ另一方面,可以证明)()2)()((t o t N t t N P ∆=≥-∆+ 所以)(t N 是非齐次的Poisson 过程,强度)(t λ。
遵义师范学院课程教学大纲应用随机过程教学大纲(试行)课程编号:280020 适用专业:统计学学时数:48 学分数: 2.5执笔人:黄建文审核人:系别:数学教研室:统计学教研室编印日期:二〇一五年七月课程名称:应用随机过程课程编码:学分:2.5总学时:48课堂教学学时:32实践学时:16适用专业:统计学先修课程:高等数学、线性代数、概率论、测度论或者实变函数(自学)一、课程的性质与目标:(一)该课程的性质《应用随机过程》课程是普通高等学校统计学专业必修课程。
它是在学生掌握了数学分析、线性代数和概率论等一定的数学专业理论知识的基础上开设的,要求学生掌握随机过程的基本理论和及其研究方法。
(二)该课程的教学目标(1)从生活中的需要出发,结合研究随机现象客观规律性的特点,并根据随机过程的内容和知识结构,着重从随机过程的基本理论和基本方法出发,就实际应用中的典型随机过程做应用研究,并在理论、观点和方法上予以总结、提高及应用。
(2)对各个章节的教学,随机过程侧重于基本思想和基本方法的探讨,介绍随机过程的基本概念,建立以分布函数等研究相关问题概率的实际应用思路,寻求解决统计和随机过程问题的方法。
着重基本思想及方法的培养和应用。
(3)结合学生实际,利用生活中的实例进行分析,培养学生的辩证唯物主义观点。
二、教学进程安排课外学习时数原则上按课堂教学时数1:1安排。
三、教学内容与要求 第一章 预备知识 【教学目标】通过本章的学习,复习并扩展概率论课程的内容,为学习随机过程打下良好的基础,提供必备的数学工具。
【教学内容和要求】随机过程以概率论为其主要的基础知识,为此,本章主要对概率空间;随机变量与分布函数;随机变量的数字特征、矩母函数与特征函数;独立性和条件期望;随机变量序列的收敛性与极限定理等常用到的概率论基本知识作简要的回顾和扩展。
其中概率空间,矩母函数和特征函数的定义及性质、条件期望、收敛性、极限定理等既是本章的重点,又是本章的难点。
应用随机过程第五版张波商豪教案摘要:随机过程是概率论中的重要内容,通过对随机过程的学习和应用,可以帮助我们更好地理解和解决实际问题。
本教案分析了应用随机过程的相关案例,并结合张波商豪教授的第五版教材进行教学设计。
引言:应用随机过程是一个有趣且实用的领域,它可以帮助我们了解和模拟现实世界中的随机现象。
在现代科学和工程领域,应用随机过程的知识和方法被广泛应用于通信、金融、电力系统、生物医学工程等诸多领域。
通过学习和应用随机过程,我们可以更好地理解和预测这些领域中的随机现象,提高问题解决的效率和准确性。
主体:1. 应用随机过程的基本概念和性质1.1 随机过程的定义和分类1.2 随机过程的性质:平稳性、独立增量性、Markov性2. 马尔可夫链的建模和分析2.1 马尔可夫链的定义和特性2.2 马尔可夫链的转移概率矩阵2.3 马尔可夫链的平稳分布2.4 马尔可夫链的应用案例3. 排队论的应用3.1 排队论的基本概念和模型3.2 M/M/1排队模型3.3 M/M/1排队模型的应用4. 随机过程在金融工程中的应用4.1 随机过程模型在金融衍生品定价中的应用4.2 随机过程模型在风险评估中的应用4.3 随机过程模型在投资组合优化中的应用5. 随机过程在通信系统中的应用5.1 随机过程模型在信道建模中的应用5.2 随机过程模型在网络性能评估中的应用5.3 随机过程模型在调度算法设计中的应用结论:应用随机过程是一个广泛而深入的领域,通过学习和应用随机过程的方法,我们可以更好地理解和解决实际问题。
本教案以张波商豪教授的第五版教材为基础,结合相关案例进行教学设计,旨在帮助学生掌握随机过程的基本概念和方法,并将其应用到实际问题中。
通过本教案的学习,学生将能够提高问题解决的能力和创新思维,为将来的学习和研究打下坚实的基础。
《应用随机过程》课程教学大纲一、课程基本信息课程代码:16055502课程名称:应用随机过程英文名称:Applied Stochastic Processes课程类别:专业课学时:32学分: 2适用对象:财经类专业本科生考核方式:考试先修课程:微积分、线性代数、概率论二、课程简介中文简介紧抓课程改革核心环节,不断提升教学质量,将“课程思政”作为融合德育与智育的融合主渠道,是逐步实现“立德树人”的综合教育理念的前进方向。
《应用随机过程》是面向经济统计专业三年级学生开设的一门必修课,随机过程通常被视为概率论的动态部分,即研究的是随机现象的动态特征,着重对随时间和空间变化的随机现象提出各种不同的模型并研究其内在的性质与相互联系。
具有较强的理论性。
该学科在社会科学、自然科学、经济和管理等各个领域中都有广泛的应用,培养学生的科学精神,探索自然和人类的奥秘。
英文简介The course Applied Stochastic Processes is one of the compulsory courses for the junior undergraduates majoring in Economic Statistics,which is usually viewed as the dynamic part of probability theories. It focuses on the dynamic feature of stochastic phenomena and emphasizes modeling the stochastic phenomena varying with time and space .Moreover,it explores the inner property and relationship among various models and it is quite theoretical and widely used in social science,natural science,Economic and management science etc.三、课程性质与教学目的本课程是经济统计专业一门应用性很强的专业课。